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Introduction: Oral squamous cell carcinoma (OSCC), which accounts for a high
proportion of oral cancers, is characterized by high aggressiveness and rising
incidence. Lysine acetylation is associated with cancer pathogenesis. Lysine
acetylation-related genes (LARGs) are therapeutic targets and potential
prognostic indicators in various tumors, including oral squamous cell
carcinoma. However, systematic bioinformatics analysis of the Lysine
acetylation-related genes in Oral squamous cell carcinoma is still unexplored.

Methods: We analyzed the expression of 33 Lysine acetylation-related genes in
oral squamous cell carcinoma and the effects of their somatic mutations on oral
squamous cell carcinoma prognosis. Consistent clustering analysis identified two
lysine acetylation patterns and the differences between the two patterns were
further evaluated. Least absolute shrinkage and selection operator (LASSO)
regression analysis was used to develop a lysine acetylation-related prognostic
model using TCGA oral squamous cell carcinoma datasets, which was then
validated using gene expression omnibus (GEO) dataset GSE41613.

Results: Patients with lower risk scores had better prognoses, in both the overall
cohort and within the subgroups These patients also had “hot” immune
microenvironments and were more sensitive to immunotherapy.

Disscussion: Our findings offer a new model for classifying oral squamous cell
carcinoma and determining its prognosis and offer novel insights into oral
squamous cell carcinoma diagnosis and treatment.
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1 Introduction

Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and
accounted for around 369,000 new in 2012. OSCC incidence has continued to grow, with two-
thirds of the cases occurring in developing countries. OSCC has a wide range of clinical
patterns (Ghantous and Abu Elnaaj, 2017), and the majority of the cases are associated with
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lifestyle habits like smoking, excessive alcohol consumption, and betel
nut chewing. According to the National Comprehensive Cancer
Network (NCCN) clinical practice guidelines in oncology, all
OSCC is primarily treated through surgery in combination with
radiotherapy and chemotherapy, and the use of targeted
treatments is recommended for advanced cases (stages III–IV)
(Warnakulasuriya, 2009). Following initial surgery and proper
adjuvant treatment, the pathologic nodal stage is the main
predictor of the malignant degree of OSCC patients (Zanoni et al.,
2019). However, OSCC recurrence is common after the first
R0 resection, resulting in a low survival rate (Warnakulasuriya,
2009), with an inadequate quality of life (Lin et al.,
2022).Moreover, survival rates decline with increasing time before
treatment initiation (Jensen et al., 2021). These factors emphasize the
need for early OSCC diagnosis as well as novel molecular targets for
treatment. For instance, although cetuximab, which targets the
epidermal growth factor receptor, was approved for OSCC
treatment in 2006 and anti-PD1 therapy has recently been used to
treat patients with metastatic disease following relapse or progression
during or after chemotherapy (Ferris et al., 2016), their efficacies have
not been significant. Thus, understanding the molecular changes that
underlie OSCC pathogenesis and the factors that contribute to OSCC
patient prognosis is an unmet medical need.

Cell transporter functional expression has been demonstrated to
be modulated by post-translational modification (PTM) via a variety
of molecular pathways. These changes are made by adding These
changes are made by adding specific chemical groups to certain
amino acid residues (Czuba et al., 2018). Acetylation is a common
PTM initiated by specific enzymes that transfer acetyl groups to the
amino side chain of lysine. Recent studies show that acetylation can
also occur non-enzymatically and is influenced by the availability of
acetyl-CoA (Narita et al., 2019). Although acetylation was previously
thought to be specific to histones, thousands of non-histone proteins
have been shown to contain lysine acetylation, including nuclear,
mitochondrial, and cytoplasmic proteins. Non-histone acetylation
regulates several cellular processes, including transcription, DNA
damage repair, and cell signaling. Lysine acetylation drives
tumorigenesis by actively modifying the expression and function
of oncogenic or tumor-suppressive factors (O’Garro et al., 2021; Hu
et al., 2022). The acetylation process can influence tumor formation
and progression by modulating immune activity and response in a
variety of ways. Several immune-related acetylation/deacetylation
modification targets are mentioned below (Ding et al., 2022). For
example, p300 can acetylates PD-L1 and inhibits its translocation
into the nucleus (Gao et al., 2020). And in non-small cell lung cancer
HDAC3 can be suppressed by the decreased COP1, which increases
PD-L1 expression (Wang H. et al., 2020).

Histone and non-histone acetylation, have double-edged roles in
tumor metastasis and metabolism (Hu et al., 2022). Four human
histone deacetylase inhibitors (HDACi) with the potential to trigger
tumor suppressor genes, have emerged as epigenome-targeting drugs
that can improve the chemotherapeutic and radiosensitivity of cancer
cells, and have received FDA approval for use in clinical settings (Ding
et al., 2022). DLUE1 is reported to be overexpressed in early OSCC
tumors, and its knockdown suppresses OSCC cell proliferation,
migration, and invasion, implying that DLEU1 drives the
expression of several genes during OSCC carcinogenesis (Hatanaka
et al., 2021). The expression of the deacetylase genes, HDAC6 and

HDAC9, is markedly elevated in OSCC (Sakuma et al., 2006; Rastogi
et al., 2016). Antitumor effects of novel HDACi in OSCC have also
been reported (Bai et al., 2011). For instance, HDACi target cancer
stem cells by inhibiting tumor growth and inducing cytotoxicity and
intracellular reactive oxygen species and are potential OSCC
treatments (Marques et al., 2020). Impairment of lysine acetylation
is thought to impair ribosome biogenesis and might contribute to
OSCC pathogenesis (Dong et al., 2022).

In this study, we used bioinformatics to analyze the expression of
33 lysine acetylation-related genes (LARGs) as well as their mutations
in OSCC tissues vs. normal tissues and then validated their expression
using RT-qPCR. Based on the expression of “HDAC3” and “SIRT5”,
OSCC patients were divided into two groups, and their correlation with
clinical characteristics examined. Univariate and LASSO regression
analyses were used to develop an OSCC prognostic model. The
efficacies of immunotherapy and chemotherapy, as well as the
OSCC immune landscape, were analyzed in various risk groups.

2 Materials and methods

2.1 Oral squamous cell carcinoma patient
datasets

RNA sequencing (RNA-seq) data on tissues from 323 OSCC
patients and 32 normal tissues, as well as associated clinical data,
were downloaded from TCGA. Gene microarray data and associated
clinical data for 97 tumor samples were obtained from dataset
GSE41613 from gene expression omnibus (GEO) (Supplementary
Table S1). The “limma” package was used for internal standards and
then applied to perform difference analysis.

2.2 Identification of differentially expressed
lysine acetylation-related genes (LARGs)

Thirty-three LARGs were retrieved from a previous review (Narita
et al., 2019) (Supplementary Table S2). The “limma” package was used
to identify differentially expressed LARGs with p < 0.05. Next, we
evaluated gene express variations in the 33 LARGs in each TCGA
OSCC sample to identify the LARGs associated withmutagenesis. Data
on gene mutations was also gathered from TCGA. The frequency of
different mutations was computed. Finally, the R package “maftools”
was used for visualization.Waterfall diagramswere used to visualize the
status of somatic mutation integration in OSCCs. Univariate analysis
was used to identify prognostic LARGs. Protein–protein interaction
(PPI) networks for the 30 connected LARGs were constructed on
STRING (https://cn.string-db.org/) (von Mering et al., 2005).

2.3 mRNA and protein level analyses of
OSCC samples

This study involved patients who underwent routine intraoral
examination, followed by oral mucosal biopsy and diagnosis of
squamous cell carcinoma of the oral cavity. Ten pairs of OSCC and
adjacent normal tissues were collected at Zhongnan Hospital.
Patients with a history of systemic illness or with other primary
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tumors were excluded from the analysis. OSCC samples and
matched adjacent noncancerous tissues were obtained before
preoperative radiotherapy or chemotherapy and immediately
frozen in liquid nitrogen, followed by storage at −80°C until
RNA extraction. Total RNA was extracted using Trizol reagent
(Servicebio, China). Ethical approval for the study (No. 2022095K)
was granted by Zhongnan Hospital of Wuhan University Medical
Ethics Committee. RT-qPCR was done on a BIO-RAD system using
a SYBR green dye qPCR mix (Servicebio, China). Primer
information is provided in Supplementary Table S3. The paired-
T test was used to determine the expression levels of the LARGs and
GAPDH. Human Protein Atlas (HPA) immunohistochemistry data
were used to identify the protein levels of two patterns, SIRT5 and
HDAC3, in paracancerous tissue and malignant tissues.

2.4 Consensus clustering analysis of the
LARGs

The “ConsensuClusterPlus” package was used to delimit distinct
lysine acetylation-related OSCC patterns (Seiler et al., 2010). Based on
different lysine acetylation-associated OSCC patterns, we examined
the clinicopathological features and prognosis of the patients. The
Kaplan–Meier (KM) analysis of the correlation between the lysine
acetylation-associated OSCC patterns was carried out by R packages
“survival” and “survminer” (Rich et al., 2010).

2.5 Identification of a LARGs prognostic
signature for OSCC

GSE41613 was used as the test cohort, whereas the TCGA
dataset was used as the training cohort. The LARGs-associated
signature was used to set up the prognostic model in the training
cohort. Next, univariate Cox regression analysis was used to identify
the prognostic differentially expressed genes (DEGs) between the
lysine acetylation-related patterns. LASSO regression analysis was
then used to identify prognostic DEGs (p < 0.05) using the “glmnet”
package (Simon et al., 2011). The risk score of the patients was
calculated by the formula as follows: Risk score � ∑n

i�1coefi*expi.
The median risk score was used to group the patients. Survival
differences between the two groups were comparatively analyzed
through KM survival analysis. Based on gene expression, principal
component analysis (PCA) was done with the “stats” package.
Moreover, t-distributed stochastic neighbor embedding (t-SNE)
was conducted to discuss the distribution of different groups via
the “Rtsne” package. The receiver operating characteristic (ROC)
curve analyses were carried out to estimate the prognostic power of
the gene signature by using the “survivalROC” package. The
prognostic relationship between risk score and age, gender, grade,
clinical stage, and immune score was analyzed. Additionally, we
explored the correlation between risk scores and cluster patterns.

2.6 Construction of the OSCC nomogram

We created a nomogram based on the risk scores and the clinical
data of the OSCC patients, including age, stage, grade, and genderto

expoit the predictive value of the eight-gene-based signature for
clinical application. To this end, the ‘rms’, ‘nomogramEx’, and
‘regplot’ R packages were used to construct the nomogram. Next,
ROC curve analysis was used to assess how well the nomogram
could predict OSCC prognosis (Pencina and D’Agostino, 2004).
Additionally, we used calibration curves to determine if the
projected survival outcome (one-, three-, and five-year survival)
was close to the actual outcome (Alba et al., 2017). The 45° line
shows the best nomogram-predicted survival.

2.7 Validation of grouping efficacy and
association analysis of immune cell
infiltration

The relationship between risk scores and immune cells
infiltration in OSCC samples was analyzed by the Pearson
correlation analysis using the GSVA package. Statistical analysis
was done using the ssGSEA algorithm (Hänzelmann et al., 2013).
Various immune indicators to study the relationship between factors
and immune phenotypes. We analyzed the association between risk
scores and immune cell infiltration, as well as the expression of
immune biomarkers, HLA family, chemokines, and chemokine
receptors. Immune checkpoint was examined via Pearson
correlation analysis using p = 0.05 as the cutoff threshold. The
immunophenotype scores (IPS) of the patients were used to predict
OSCC response to checkpoint blockade immunotherapy
(Charoentong et al., 2017).

2.8 Drug sensitivity analysis

To assess the therapeutic potential of chemotherapy drugs on
OSCC, the semi-inhibitory concentration (IC50) of common drugs
was determined using the “pRRophetic” package (Geeleher et al.,
2014). The sensitivity of the chemotherapeutic agents in different
patient groups was also predicted.

2.9 Statistical analysis

Statistics acquired from TCGA were merged and conducted on
R then processed and analyzed on R using the indicated packages.
Normally distributed continuous variables were expressed as
Mean ± standard deviation. Non-normally distributed continuous
variables were presented as medians (range). Categorical variables
were described as counts and percentages. Two-sided p < 0.05
indicated statistically significant differences.

3 Results

3.1 The landscape of lysine acetylation-
related genes in OSCC patients

The detailed flowchart of the study is shown in Supplementary
Figure S1. Using the TCGA dataset, we identified the expression
levels of 33 LARGs in OSCC samples, and normal paracancerous
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specimens and found that the 24 of the 33 LARGs (73%) were
expressed significantly different in OSCCs (Figure 1A).

Given the importance of gene mutations in carcinogenesis,
we investigated the somatic mutations of 33 LARGs in OSCC
samples and found that 122 of the 506 (24.11%) OSCC samples
we analyzed had genetic changes. Among the LARGs we studied,
EP300 was shown to have the highest mutation rate, followed by
CREBBP and HDAC9. (Figure 1B). EP300 and CREBBP are both
often mutated in squamous cell carcinoma and lymphomas
(Attar and Kurdistani, 2017). Most of the changes are
missense point mutations. HDAC9 interacts with a variety of
transcriptional repressors and oncogenes (Ning et al., 2020) and
may influence anticancer immune responses by limiting T-cell
infiltration into the tumor microenvironment (TME) (Yang
et al., 2021).

A PPI network revealed that 30 LARGs were closely
interconnected (Figure 1C), the other 3 genes were
eliminated because they do not interact with other lysine
acetylation-related genes. Univariate Cox regression analysis

revealed that high HDAC3 and SIRT5 expression was
associated with poor OSCC survival (Hazard ratio, HR: >1;
Figure 1D).

3.2 HDAC3 and SIRT5 are upregulated in
OSCC tissues when compared with normal
tissue

We next conducted studies based on the expression of
HDAC3 and SIRT5, and it appeared that there were
substantial disparities in their overall survival (Figures 2A,
D). Analysis of immunohistochemical data on HPA revealed
that OSCC tissues exhibited significantly higher SIRT5 and
HDAC3 staining when compared with normal tissues
(Figures 2B, E). Moreover, RT-qPCR analysis revealed that
SIRT5 and HDAC3 expression levels in cancer tissues were
significantly higher than in normal tissues (p < 0.05;
Figures 2C, F).

FIGURE 1
Landscape of (lysine acetylation-related genes) LARGs in OSCC (A)Molecular expression of LARGs in normal tissues compared with oral squamous
cell carcinomas. (B) The genetic alterations of LARGs inOSCC. (C) The interactions between the candidate genes were shown by the PPI network. (D) The
findings of the univariate Cox regression demonstrate the relationship between OS and gene expression.
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3.3 Tumor classification based on the
prognostic value of lysine acetylation
regulators

Consistent clustering was used to examine SIRT5 and
HDAC3 expression in a TCGA dataset of 323 OSCC cases. To
this end we grouped the OSCC patients into two clusters based on
cumulative distribution function (CDF) values (k = 2; Figure 3A, and
k = 3–9; Supplementary Figure S2). PCA analysis found that the two
clusters are clearly identifiable (Figure 3B).

This analysis also revealed that overall survival of cluster 1 was
worse than that of cluster 2 (p = 0.014; Figure 3C). Analysis of
whether the variability in survival was caused by differences in
infiltration by the 23 immune cells in the 2 clusters revealed that
immune cell infiltration differed significantly in 16 of 23 OSCCs
(Figure 3D). These findings suggest that in the context of reduced
expression of lysine acetylation-associated genes, OSCC patients
with immune cell infiltration had better prognosis.

Furthermore, except for stage, other clinical parameters,
including grade, gender, age, and TNM did not differ across

FIGURE 2
The expression level of “HDAC3” “SIRT5” in OSCC. (A,D) Kaplan–Meier survival analysis based on the expression of acetylation-related genes The
OSCC patient survival curve for those with high and low gene expression was depicted by the red curve and the blue curve. (B,E) The HPA
immunohistochemistry data were utilized to identify the protein levels of two genes in normal and malignant tissues. (C,F) HDAC3 and SIRT5 expression
levels in OSCC tissues and surrounding normal tissues are compared. RT-PCR was used to identify the alterations in the expression of 2 LARGs in
OSCC and its normal tissue. *if p < 0.05, ** if p < 0.01, and *** if p < 0.001.
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these two clusters In cluster 1, most genes are upregulated, while in
cluster 2, the genes are downregulated, as shown in the heat map
(Figure 3E).

3.4 Developing an independent prognostic
risk model based on LARGs clustering

We used “limma” package of R (4.1.1) to conduct, we discovered
323 DEGs between the two clusters (Supplementary Table S4), these
DEGs were then examined via univariate Cox regression analysis.
Twenty-six genes were finally proved that can be employed as
distinct prognostic indicators (Figure 4A). After filtration, LASSO
Cox regression analysis found NKX2-3, SAPCD2, SPINK7, LYNX1,
AKR1C3, SYT17, MASP1, and CTSG to be significantly associated
with overall survival (OS) (Figures 4B, C; adjusted p < 0.05).

The genes were used to calculate risk score based on the formula:

risk score � −0.207 pNKX2 − 3( ) + 0.045 p SAPCD2( )
+ −0.011 p SPINK7( ) + −0.054 p LYNX1( )
+ 0.014 pAKR1C3( ) + 0.185 p SYT17( )
+ −0.399 pMASP1( ) + −0.185 pCTSG( ).

Next, samples were divided into the high and low survival risk
groups based on the median risk score, as shown using KM survival
curves (p < 0.001). These analyses indicate that the multigene
signature had a significant prognostic value (Figure 4D) and that
the risk scores distinguished patients with high and low survival
rates (Figure 4F). The area under the curve (AUC) analysis at one,
three, and 5 years (AUC: 0.655, 0.707, and 0.707, respectively)
showed that the prognostic signature was highly accurate at
predicting OS in OSCC patients (Figure 4E). PCA analysis and
t-SNE analysis suggested that the OSCCs in distinct risk categories
were distributed in two directions (Figures 4G, H).

3.5 Validation of the prognostic value in the
subgroups

Next, we split the GEO dataset into two categories based on risk
score (Supplementary Figure S3). KM (p = 0.02; Supplementary
Figure S3A) and ROC curve analyses revealed that the low-risk
group had a higher overall survival rate, indicating that the model
was accurate (one-three-, and five-year AUC: 0.736, 0.645, and
0.661, respectively; Supplementary Figure S3B). There were fewer
deaths in the low-risk group, which exhibited lower expression levels

FIGURE 3
Consensus clustering is carried out based on the LARGs. (A) The consensus clustering was used to divide 323 OSCC patients into two groups (k = 2).
(B) PCA analysis showed a clear distinction between the cluster 1 and 2. (C) Survival curves for genes involved in RNAmethylation that are linked to overall
survival. Clusters 1 and 2 were shown to be substantially linked to survival (p = 0.014). (D) 23 immune cell types infiltration is significantly different in two
clusters. (E) The clinicopathologic characteristics between the two clusters are shown on a heatmap.
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of the risk genes (Supplementary Figures S3C, F). Finally, t-SNE
analysis and PCA revealed that the risk genes were very effective in
differentiating the two risk groups (Supplementary Figures S3D–E).

3.6 Subgroup survival analysis based on
clinical parameters

To determine the ability of various clinical parameters to
predict OSCC prognosis, we carried out a stratified analysis of
clinical parameters in the test cohort by creating multiple

subgroups for the patients in the TCGA dataset using various
clinical parameters. KM analysis of the correlation between age
(≤65 and >65 years), sex, grade (G1–G2 or G3–G4), stage (I–II or
III–IV), and survival indicated that except for G3–G4, high-risk
patients had a lower likelihood of survival than low-risk patients
(Supplementary Figures S4A–H). We also studied how the clinical
parameters and the risk scores correlated with one another. This
analysis revealed that high-risk scores and the AJCC stage, clusters,
and immune scores differ significantly from each other
(Supplementary Figures S5A–F). High-risk scores were mainly
observed in patients with lower immune scores when compared

FIGURE 4
Construction of the lysine acetylation-related prognostic signature in the training cohort. (A) An investigation of OS for each DEG on clusters 1 and
2 using univariate cox regression. (B) LASSO regression of DEGs inOSCC. (C)Cross validation in the LASSO regression. (D) TheOS of OSCC patients in the
high-risk group was considerably poorer than that of the low-risk group, according to K-M curves. (E) An evaluation of the prognostic signature for OS in
OSCC patients using ROC curves. (F,G)OSCC patients characteristics by high- and low-risk categories (H,I) To demonstrate how the samples of the
various risk groups associated with lysine acetylation were dispersed independently, PCA (H) and t-SNE (I) were used.
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with those with high immune scores. Advanced disease stage was
also associated with higher risk scores.

3.7 Development of a nomogram and model
efficiency prediction

Sankey plot analysis revealed that the patients were distributed
into two LARG clusters, two risk score clusters, and two future status
clusters (Figure 5A).

Next, we developed a nomogram to illustrate the connection
between these independent prognostic markers and survival
probabilities (Figure 5B). Clinicians might forecast a patient’s
prognosis based on their total points. Patients with higher total
points had lower survival. Additionally, calibration curves indicated
that the nomogram could accurately predict one-, three-, and five-year
OS (Figure 5C). A nomogram calibration curve was used to assess
consistency between predicted and observed OS outcomes, with red,
blue, and green lines indicating how the nomogram performed,
whereas the gray line at 45° indicates flawless prediction (Figure 5D).

3.8 Gene set enrichment analysis and
immune activity

The ESTIMATE algorithm was applied to generate TME scores.
This analysis showed that patients with high-risk scores had
significantly lower estimate score, immune score, and stromal
score (p < 0.001) than those patients with high-risk score (p <
0.001) (Figure 6A). Moreover, ssGSEA analysis of the differences in
multiple immune cells and signal pathways revealed that the high-
risk group had lower immune cell infiltration (p < 0.05; Figure 6B).
Moreover, these pathways were suppressed in patients with high-
risk scores, including APC co-inhabitation, CCR, immune
checkpoint, and cytolytic activity (p < 0.05; Figure 6C).
Chemokines mediate the leukocyte migration to various sites
during normal homeostasis and inflammation. Therefore, we
investigated the correlation between 19 chemokine receptors and
43 chemokines and risk categories (Figures 6D, F). This analysis
revealed that most chemokines, including inflammatory
chemokines like CCL2 and CXCL12, which promote the
proliferation of B progenitor cells in the bone marrow milieu

FIGURE 5
(A) Sankey plot shows quantities of patients flow from 2 clusters to the risk score distributions group than to final status. (B) Nomogram for OSCC
patient survival predictions at 1, 3, and 5 years (C) The ROC curves for 1−, 3−, and 5−year OS in OSCC patients. (D) Calibration curves of the nomogram
measured by Hosmer-Lemeshow test.
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where they are produced, were markedly lower in patients with high-
risk scores. Indicating that the differences between the
immunological microenvironment of the high and low-risk
groups were caused by the equivalent reduction in chemokine levels.

We also investigated the correlation between risk scores and
HLA complex genes (Figure 6E), including HLA-DRB5 and HLA-
DRB1, which are crucial for immune activity because of their
antigen-presenting function. The potential of checkpoint

FIGURE 6
Two-group TME evaluation and checkpoints analysis. (A) Relationship between ESTIMATE score and high and low risk groups (B) The aggregation
and expression of 16 immune cells were different in OSCC patients. (C) In high and low risk groups, 13 immunological functions expressed themselves
differently. (D) Comparisons between the risk scores and the quantity of chemokines expression. (E) Human Leukocyte Antigen (HLA) expression in the
high and low risk categories. (F) The abundance of chemokine receptors in different risk score groups. (G) Expression levels of clinically targetable
ICP were measured in two risk groups. (p < 0.05 *; p < 0.01 **; p < 0.001 ***, not significant ns).
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inhibitors to treat cancer has attracted significant interest. Therefore,
we deduced that the OSCC inflammatory condition may be
associated with a unique expression of immune checkpoint
(ICP). The expression levels of eight ICP genes,LAG3, TIGIT,
PDCD1, HAVCR2, CTLA4, SIGLEC15, PDCD1LG2, and
CD274 were calculated to determine the correlations between
immune checkpoints and risk score. This analysis found LAG3,
CTLA4, PDCD1, TIGIT, PDCD1LG2, and CD274 to be
downregulated in the high-risk group (Figure 6G), suggesting
that the low-risk group is sensitive to immunotherapy. To assess
the response of patients to immune checkpoint inhibitors, we
calculated the IPS scores of each sample and found that the IPS
scores(ips_ctla4_pos_pd1_pos) of low-risk groups were higher,
indicating that the patients in this group may be more sensitive
to the combined PD-1/CTLA4 blockade (Supplementary Figures
S6A–D).

3.9 Drug sensitivity analysis

Chemotherapy, targeted therapy, and immunotherapy may slow
tumor growth in OSCC patients and enhance patient prognosis. We
calculated the IC50 values of various chemotherapies in the test
cohort using the “pRRophetic” package on R. This analysis found
that paclitaxel, docetaxel, cisplatin, doxorubicin, methotrexate, and
several targeted treatment drugs are more effective in patients with
high-risk scores (Figures 7A–E). Paclitaxel primarily affects the M
phase of mitosis, and disrupts tubulin synthesis, thereby inhibiting

the replication of tumor cells. Docetaxel belongs to the same family
as paclitaxel but has a higher affinity for microtubule sites and
exhibits higher anticancer activity. Cisplatin is a platinum
compound and acts on the chemical structure of DNA.
Doxorubicin and methotrexate enter the nucleus, bind to DNA,
and inhibit nucleic acid synthesis and mitosis. In summary, these
findings suggest that risk scores can predict drug sensitivity.

4 Discussion

Because of its molecular heterogeneity, few treatments are
effective against terminal oral cancer. To improve OSCC
prognosis, novel biomarkers, and treatment targets are needed.
The emergence of high-throughput array technologies presents a
chance to investigate the mechanisms underlying OSCC occurrence
and progression. Lysine acetylation, a key regulatory mechanism of
gene expression, might be associated with OSCC pathophysiology
but it is unclear if acetylation-related genes influence OSCC or
whether they are associated with OSCC survival.

Here, we first assessed the expression levels of 33 LARGs in
OSCC vs. normal tissues and found that most of were differentially
expressed, with Sirtuin 5 (SIRT5) and Histone Deacetylase 3
(HDAC3) exhibiting the highest differential expression. Analysis
of the correlation between the expression of SIRT5 and HDAC3 and
overall survival revealed that both genes were linked to the prognosis
of OSCC patients. HPA and RT-qPCR analysis of whether they are
aberrantly expressed in OSCC showed that SIRT5 and HDAC3 were

FIGURE 7
Relationship between risk score and therapeutic sensitivity. (A–E) Association between risk score and chemotherapeutic sensitivity.
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significantly upregulated in tumor tissues when compared with
normal samples.

In OSCC, HDACs are thought to have excellent antitumor
potential. It is proposed that RNA splicing and HDACs might be
linked, with HDACs controlling acetylation and splicing through
interaction with ribonucleoprotein complexes and the spliceosomes
(Rahhal and Seto, 2019). Thus, we hypothesized that dysregulated
acetylation might influence OSCC development by controlling RNA
splicing. Lysine acetylation has been associated with the ribosome
pathway, especially with the loss of acetylation on RPS6 and RPS3,
whichmight have therapeutic target potential against OSCCs. (Dong
et al., 2022). SIRT5 has been implicated in various malignancies.
LDHA-K118su, a SIRT5 substrate markedly elevates invasion and
migration by prostate cancer cells (Kwon et al., 2022).
SIRT5 negatively regulates cancer cell proliferation in pancreatic
ductal adenocarcinoma patients and is related to better prognosis.
SIRT5 has also been associated with metabolic regulation and
changes in the tumor microenvironment (Sun et al., 2022) in
promoting hepatocarcinogenesis. SIRT5 deficiency can increase
immune cell activity, indicating that it influences immune cell
development (Wang K. et al., 2020).Our immune analyses
indicate that acetylation influences the OSCC TME composition.

Next, two clusters were generated based on ‘HDAC3’ and
‘SIRT5’. To further evaluate the prognostic value of these
acetylation-related regulatory factors, we used univariate and
LASSO regression analyses to construct a risk model using eight
genes and then validated its performance on an external dataset. We
show that in OSCC patients, risk score is a reliable predictor of OS.
Next, we developed a nomogram for clinical analysis of
individualized prognosis and risk based on a risk score, age and
stage. The calibration curve revealed a high fitness between the
actual and predicted OS rates. Taken together, these findings
indicate that the prognostic risk scoring model based on the
eight-gene signature is an effective indicator of OSCC prognosis.

Next, we further investigated the eight genes used to construct the
model. NK2 homeobox 3 (NKX2-3) has been reported as a prognostic
factor in head and neck squamous cell carcinoma (HNSCC) (Huang
L. et al., 2021; Liu et al., 2021). Suppressor APC domain containing
neuroblastoma (SAPCD2) (Zhang et al., 2022), has been reported to
regulate Yap/Taz, MAPK, and mTOR signaling in various cancers,
including colorectal (Luo et al., 2020) and prostate cancer (Sun et al.,
2021). Serine peptidase inhibitor Kazal type 7 (SPINK7) has also been
proposed as a prognostic factor also a molecular biomarker in
HNSCC (Pennacchiotti et al., 2021; Du et al., 2022). Ly6/
neurotoxin 1 (LYNX1) has been suggested as a prognostic factor
in ovarian serous cystadenocarcinoma (Liu et al., 2020) and
glioblastoma (Ren et al., 2022). A quantitative sequencing study
found that LYNX1 expression significantly increased the
recurrence of methylation groups in oropharyngeal tumors. Aldo-
keto reductase family 1 member C3 (AKR1C3) has been associated
with poor prognosis in patients with oropharyngeal cancer, especially
in HPV-positive patients (Peraldo-Neia et al., 2021). Synaptotagmin
17 (SYT17) was found to be differentially expressed in non-Hodgkin’s
lymphoma (Fucà et al., 2021). MBL associated serine protease 1
(MASP1) has also been proposed as a prognostic factor in HNSCC
and oral cancer (Belotti et al., 2021; Zhang and Wang, 2022).
Cathepsin G (CTSG) overexpression is associated with poor diffuse
large B-cell lymphoma survival (Carreras et al., 2021).

Numerous studies have found that the TME significantly
influences cancer incidence, development, and metastasis (Belli
et al., 2018; Laplane et al., 2019). Our analysis found that higher
immune/stromal scores, were associated with lower risk scores,
however, tumor purity had the opposite effect. In OSCC patients,
higher risk scores predict a worse prognosis, which demonstrated
that the higher the number of immune cells in OSCC, the more
difficult it is to identify cancer cells (Gandara et al., 2018). The low
infiltration level of antitumor immune cells indicates that immune
function was impaired in the high-risk group (Li et al., 2017).
Comparing the immune cell infiltration in high- and low-risk
groups revealed that the number of invading immune cells in the
high-risk group was less than in the low-risk group.

Intriguingly, we found that the proportion of Tregs was higher
in the low-risk group than in the high-risk group. Tregs have been
associated with subpar clinical outcomes and have been shown to
downregulate anti-tumor immunity (Wolf et al., 2005; Toker et al.,
2018). This might be explained by the need for Tregs in the TME to
control excessive acetylation-induced inflammation Additionally,
two key Treg subtypes identified in colon cancer have been shown to
have competing roles in controlling the TME (Saito et al., 2016). The
risk score was negatively associated with B cell infiltration. B cell
infiltration in OSCC has not been extensively studied and available
literature is inconsistent. B cell infiltration has been shown to
enhance immunological function (Ammirante et al., 2010) while
impairing T cell-dependent responses (Shalapour et al., 2015).
Therefore, the different Treg subtypes in OSCC should be
considered. Except for the APC co-stimulation pathway and
MHC class I, the activities of other immunological pathways
differed significantly between the two cohorts. These data suggest
that a decrease in antitumor immunity may cause the low survival
rates in high-risk OSCCs.

CCL2 is an important chemokine that is reported to promote the
proliferation and metastasis of osteosarcoma cells by activating NF-
κB signaling (Lazennec and Richmond, 2010; Chen et al., 2015). In
the category of biological processes, the inflammatory reaction had
the strongest correlation with risk scores. Inflammatory responses
are reported to be crucial for cancer development, growth,
malignant transformation, invasion, and metastasis (Tang et al.,
2018). By controlling therapeutic response and immunological
surveillance, inflammation also affects patient survival
(Grivennikov et al., 2010).

Recent advances in bioinformatics have led to the development
of powerful tools for identifying new cancer treatment targets,
including for OSCC, based on tumor immunotherapy and
microarray sequencing (Almangush et al., 2021; Huang G. G.
et al., 2021). Although anti-PD-1/PD-L1 immunotherapy has
been widely used to treat terminal OSCCs, only a limited
number of cases benefit from this therapy (Dong et al., 2021).
Hadler-Olsen et al. (Hadler-Olsen and Wirsing, 2019) discovered
that CD163+ M2 and CD57+ showed a positive correlation with the
outcome OSCC outcomes.

LAG3, TIGIT, PDCD1, CTLA4, PDCD1LG2, and
CD274 checkpoints exhibit significant differences between
patients with different risk scores. This may offer new
immunotherapy strategies for OSCC and raises the possibility
that patients in the high-risk category may benefit from ICP
inhibitor treatment than patients with low-risk scores. In
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conclusion, our data indicate that immunosuppression might
underlie poor prognosis in high-risk patients and that
acetylation may be important for OSCC immunotherapy.
However, this study has some limitations. First, the OSCC
samples used are from public databases. Secondly, although our
prognostic model has been confirmed in different datasets, the
study is retrospective. To validate the clinical utility of the
developed model, additional, well-designed studies are required.
To determine the pathways involved, the identified genes should
undergo experimental validation, either in cancer cells or mouse
models. Additionally, we did not perform our own sequencing, and
the follow-up data, as well as the sample size, were too small to
carry out a similar survival study. We anticipate that the
limitations highlighted above will define the scope and depth of
our future research.

Few studies have examined the acetylation mechanisms
underlying OSCC. Here, we identified two prognostic markers
associated with acetylation in OSCC, SIRT5 and HDAC3, which
are overexpressed in tumors, and found that their upregulation is
associated with poor OS. We conducted a basic study on the
prognostic value of these LARGs and built up some theoretical
evidences to support future researches. The prognostic value of
both genes warrants further validation using clinical data.
Importantly, the prognosis model based on univariate Cox and
LASSO regression analyses is closely associated with immune cell
infiltration.
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