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The continuous emergence of novel variants represents one of the major
problems in dealing with the SARS-CoV-2 virus. Indeed, also due to its
prolonged circulation, more than ten variants of concern emerged, each time
rapidly overgrowing the current viral version due to improved spreading features.
As, up to now, all variants carry at least onemutation on the spike Receptor Binding
Domain, the stability of the binding between the SARS-CoV-2 spike protein and
the human ACE2 receptor seems one of the molecular determinants behind the
viral spreading potential. In this framework, a better understanding of the interplay
between spike mutations and complex stability can help to assess the impact of
novel variants. Here, we characterize the peculiarities of the most representative
variants of concern in terms of the molecular interactions taking place between
the residues of the spike RBD and those of the ACE2 receptor. To do so, we
performed molecular dynamics simulations of the RBD-ACE2 complexes of the
seven variants of concern in comparison with a large set of complexes with
different single mutations taking place on the RBD solvent-exposed residues and
for which the experimental binding affinity was available. Analyzing the strength
and spatial organization of the intermolecular interactions of the binding region
residues, we found that (i) mutations producing an increase of the complex
stability mainly rely on instaurating more favorable van der Waals optimization
at the cost of Coulombic ones. In particular, (ii) an anti-correlation is observed
between the shape and electrostatic complementarities of the binding regions.
Finally, (iii) we showed that combining a set of dynamical descriptors is possible to
estimate the outcome of point mutations on the complex binding region with a
performance of 0.7. Overall, our results introduce a set of dynamical observables
that can be rapidly evaluated to probe the effects of novel isolated variants or
different molecular systems.
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Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) has been first observed in late 2019 in the Chinese region of
Wuhan. From there, it rapidly spread all over the world, resulting in
the Coronavirus Disease 2019 (COVID-19) global pandemic (Zhou
et al., 2020; SalimKarim and de Oliveira, 2021). Despite the
deployment of social distancing measures and a huge vaccination
campaign, to date SARS-CoV-2 is still circulating and has caused,
according to World Health Organization (WHO) on August 2022,
over 600 million cases and 6 million deaths (Jonas et al., 2022).

At the molecular level, SARS-CoV-2 relies on the viral spike (S)
glycoprotein to attach and enter the host cells. The spike protein has
a homotrimeric structure that contacts receptors on the cell surface
(Alejandra Tortorici and Veesler, 2019; Turoňová et al., 2020). In
particular, attachment and entry processes are mediated by two
distinct regions on the S protein: a region in the protein N-Terminal
Domain (NTD) is apt to bind to sialoside molecules (Milanetti et al.,
2021a), allowing for the initial attachment of the viral capsid to the
cell surface, while another spike region, the Receptor Binding
Domain (RBD), contacts its cellular receptor, Angiotensin-
Converting Enzyme 2 (ACE2) (Yan et al., 2020; Cerutti et al., 2021).

Notably, this dual receptor mechanism has been previously
observed in other coronaviruses. In fact, SARS-CoV-2 belongs to
the family of beta coronaviruses and represents the third highly
pathogenic coronavirus with a zoonotic origin that emerged in
humans causing respiratory illness (Cui et al., 2019; Hu et al.,
2021). Previous epidemics of SARS-CoV and MERS-CoV were
registered in 2002–2004 and 2012 (Kumar et al., 2020). While
SARS-CoV-2 shares the same entry receptor as SARS-CoV, the
latter is unable to bind sialoside molecules, given the different
conformation and length of the loops in the N-Terminal region.
MERS-CoV, on the other hand, uses a different kind of entry
receptor, dipeptidyl peptidase-4 (DPP4), but its NTD is able to
establish avidic interactions with sialic acid moieties (Alejandra
Tortorici and Veesler, 2019), which was first computationally
predicted (Milanetti et al., 2021a) and then experimentally
confirmed also for SARS-CoV-2 (Baker et al., 2020).
Understanding the entry mechanisms of the virus through the
molecular interactions with the receptors of the host cell is of
crucial importance also to try to infer the possible consequences
of mutations that take place both in the binding regions and in the
more distant regions, which may have a long-range effect on the
binding regions.

Similar to the other coronaviruses, mutations in the SARS-CoV-
2 genetic code randomly occur in viral replication, where the ones
that increase the fitness are preserved giving rise to new variants
(Domingo and Holland, 1997; Duchene et al., 2020; Miotto and
Monacelli, 2020; Portelli et al., 2020; Miotto et al., 2022a). For
instance, concerning the original line of SARS-CoV-2, one of the
first registered mutations was the amino acid substitution D614G in
the S protein. Established in March 2020, this mutation allowed the
spike RBD to assume a conformation more suitable for binding
ACE2 and rapidly became dominant (Ralph, 2020; Trucchi et al.,
2021; Zhang et al., 2021).

Indeed, RNA viruses are characterized by a low replication
fidelity, which allows adaptation to different environments and
evolutive pressure, in turn enabling them to escape the host

immunity (Domingo and Holland, 1997; Mittal et al., 2022). In
this scenario, during the spreading pandemic, several SARS-CoV-
2 variants of concern (VOCs) have emerged. In particular, the alpha
variant (lineage B.1.1.7), characterized by a mutation N501Y in its
RBD (Harrington et al., 2021), was the first VOC detected during the
COVID-19 pandemic, identified in November 2020 from a sample
taken in September in the United Kingdom (Faria et al., 2021). It
began to spread quickly by mid-December, around the same time as
infections surged, being 40%–80%more transmissible than the wild-
type (WT) SARS-CoV-2 (Chia et al., 2021; Lin et al., 2021). In
December 2020 the beta variant (lineage B.1.351) was detected in
South Africa (Tegally et al., 2020), even though phylogeographic
analysis suggests this variant emerged much sooner, in July or
August 2020 (Tegally et al., 2020). Nowadays, the WHO
considers it to be no longer in circulation. It has been proposed
that this variant is able to attach more easily to human cells because
of three mutations in the RBD (Grabowski et al., 2021): N501Y,
K417N, E484K. E484K and N501Y are included in the receptor-
binding motif (RBM) of the RBD. In late 2020, other two VOCs,
both descending from lineage B.1.617.2, were detected in India: the
delta variant, carrying mutations L452R and T478K in the spike
RBD (Adam, 2021), and the kappa variant, characterized by
mutations L452R and E484K in that domain (Cherina et al., 2021).

In May 2021, the delta was declared quicker in its spread than
both the original version of the virus and the alpha variant
(Campbell et al., 2021). According to the WHO, in June
2021 this strain was becoming the dominant one globally, and by
November 2021 it had spread to over 179 countries.

Also in December 2020, the first cases of the eta variant (lineage
B.1.525) were detected in the UK and Nigeria (Liu et al., 2021). Eta is
currently regarded as a variant under investigation, but pending
further study, it may become a VOC (Liu et al., 2021). It presents in
the RBD the mutation E484K.In January 2021 the gamma variant
(descending from lineage B.1.1.28) was identified in Japan, in four
people traveling from Brazil (Faria et al., 2021). Gamma has
17 amino acid substitutions, ten of which are in its spike protein,
including three in the RBD: N501Y, E484K, K417T (Faria et al.,
2021).The latest variant under study is omicron (lineage B.1.1.529),
first reported in South Africa on 24 November 2021 (Gowrisankar
et al., 2022) and, at the time of this study, the predominant variant in
circulation, with a risk of reinfection higher than the other strains
(Vitiello et al., 2022). Compared to any previous variant, omicron
has more mutations, many of which are novel. It is characterized by
30 amino acid changes, three small deletions, and one small
insertion in the spike protein compared with the original virus.
Fifteen mutations are located in the RBD (Vitiello et al., 2022).

The prolonged circulation of the SARS-CoV-2 virus is favoring
the emergence of novel variants. Thus, fast and specific methods to
assess the impact of such variants are of great importance. In this
respect, computational protocols able to operate from the genomic
sequence would be ideal to cut off the delay between the
identification of a novel strain and the clinical assessment of its
spreading capabilities.

To make progress in this direction, here we focus on the
experimental binding affinity between the SARS-CoV-2 spike
protein and its human ACE2 receptor. We first carried out an
analysis of the effect that single mutations on the spike RBD produce
on the complex binding affinity. We then proposed a computational
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pipeline to probe the stabilizing/destabilizing role of mutations
observed in VOCs with respect to a bunch of single-mutation
variants. Our computational analysis, based on single mutations
and the corresponding known binding affinity for the specific
system, allows us to better elucidate the dynamic-structural
properties of molecular complexes that are able to discriminate
mutations on the basis of the effect on the binding affinity between
the spike protein and the ACE2 receptor.

Results and discussion

To investigate the effects of mutations on the stability of the
SARS-CoV2 spike-ACE2 complex, we compared the WT complex of
SARS-CoV-2 spike protein bound to human ACE2 receptor with
29 complexes obtained by computational mutation of some residues
on the spike RBD and seven VOCs (alpha, beta, gamma, delta, eta,
kappa and omicron). For each complex, we selected the
ACE2 residues from 19 to 615 in complex with spike residues
from 333 to 526, and we only considered the mutations in the
spike RBD (including residues from 319 to 541), as listed in
Tables 1, 2. The set of single-mutation variants, we selected, have
experimental binding affinity datameasured by Starr et al. (Starr et al.,
2020) in a mutational scanning experiment with all possible single-
mutation variants of the WT RBD. Computing the probability that a
mutation at a certain position of the RBD sequence produces an
increase of the affinity, one finds that such probabilities tend to be
higher in regions that are in close proximity (e.g., closer than 10�A) to
the ACE2 receptor (see SI). Thus, we focused on the residues forming
the binding region, i.e., residues 417, 455, 456, 475, 476, 484, 486, 487,
488, 489, 493, 494, 495, 496, 500, 501, 502. For each of these residues,

we selected the mutation producing the highest and lowest binding
affinity differences with respect to the WT complex. In addition, we
included in the dataset both the single-mutation variants simulated in
Miotto et al. (Miotto et al., 2022a) and those that appeared in the seven
considered VOCs, i.e., alpha, beta, gamma, delta, eta, kappa and
omicron variants. A list of all the considered VOCs and single-
mutation variants is reported in Tables 1, 2, respectively. Starting
from the X-ray structure of theWTRBD-humanACE2 complex (pdb
id: 6M0J), we obtained the structure of both the 29 single-mutation
variants and the seven VOCs via the computational mutagenesis
protocol described in the Methods section. All complexes have been
relaxed in a 100-ns-long standardmolecular dynamics simulation (see
Methods for simulation details). As shown in SI for all other
complexes, simulations reach equilibrium after about 30 ns judging
from the RMSD of the whole complex and that of the binding regions.
Thus, all analyses were conducted by sampling configurations
between 30 and 100 ns of simulation time.

To validate the mutational procedure, we used the experimental
complexes of the SARS-CoV-2’s RBD bound to human ACE2 for
gamma (PDB id: 7NXC) variant to verify that the configurations
explored by the molecular dynamics simulations of the experimental
complex overlap with those sampled during the MD of the
computationally mutated ones. In practice, we compared the
structures obtained for both simulations through a principal
component analysis (PCA). Indeed, a set of configurations
sampled from the simulation of the experimental structure was
projected into the essential space, defined by the two principal
components of the covariance matrix obtained from the trajectory
of the computationally mutated complexes (see Supplementary
Material S1). This test shows an overlap between the two sets of
structures, which indeed have a high degree of similarity in terms of

TABLE 1 VOCs electrostatic properties. The mutations corresponding to the variants observed are collected together with the electrostatic character of the amino
acids involved in the mutations (A: apolar, P: polar, C: charged).

Variant Mutations AA type Variant Mutations AA Type

Alpha N501Y A → P G399D A → C

S371L P → A

Beta K417N C → A S373P P → A

E484K C → C S375F P → A

N501Y A → P K417N C → A

Gamma K417T C → P Omicron N440K A → C

E484K C → C G446S A → P

N501Y A → P S477N P → A

Delta L452R A → C T478K P → C

T478K P → C E484A C → A

Eta E484K C → C Q493R A → C

G496S A → P

Kappa L452R A → C Q498R A → C

E484Q C → A N501Y A → P

Y505H P → C
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the backbone conformation confirming that, for this specific system,
computational mutagenesis does produce good starting models.

Comparison between global and local
effects of mutations in terms of non-bonded
interactions

To begin with, we focused on the non-bonded intermolecular
interaction energies. In order to compactly schematize the complex

architecture of the intermolecular interactions, we represented the
protein complex as a bipartite graph (Miotto et al., 2018; Miotto
et al., 2020; Miotto et al., 2022b), where each residue is a network
node and couples of residues (i.e., nodes) not belonging to the same
structure are connected by a weighted link if their minimum
distance is lower than 12 Å. Weights are given by either the
Coulombic and/or the Lennard-Jones interaction energies (see
Methods for details). As a first analysis, for each complex, we
evaluated the difference of the mean total Coulombic (ΔEtot

C ) and
Lennard-Jones (ΔEtot

LJ ) energies between each variant complex and
the WT one.

Note that energy differences are obtained as averages of the
energies calculated on a set of configurations sampled from the
equilibrium of the molecular dynamics simulation. Such descriptors
indirectly take in consideration solvation effects, as protein-water
interactions act influencing the motion of residues and thus the
fluctuations of the computed interaction energies.

More details on the calculation of these quantities are reported
in the Methods. Interestingly, stratifying the dataset with respect to
the hydrophobic/hydrophilic nature of the mutated amino acid, we
found different trends in relation to the complexes’ binding
affinities, which seem to suggest that at least two routes are
possible to increase the complex stability by means of single
mutations. In particular, Figure 1A shows the values of ΔEtot

C

(left panel) and ΔEtot
LJ (right panel) averaged over complexes

having a lower, medium lower, and higher binding affinity with
respect to the WT and considering variants in which mutations
turned a hydrophobic amino acid into a hydrophilic one. As one
can see, the two kinds of interaction energies behave oppositely:
ΔEtot

C assumes higher, positive values as the difference in binding
affinity goes from much lower to higher, meaning that the total
Coulombic interaction energy becomes less favorable (overall WT
energy is negative). On the other hand, Lennard-Jones energy
difference decreases, becoming negative for complexes with higher
affinity. This means that for the affinity to increase, the complexes
build more favorable Lennard-Jones interactions with respect to
the WT at the cost of reducing the favorable Coulombic term.
Notably, this trend is conserved whatever the starting amino acid
class is (see Figure 1C). Considering mutations that preserve the
hydrophobic nature of the amino acid instead, one can see
(Figure 1B) that affinity only increases while the complexes
maintain very similar non-bonded interaction energies. On the
contrary, as such interactions vary the complexes rapidly lose
stability. To further investigate the behavior of hydrophilicity-
preserving mutations, we looked at the effect of the mutation on
the local rearrangement of the interaction network. To do so, we
evaluate for each complex the difference between the strength (see
Figure 1D for a sketch and Methods for details) of the mutated
residue with respect to the WT. In Figure 1E, we show the
difference in binding affinity as a function of the difference in
local van der Waals interaction energy (i.e., network strength) for
complexes whose mutations do not involve hydrophobic amino
acids. Interestingly, there is a significant anticorrelation of about
−0.70 (p-value: 0.001), indicating that the higher the stabilization
effect of the mutation, the lower the interaction energy,
i.e., complexes have to be able to rearrange the binding region
side chains to optimize Lennard-Jones potential energy in order to
acquire a more stable complex.

TABLE 2 Binding affinity data of the considered single residue mutations. List
of the experimental mutations considered in this study with their ΔBa
measured by Starr et al. (Starr et al., 2020). The mutations are divided
according to the residue position they take place in.

Mutation ΔBa

K417D −1.04

K417N −0.45

K417T −0.26

L452R 0.02

L455D −2.25

L455M 0.05

F456D −4.55

A475W −2.26

G476P −2.56

T478K 0.02

E484R 0.15

E484Y −1.51

E484Q 0.03

F486D −1.69

N487I −2.77

C488I −4.79

Y489S −4.80

Q493D −1.57

Q493M 0.18

S494D −1.10

S494H 0.06

Y495G −3.93

G496E −2.33

T500I −2.30

N501D −2.42

N501F 0.29

N501K −2.79

N501T 0.10

G502F −4.80
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Analysis of shape and electrostatic
complementarity at the binding interface

To further understand the changes in stability between WT,
variants, and experimental mutations, we looked at the contacts
(defined as the number of CA atoms on a surface closer than 6 Å to
another CA atom on the second surface), which have been
previously linked to binding affinity (Anna and Alexandre, 2015).
Figure 2A shows the distribution of contacts for the three categories,
together with the mode of the variants and mutations distributions.
Figure 2B compares in detail the variants with the experimental
single mutations included in them. Notably, mutation K417N has
the highest number of contacts, even compared to other mutations
at the same residue. It is comprised in beta, despite this variant
having a lower number of contacts. Beta and gamma only differ for
the substitution at position 417; even if the corresponding single
experimental mutations (K417N and K417T) have different
numbers of contacts, the two variants show no difference. One of
the other shared mutations between beta and gamma is N501Y,
which characterizes alpha as well. In this case, the substitution of
asparagine with tyrosine does indeed result in the highest number of
contacts, compared to other mutations at position 501. The other

shared mutation between them is E484K (also appearing in the eta
variant); comparing the contacts of eta with those of E484Q, it can be
seen that this last substitution produces a higher number of contacts.
Nevertheless, it was chosen by neither of the three variants. The
kappa variant again presents the mutation E484K. In this case, it
instaurates a number of contacts as higher as the one of mutation
E484Q. This could depend on the presence in kappa of another
mutation, L452R, that even though taken alone produces fewer
contacts, when combined with E484K increases them. L452R
appears in the delta as well. Even in this case, its combination
with a mutation that alone would form a lower number of contacts
(T478K) increases them.

Next, to compactly describe the organization of the residue side
chains in the binding region, we moved to consider the molecular
and the electrostatic potential surface regions of the two interacting
molecules (see Methods for more details) and measured the shape
and electrostatic complementarity at the interface. To do so, we
selected the portions of the molecular surfaces formed by the
interacting residues in the WT complex (as discussed before) and
defined N pairs of interacting patches, where N corresponds to the
5% of the points forming the surface mesh included in that
interacting region. Each patch is then associated with two

FIGURE 1
Analysis of the non-bonded intermolecular interactions. (A)Mean difference of total Coulombic (left) and Lennard-Jones (right) interaction energy
between the single-mutation variants and the WT of the SARS-CoV-2 spike-human ACE2 complex stratified by different ranges of experimentally
measured binding affinity (see Methods for details on the ranges). Only complexes whose single mutation turns a hydrophobic amino acid into a
hydrophilic one were considered. (B) Same as in panel (A), but considering only complexes where mutations preserve the hydrophobicity of the
residue. (C) Same as in panel (A), but considering complexes whose outcome of the mutation was a hydrophilic amino acid substitution. (D) Cartoon
representation of the complex between the SARS-CoV-2 spike (in blue) and human ACE2 receptor (in red) with the interface interaction network
highlighted in green. (E)Difference between the local mean Lennard-Jones interaction energy of the single mutation variants and theWT as a function of
the difference of binding affinity. Only complexes whose mutations do not involve hydrophobic residues were considered.
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Zernike vectors, characterizing its molecular and electrostatic
potential surfaces, respectively (see (Milanetti et al., 2021b),
(Grassmann et al., 2022) and Methods for more details). For
each frame i, the distances between the Zernike shape
(electrostatic) vectors of paired patches were computed resulting
in the values Zi

s (Zi
el). The smaller Zi

s, the higher the shape
complementarity between the patches, whereas Zi

el similarly
reflects the electrostatic complementarity. At the end of this
process, Zernike shape and electrostatic distances were calculated
for each complex. To evaluate the effects of mutations on the spike-

ACE2 interaction, compared to WT, we computed for each of the
36 considered complexes the difference (ΔZs and ΔZel) between the
Zernike distances (Zs and the Zel) of each complex and those of the
WT, so that the lower the value the higher the increase in
complementarity compared to WT.

Figure 2C shows the density distribution of ΔZs and ΔZel for the
single mutation complexes (obtained starting from the process
schematized in Figure 2D). Values relative to the considered
VOCs are shown as vertical bars. Considering the experimentally
measured single mutation complexes (reported in Table 2), it can be

FIGURE 2
Shape and electrostatic complementarity analysis of spike-ACE2 binding region. (A) Density distribution of the number of contacts between spike
and ACE2 residues during the simulation of the WT complex (red), the seven considered VOCs (orange), and the 29 single mutation complexes (violet).
Vertical yellow and violet lines mark the modes of the VOCs and single mutation distributions, respectively. (B) Boxplots of the contacts between spike
and ACE2. Complexes are divided according to whether mutations involve residues 484, 417, and 501 (top) whereas the plot on the bottom
concerns residues 484, 452, and 478 (bottom). Boxes are colored differently when considering the WT complex (red), complexes of VOCs (orange), or
single mutation complexes (violet). (C) Density distribution of the shape (top) and electrostatic (bottom) complementarities measured in terms of
Euclidean distances between the Zernike descriptors (seeMethods) for the 29 singlemutation complexes reported in TableII. The Zernike distances of the
wild type and seven considered VOCs are indicated by vertical colored lines. (D) Cartoon representation of the spike-ACE2 complex carrying mutation
A475W (top) together with the corresponding molecular (left) and electrostatic (right) surfaces. Zoomed regions show the 2D projections of the
interacting patches considered for the Zernike description. The shape projection is shown in a blue scale, and the colors in these planes are determined by
the distance of the surface points from a predefined origin, while the electrostatic projection is shown in the blue-red scale representing the electrostatic
potential values of the projected points ranging from negative to positive values of the electrostatic potential, respectively.
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observed that they decrease the stability of the complex, with the
exceptions of mutations E484R (ΔBa =0.15), L455M (ΔBa =0.05),
Q493M (ΔBa =0.18), S494H (ΔBa =0.06), N501F (ΔBa =0.29),
N501T (ΔBa =0.10), L452R (ΔBa =0.02), T478K (ΔBa =0.02) and
E484Q (ΔBa =0.03). As expected, all these mutations increase the
shape complementarity, having Zd

s < 0.
Interestingly, five out of the seven considered VOCs increased

both their shape and electrostatic complementarities with respect to
the WT. The two exceptions are the eta (Zd

s �0.018) and omicron
(Zd

s �0.021) variants that only improved their electrostatic match.
We note that in both cases, mutations on the binding region favored
the appearance of positive charged amino acids (see Table 1): the E
to K mutation of the eta variant and five out of six of the mutations
in the omicron which resulted in the appearance of a charged
residue.

Finally, we note that the variants with the highest shape
complementarity, beta, and gamma, have the lowest electrostatic
complementarity. On the other hand, it decreases for the ~ 48% of
the experimental variants.

To better study the correlation between shape and electrostatic
complementarity and complex stability, we extended our analysis on
five VOCs (alpha, gamma, beta, delta, and omicron) for which the
dissociation constant Kd has been experimentally measured (Han
et al., 2022). As already done for shape and electrostatic
complementarity, we computed for each variant the difference
between its dissociation constant and that of WT (ΔKd). These
values are shown in Figure 3A, together with the ΔZs and ΔZel of
each variant; Figure 3B instead shows that ΔKd strongly correlates

with ΔZs (correlation of 0.92): as expected, more stable complexes
show the highest shape complementarity at the interfaces.
Interestingly, ΔKd also shows a strong anti-correlation with ΔZel
(correlation of −0.88): it seems that less stable complex electrostatic
complementarity tends to compensate for shape complementarity.
This is confirmed by the anti-correlation between ΔZel and ΔZs,
reaching a value of −0.99 (p-value at 0.0004).

Analysis of the fluctuations of secondary
structures

Typically, after the formation of the molecular complex, the
binding sites of proteins decrease their degree of mobility (Teague,
2003). This introduces an entropic term in the complex binding
affinity. In fact, when two proteins bind, both structures undergo a
certain degree of conformational changes and become more ordered
or restricted in their motions. This reduction in entropy can have an
impact on the binding affinity as favorable binding interaction
should not only result in a strong binding affinity but also
maintain a balance between the enthalpic (energy-related) and
entropic (entropy-related) contributions. To probe this aspect, we
looked at a minimal descriptor explicitely accounting for local
motions, i.e., the Root Mean Square Fluctuation (RMSF) of each
protein residue (i.e., looking at the average mobility of the residue
over the simulation time). Although the stabilizing role of the
molecular partner is known, the relationship between the type of
binding and the fluctuation of any other sub-region of the protein

FIGURE 3
Evaluation of the correlation between dissociation constant and shape and electrostatic complementarity for five VOCs. (A) From left to right: ΔKd,
ΔZs and ΔZel for five VOCs (alpha, gamma, beta, delta, omicron). The variants are ordered according to their dissociation constant value. (B) On the left,
ΔZel as a function of ΔZs for each of the five VOCs. Each point is colored according to the ΔKd value of that variant, as indicated by the color bar. On the
right, the correlation (first column) and Pearson (second value) value between the three quantities are presented in (A).
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(also considering the regions not directly involved in the molecular
binding) is not so trivial (Xing et al., 2016). In order to investigate the
dynamic behavior of the ACE2 receptor in interaction with the

different mutated forms of the spike protein, we analyzed the mean
fluctuations of specific ACE2 regions. In particular, we have defined
12 sub-regions of the ACE2 protein (see Table 3), localized close to
the interface but not entirely involved in the binding with the spike
protein of SARS-CoV-2. Each of these regions is composed of one or
more secondary structures, mostly involving loops and alpha helices.
Only in one case, for the region called B1-L-B2, do we consider two
beta strands, B1 and B2, joined by a short loop (L). Similarly, we have
also defined a set of sub-regions for the spike protein, described in
Supplementary Figure S6. The basic idea, in this analysis as well, is to
investigate the relationship between the dynamic-structural
properties of the interacting proteins and the binding properties,
which have been described in terms of experimental binding affinity
for the selected dataset of single mutations. More specifically, in
order to work with average properties, we divided the dataset into
three groups based on the binding affinity of each ACE2-spike
system. In particular, we defined a group of complexes whose
mutation produced a drastic decrease of binding affinity (‘low’,
ΔBa < − 3), one that resulted in a medium decrease (‘medium’, −3 <
Ba < − 0.5) and one where mutation produced no effect or an
increase of binding affinity (‘high’, ΔBa > − 0.05). Therefore, we
calculate the RMSF of the residues belonging to each sub-region,
considering the three groups separately. In Figure 4, the three RMSF
distributions for each sub-region are depicted, where we show in
green, yellow, and violet the RMSF values of the residues belonging
to the low, medium, and high-affinity groups, respectively. More in

TABLE 3 ACE2 secondary structure elements. Short name, residue range, and
involved secondary structure elements for the twelve sub-regions in which the
human ACE2 structure has been divided for the residue fluctuation analyses.

sub-region Residues Involved ss

H1 1–51 alpha helix

H2 56–82 alpha helix

L1 83–90 loop

H3 91–101 alpha helix

L2-H 102–110 loop and alpha helix

L3 208–218 loop

L4 319–324 loop

H4 325–330 alpha helix

L5 331–346 loop

B1-L-B2 347–359 beta strand and loop

L6-H 386–398 loop and alpha helix

H5-L-H6 458–574 alpha helix and loop

FIGURE 4
Fluctuations of ACE2 secondary structure residues. Density distribution of the RMSF of the residues forming the secondary structures of the human
ACE2 receptor in complex with SARS-CoV-2 spike RBD. Cartoon representation of the complex with a zoom on the considered secondary structure is
reported above the distribution panel for each considered secondary structure. Green, yellow, and purple shaded curves are given considering all
residues of the single-mutation variants (see Table 2) whose difference in binding affinity (Ba) with respect to the wild type complex is lower than −3,
between −3 and −0.05, and higher than −0.05, respectively.

Frontiers in Molecular Biosciences frontiersin.org08

Miotto et al. 10.3389/fmolb.2023.1205919

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1205919


detail, taking advantage of the fact that the positions of the residues
are conserved among the various systems, for each residue we
calculate the average of the RMSF values for that specific
position. Interestingly, for the ACE2-spike molecular system and
for all the considered subregions, ‘low’ binding affinity systems have
a lower mean fluctuation than both ‘medium’ and ‘high’ binding
affinity groups. In particular, three of the identified regions,
i.e., regions L4, H4, and B1-L-B2 (which involve a loop, an alpha
helix, and a beta strand) present more distant RMSF distributions.
To evaluate the statistical significance of the observed differences, we
performed a Wilcoxon test between the distribution pairs.
Specifically, combining together the three low-affinity
distributions (in green), the three medium-affinity distributions
(in yellow), and the three high-affinity distributions (in violet), as
shown in Figure 4, we perform both (i) the Wilcoxon test between
the low and medium affinity curve, obtaining a p-value of 0.037 and
(ii) the Wilcoxon test between the medium and high-affinity curve,
obtaining a p-value of 0.034. Note that in this case, we are
determining the probability that the mean RMSF of the residues
belonging to sub-regions H4, L4, and B1-L-B2 of low (medium)
binding affinity systems is lower than the RMSF of the same regions
of medium (high) affinity. Furthermore, in order to better
characterize the differences between the residues involved in the
sub-regions H4, L4, and B1-L-B2, we also consider all residues
belonging to these specific regions of ACE2, without calculating
their averages. The results of the three distributions are shown in
Supplementary Figure S5. In this case, the p-values of the Wilcoxon
tests are 0.009 and < 10−4, respectively.

Interestingly, the same relationship between secondary structure
fluctuation and binding affinity was not found for the analyzed sub-
regions of the spike protein. Indeed, as shown in Supplementary
Figure S6, there are no statistically significant differences between
the three groups of high, medium, and low binding affinity.

Comparing the mean RMSF of each residue composing the
green and purple distributions for the three found subregions, we
found that differently from other subregions, all residues present
higher fluctuations in the high affinity subset (see SI). This not only
means that, on average, high-affinity molecules exhibit greater
movement, but also that there is an altered fluctuation effect on
the entire binding motif. This could have an impact on both the
correlated motions of intramolecular contacts and the protein-
solvent interactions, thereby altering the dynamics and structure
within the network of hydrogen bonds involving the water
molecules in the first hydration shell. Thus, we speculate that
such small structural motifs exhibit a synergistic higher motion,
which is surely worthy of further more detailed investigations.

In addition, we note that the role of the observed fluctuations
(which make the binding site less rigid), suitably placed in the three-
dimensional structure of the binding site, may help maintain the van
der Waals interactions with the molecular partner interface during
the complex motion. In this respect, high fluctuations can result in
high-affinity values in the presence of correlated motions which
allow the complex to maintain stable favorable van der Waals
interactions during the proteins’ motions.

To probe the effect of the overall higher fluctuations found in
ACE2 residues, we looked at the weights of the links connecting
ACE2 residues to the spike ones. First, we calculated for all the
frames of the equilibrium dynamics the distance between the CA

atoms of the two interacting regions and defined a contact if such
distance is lower than 9�A; and defined the contact probability as the
number of frames in which a certain couple of residues is found in
contact over the total number of frames. In SI, we reported the
difference between the contact probability of each couple of residue
forming the binding region of each variant and the WT one.
Negative (resp. positive) values mean that the couple of residues
has a contact probability lower (resp. higher) than the WT. To
reduce the dimensionality of the information, we performed a
principal component analysis of the considered variants.
Interestingly, a difference in the PC1 component is found
between complexes whose mutation produces a lowering of the
stability with respect to the WT and those that present a higher
affinity than the WT one (see boxplot in SI). To refine the analysis,
we restricted to evaluate the probability of finding residues on the
ACE2 binding region that remained strongly connected to the RBD
residues during the dynamics. To do so, we defined for each residue
the fraction of simulation time in which such residue shares more
than three strong energetic interactions with the partner residues
(see Methods for more details). In Figures 5A, B, the probabilities
considering both Coulombic and Lennard-Jones interactions are
plotted as a function of the complexes’ ΔBa. As one can see, both
descriptors show a correlation with the experimental binding
affinity, but while the higher the probability of finding residues
strongly connected via Lennard Jones interactions the higher the
resulting binding affinity, the opposite is registered for Coulombic
interactions. Indeed, the Pearson correlations associated with the
two interaction energies are −0.52 (p-value of 0.0027) and 0.36
(p-value of 0.047), which are meaningful for the considered number
of complexes.

Moreover, in Figure 5C, we displayed the Coulombic
probabilities for the studied VOCs.

Prediction of the effects of mutations on the
complex affinity

Finally, we performed a hierarchical clustering analysis
combining all previously analyzed descriptors to evaluate their
capability of capturing the effects of the different mutations on
the complex stability. Figure 5D displays the outcome of the
clustering procedure (see Methods for details on its
computation). It can be seen that variants tend to divide into two
groups. Interestingly, if one looks at the ΔBa values of the considered
29 single-mutation variants, it turns out that the cluster on the right
in Figure 5C is mostly (90%) composed of complexes with ΔBa < −
0.1, while the group on the left contains all but one of the variants
that increase the binding affinity and all the VOCs. Indeed, the right
cluster, containing 10 proteins, includes almost exclusively
complexes with lower-than-WT affinity (9), while the left cluster
contains 15 complexes with higher-than-WT affinity over the total
26 protein complexes. The overall accuracy in discriminating lower/
higher affinity complexes of the method is 67%. To test whether the
used dynamical descriptors effectively provided more information
than what one would obtain only considering standard sequence-
based characteristics, we performed a clustering analysis using the
charges of the interacting residues and their hydropathy index
(defined by the scale provided by Di Rienzo (Di Rienzo et al.,
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2021)). The resulting clustering (see SI) only separates the single
mutation variants from those carrying more mutations (which can
have more than one different amino acid and thus a higher distance
from the rest). This shows that assessing the effect of single/multiple
mutations on the stability of the complex requires more complex
information than those provided by standard sequence-based
descriptors. In this framework, the added value of using
dynamical descriptors is that they consider the interaction
between the mutated residue(s) and the rest of the complex.

Conclusion

The initial infections and the vaccination campaign have
originated an immunity against the original version of the S
protein. This protection can be endangered if the emerged variants
are characterized by many mutations on the S protein, especially if
these mutations sensibly alter the physical-chemical properties of
antibody-targeted S regions (Harvey et al., 2021; Plante et al., 2021).
Understanding the molecular mechanisms responsible for the fitness
of novel variants is of pivotal importance, especially at the moment
since new variants are rapidly emerging due to the circulation of the
virus. In particular, mutations may result in very different outcomes,
depending on the region of the spike where the mutation takes place
and the presence of other concomitant mutations. Indeed, we know
that the N501Y and E484K mutations favor the formation of a stable

RBD-hACE2 complex, thus enhancing the binding affinity of RBD to
hACE2. On the other hand, the K417 T/N mutation disfavors
complex formation between RBD and hACE2, which has been
demonstrated to reduce the binding affinity (Junker et al., 2022).
However, when combined they result in an improvement in the fitness
for both the beta and gamma variants. In this work, we explore from a
structural point of view the rearrangements of the amino acid side
chains of the RBD-ACE2 complex in a large set of single-mutation
variants and in seven VOCs.

Overall, our results showed an anti-correlation between the
Coulombic and Lennard-Jones energetic terms with respect to
the gain in stability: mutations that increase the stability require
an increase in shape complementarity and a decrease in electrostatic
complementarity. Thus, an interplay between Coulombic and
Lennard-Jones interactions must take place for the variant to
achieve a higher affinity with respect to the WT. Different
analyses have been conducted, both on the organization of the
inter- and intramolecular interactions between the ACE2 receptor
and the spike protein of SARS-CoV-2. Measuring the differences
between the local mean Lennard-Jones interaction energy of the
single mutation variants and the WT, the shape and electrostatic
contribution at the interface which are calculated with Zernike
formalism-based approach, and the fluctuation analysis of
ACE2 receptor secondary structures from molecular dynamics
simulation data, we find differences between the ACE2-spike
systems each characterized by a specific experimental binding

FIGURE 5
Comparison between single and multiple mutations. (A) Probability of finding strong Coulombic intermolecular interactions between SARS-CoV-
2 RBD and human ACE2 receptor (see Methods for details on the calculation) as a function of the difference in experimental binding affinity between the
single-mutation variants reported in Table 2 and the complex WT. The red dashed line represents the linear correlation axis. (B) Same as in panel (A) but
considering strong intermolecular Lennard-Jones interactions. (C) Probability of finding strong Coulombic intermolecular interactions between
SARS-CoV-2 RBD and human ACE2 receptor (seeMethods for details on the calculation) for the five considered VOCs havingmore than onemutation on
the RBD. (D) Hierarchical clustering of the 29 studied single-mutation variants and the seven VOCs. Variants are colored in red if their binding affinity
difference is higher than −0.10. Such difference is associated with null or improved affinity with respect to the WT. When instead the binding affinity
difference is lower than −0.10 (i.e., associated with a worse affinity compared to the WT), the variants are colored in blue. See Methods for details on the
used clustering algorithm and descriptors.
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affinity, that combined together allow to estimate the outcome of
point mutations on the complex binding region with a performance
of 0.7. Ultimately, the relationship between ACE2-spike binding
affinity and the key properties identified in this work may serve to
estimate the stability of novel variants of interest as much as be used
to better understand the binding mechanisms of protein-protein
complexes under mutations.

Materials and methods

Datasets

The collected dataset consisted of a number of mutant variants
obtained from the experimentally resolved structure of theWT spike
protein bound to ACE2 (PDB id: 6M0J). Indeed, all the variants
structures were derived by subjecting the WT to computational
mutagenesis performed via the dedicated tool provided in the PyMol
software (Schrödinger and Warren, 2000). Specifically, the dataset
accounted for 31 mutations with known experimental binding
affinity, which were provided by Starr et al. (Starr et al., 2020)
and by Miotto et al. (Miotto et al., 2022a). The seven mutations
related to the VOCs observed during the pandemic were also
considered.

Non-bonded energy calculation

The partial charges were assigned to atoms using the PDB2PQR
software (ToddDolinsky et al., 2007), with standard options. Before
the proper energy calculation, the structures were minimized with
Gromacs 2020.6 (David Van et al., 2005).

The intermolecular interactions were computed employing the
parameters provided by the CHARMM force field
(Vanommeslaeghe et al., 2010). Specifically, given two atoms, l
and m, with partial charges ql and qm, they will interact
electrostatically through the following Coulomb law:

EC
lm � 1

4πϵ0
qlqm
rlm

, (1)

where rlm is the distance between the two atoms, and ϵ0 is the
vacuum permittivity.

The Lennard-Jones potential is defined as follows:

ELJ
lm � ����ϵlϵm

√ Rl
min + Rm

min

rlm
( )12

− 2
Rl
min + Rm

min

rlm
( )6⎡⎣ ⎤⎦, (2)

where ϵl and ϵm are the potential well depths for l and m,
respectively. Rl

min and Rm
min represent the distances of the

potential minima.
Summing over all the atoms pairs, the total interaction energy

between residue i and residue j can be worked out as:

EX
AAij

� ∑N
i
atom

l�1
∑N
j
atom

m�1
EX
lm, (3)

where X indicates either the Coulombic (X = C) or Lennard-
Jones (X = LJ) interaction.

Strength

Thinking of residues in a protein as nodes in a network and of
energies as the weights of the links connecting couples of nodes, the
node strength can be defined as follows (Miotto et al., 2018):

si � ∑N
i
aa

j�1
Eij (4)

Computation of network descriptors

For each ACE2-spike molecular system, three indices were
calculated, which indicate the percentage of strongly interacting
residues. In particular, we focused the analysis only considering the
ACE2 binding site, in order to measure how many residues of the
ACE2 receptor participate in binding with the SARS-CoV-2 spike
protein. The three descriptors were defined as follows.

• Descriptor based on Coulomb interactions: percentage of
involved residues that have more than three strong
intermolecular Coulomb interactions with spike protein
residues. A Coulomb interaction has been considered
strong if its residue-residue energy, considering the sum of
all the atom-atom interactions belonging to the two
interacting residues, is lower than −5.5 kcal/mol.

• Descriptor based on Lennard-Jones interactions: percentage of
involved residues that have more than three strong
intermolecular Lennard-Jones interactions with spike
protein residues. A Lennard-Jones interaction has been
considered strong if its residue-residue energy, considering
the sum of all the atom-atom interactions belonging to the two
interacting residues, is lower than −0.025 kcal/mol.

• Descriptor based on residue-residue contact probability:
percentage of residues belonging to ACE2 that have more
than three highly probable interactions (during simulation)
with spike protein residues. In this case, we consider two
residuals with a high probability of interacting if the
probability of contact is higher than 0.5.

Molecular dynamics simulations

To perform simulations of the spike trimers Gromacs
2020.6 was used (Van Der Spoel et al., 2005), with the
CHARMM-36 force field (Brooks et al., 2009). Proteins were
placed in a dodecahedron simulative box, with periodic boundary
conditions. Water molecules were represented according to the
TIP3P model. (Jorgensen et al., 1983). Terminals were capped
with −COOH and −NH2 groups. In all the systems, all protein
atoms were at least at a distance of 1.1 nm from the box borders. The
minimizations were carried out using the steepest descent algorithm.
Next, a two-step equilibration of the system was run in NVT and
NPT environments each for 0.1 ns at 2 fs time-step. The v-rescale
thermostat was adopted to keep the temperature at the constant
value of 300 K. In the production runs of 100 ns, the pressure was set
at 1 bar with the Parrinello-Rahman barostat (Parrinello and
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Rahman, 1980). We used the LINCS algorithm (Hess et al., 1997) to
constrain bonds involving hydrogen atoms. We put a cut-off of 12�A
to account for short-range non-bonded interactions. On the other
hand, the Particle Mesh Ewald method (Cheatham et al., 1995) was
adopted for long-range electrostatic interactions. The RMSD and
RMSF curves obtained after the production runs clearly showed that
all the systems had reached equilibrium (see SI).

Patches definition

All the molecular surfaces in this work were computed using the
DMS software with standard parameters (Richards, 1977).

The centers of the patches were defined using the starting structure
of the spike protein original version, sampling one point per �A

2
from

the molecular surface of such structure. Each of the resulting
27,179 points was used to build a patch. In the starting structure of
the WT spike protein, a patch is defined as the set of molecular surface
points closer than 6 �A to the patch center. To determine the patch
centers in all the other simulation frames and for the variants, we super-
positioned each structure with the starting structure of the original spike
protein. The points closest to the ones selected on this original version
were taken as the patches center of that structure. The patch was then
constructed using the same threshold of 6 �A.

Zernike descriptors

The points composing a patch can be projected with a conical
symmetry onto a plane, in such a way that the geometrically relevant
information is maintained (Milanetti et al., 2021b). This allows each
patch to be expressed in terms of a 2D function f(r, ϕ) defined in the
unitary circle(region r < 1), which can in its turn be expanded in the
Zernike polynomials basis:

f r, ϕ( ) � ∑∞
n�0

∑m�n

m�0
cnmZnm, (5)

where

cnm � n + 1( )
π

〈Znm|f〉
� n + 1( )

π
∫1

0
drr∫2π

0
dϕZnm* r, ϕ( )f r, ϕ( ) (6)

are the expansion coefficients, also referred to as the Zernike
moments. Znm(r, ϕ) are the Zernike polynomials, consisting of a
radial and an angular factor:

Znm � Rnm r( )eimϕ. (7)
The radius dependence, given n andm, can be obtained through

the following expression:

Rnm r( ) � ∑
n−m
2

k�0

−1( )k n − k( )!
k! n+m

2 − k( )! n−m
2 − k( )!rn−2k (8)

For each couple of polynomials, the following holds:

〈Znm|Zn′m′〉 � π

n + 1( )δnn′δmm′ (9)

This result ensures that the set of polynomials forms a basis.
Therefore, knowing all the coefficients {cnm} it is possible to recover
the original function, while the detail level of the description is
determined by the order of expansion, N = max(n).

It can be shown that the modulus of a coefficient (znm = |cnm|) is
invariant under rotations around the origin, thus turning out to be
independent of the phase. Consequently, the znm are referred to as
the Zernike invariant descriptors.

The shape similarity between two patches is therefore assessed
by comparing their Zernike invariants. In particular, the similarity
between two patches i and j is measured as the Euclidean distance
between their invariant vectors. We adopted an expansion order
N=20 which therefore led to 121 invariant descriptors for each
patch.

Clustering procedure

We clustered the descriptors, i.e., the local averaged
Coulombic energy, Etot

c , the local averaged Lennard Jones
energy,Etot

LJ , the minimum average distance Dmin, the
probability of nodes to be connected Pij, the Zernike distance
Zs, the probability of having ACE2 residues with high Coulombc
interactions, PC

high, the probability of having ACE2 residues with
high Lennard Jones interactions, PLJ

high, the probability of having
ACE2 residues with a high number of close spike residues PD

high

and the mean RMSF of each complex using the Euclidean
distance and the Ward method as linkage function, via the
‘linkage’ function of the ‘cluster. hierarchy’ package of Python
Scipy.
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