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1 Introduction

Structural biology techniques aid the intuitive comprehension of biomolecules by
elucidating the underlying molecular mechanisms (Curry, 2015). The RCSB Protein
Data Bank (PDB) is an example of a repository comprising over 200,000
macromolecular three-dimensional (3D) structures. These structures are experimentally
determined using techniques such as X-ray crystallography, nuclear magnetic resonance
(NMR), cryo-electron microscopy (cryo-EM), neutron crystallography, and microcrystal
electron diffraction (MicroED) (Bittrich et al., 2023). These structures are crucial for
understanding the molecular basis of biomolecule functions. Moreover, they may also
provide insights into novel drug designs and the rational engineering of pharmaceutically
important antibodies and enzymes (Bornscheuer et al., 2012; Hummer et al., 2022).
Therefore, the precision of the biomolecular structures determined by structural biology
is essential as it directly influences subsequent research employing the structures constituting
the PDB.

The accuracy of the experimentally determined structures may be influenced by the
quality of the electron density map in terms of resolution, radiation damage, and molecular
flexibility and the researchers’ molecular modeling ability (Palamini et al., 2016; Casañal
et al., 2020; Thompson et al., 2020; Shelley and Garman, 2022). High-resolution structural
data can provide a distinct electron density map that may precisely detect the positions of
atoms within biomolecules (Blakeley et al., 2015). Ill-defined electron density maps with
disordered regions attributable to molecular flexibility may result in quality discrepancies.
When the electron density map is ambiguous, the model may contain unintentional
structural errors. In some cases, molecular modeling may be ignored, leaving the
positive Fo-Fc electron density map as it is and depositing the coordinates to PDB.

One method for constructing a model structure based on an experimentally ambiguous
electron density map involves tracing the main chain in compliance with previously reported
topology or homolog structural folding (Lance et al., 2010; Hameduh et al., 2020).
Meanwhile, in the absence of a reference model structure, the most recent artificial
intelligence (AI)-generated model may be used (Hameduh et al., 2020).

Advances in AI technology have facilitated pioneering research in structural biology with
highly accurate 3D protein structure prediction algorithms such as AlphaFold2 (Jumper
et al., 2021) and RoseTTAfold (Baek et al., 2021). In particular, DeepMind, a Google AI
derivative, has achieved marked progress in biology with the AI network Alphafold2 to
accurately predict the 3D structure of proteins (Callaway, 2020). Alphafold2 produces
accurate models with an estimated precision of less than 1Å for the position of both the
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backbone and sidechains of protein. The RCSB PDB now provides
access to over one million protein-calculated structure models
(CSMs) through the AlphaFold DB and ModelArchive (Bittrich
et al., 2023). Information on formerly inaccessible structures can
now be readily obtained without specialized programming. AI-
generated structures are widely used as search models for
molecular replacement in X-ray crystallography (Nam et al.,
2022). They are also used as initial models in cryo-EM (Hu
et al., 2022a; Hu et al., 2022b). Therefore, AI-based molecular
modeling has contributed revolutionarily to the determination of
3D experimental structures.

Conversely, older structures deposited in the PDB frequently
exhibit poor structural quality. This may be due to the lack of
precision compared to those engineered using modern molecular
modeling or crystallographic structure refinement software (Emsley
and Cowtan, 2004; Winn et al., 2011; Liebschner et al., 2019).
PDB-REDO, which combines refinement and rebuilding within a
unique decision-making framework, solves this by giving researchers
access to more accurate structural information through models that
adhere to recent crystallographic standards (Joosten et al., 2009;
Joosten et al., 2012; Joosten et al., 2014). However, the PDB also
contains models with ambiguous electron densities in which the
amino acid positions are indistinct, requiring more precise
structural models. Moreover, some experimentally determined
structures have precision (accurate data, high resolution) but may
be inaccurate due to errors in the main chain tracing of protein.

This study demonstrates that the imprecise molecular locations
in an ambiguous electron density map of the PDB-deposited
structural model can be improved using AI-predicted model
structures. Employing these AI model structures in conjunction
with modern crystallographic techniques will increase the precision
of experimentally determined structures. This will also contribute to
the advancement of fundamental scientific applications.

2 Improvement of experimentally
determined model structure by
Al model structure

To suggest the possibility of existing model enhancement by
referencing the Al models, two previously deposited model
structures (PDB codes 1JHN and 2Z1B) lacking certain amino
acid sequences were chosen from the PDB. AI model structures
were retrieved from the AlphaFold DB (https://alphafold.ebi.ac.uk/).
The AI-predicted structures were superimposed on the selected
model structures to verify model improvement and validate that
the orientations of the side and main chains of the proteins were
reasonable.

2.1 Improvement of the lumenal domain
structure of calnexin

Calnexin is an endoplasmic reticulum (ER)-associated type I
integral membrane protein that belongs to a family of molecular
chaperones. The lumenal domain of calnexin interacts with the
nascent chain of newly synthesized N-linked glycoproteins upon
entry into the ER lumen and facilitates productive protein folding

and assembly (Ou et al., 1995). The crystal structure of the lumenal
domain of calnexin (PDB code: 1JHN) was determined at 3.1 Å
resolution using three independent phase sets derived from a
combination of isomorphous replacement and anomalous
scattering phasing techniques. The lumenal domain consists of a
compact globular domain comprising a β sandwich of two
antiparallel β-sheets and a long arm stretched away from the
globular domain. A positive Fo-Fc electron density map was
observed between Asn262 and Pro270 in the globular domain
(Figure 1A). In terms of electron density, the positive Fo-Fc
electron density map barely has space to construct seven amino
acids between Asn262 and Pro270.

The amino acids were estimated to have been compacted at the
positions corresponding to the N- and C-terminals of Asn262 and
Pro270, respectively. However, it was difficult to accurately define
the position of C-alpha due to the indistinct electron density
map. The AlphaFold model was referenced to define the
locations of the disconnected amino acids between Asn262 and
Pro270 (average pLDDT: 91.88) in the global lumenal domain
model structure. The C-alpha chain fitted very well into the
disconnected area by superimposing the model structure on the
experimental globular domain in the Coot program (Figure 1B).
Consequently, re-refinement by replacing the Asn262 and
Pro270 regions in the existing model with an Alphafold structure
validated the greater reliability compared with that of the previous
model (Figure 1C). Conversely, the accuracy of the side chain
position was uncertain due to the quality of the electron density
map. Instead, it could be concluded that, based on the model
structure, the hydrophilic and hydrophobic amino acid
orientations were reasonably accurate (Figure 1D).

2.2 Improvement of delta-aminolevulinic
acid dehydratase structure

Delta-aminolevulinic acid dehydratase (ALAD) catalyzes the
second step of the heme biosynthesis pathway. This involves the
condensation of two molecules of delta-aminolevulinic acid
(δ-ALA) into porphobilinogen (Liu et al., 2020). Pb can disrupt
cellular structures, damage the cell membrane, and impede DNA
transcription (Collin et al., 2022). ALAD is highly sensitive to
divalent Pb ions, rendering it a valuable indirect biomarker for
estimating Pb exposure in humans (La-Llave-León et al., 2017). Two
crystal structures of Mus musculus 5-ALA dehydratase were
deposited under the PDB codes 2Z0I (selenomethionine
derivatives, 3.2 Å) and 2Z1B (native, 3.3 Å) (unpublished). These
proteins possess α+β folds with flexible N-terminal domains and
several disordered loop regions. The electron density maps between
the 125th and 140th amino acids of ALADwere not clearly observed.
However, in the B chain of native ALAD, this region exhibited an
electron density map, and the model structure was constructed,
except between amino acids Glu137 and Leu142. The B chain of
ALAD required the construction of 5 amino acids between
Glu137 and Leu142, but the space available on the electron
density map was insufficient (Figure 1A). This was a
construction error based on the ambiguity of the electron density
map during molecular modeling. The AlphaFold-generated
predicted model structure was superimposed on the B chain of
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FIGURE 1
Improvement of experimentally determined the lumenal domains of Calnexin (PDB code: 1JHN) and Delta-aminolevulinic acid dehydratase (ALAD)
(PDB code: 2Z1B) by using the AI system AlphaFold. The regions Asn262–Pro270 of the lumenal domain and Val121–Leu142 of ALADwere reconstructed
using the AI model structure. (A) Experimentally determined structures (B) Superimposition of the AI models on the experimentally determined model
structures (C) COOT program-based real-space refinement of the Al model structure followed by a subsequent re-refinement using the
phenix.refine software. The 2Fo-Fc (blue, 1 σ) and Fo-Fc (green for 3 σ and red for −3 σ) electron density maps are illustrated in mesh. (D) Cartoon
representation of the experimentally determined and improved model structures in accordance with the AI model structure. The regions where amino
acid model building was not performed are indicated by white arrows or dotted lines.
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native ALAD to verify whether it could be improved using an AI
model. The AlphaFold model (Val121–Leu142: average
pLDDT >95.67) demonstrated a highly accurate fit on the
electron density map (Figure 1B). This confirmed that shifting
the main chains of the B chain of native ALAD from Cys124 to
Glu137 rendered the space between Glu137 and Leu142 to be
insufficient, with a rational orientation of all amino acid side
chains. The re-refinement result of the B-chain of native ALAD
indicated a reliable model structure without a positive or negative
Fo-Fc electron density map (Figure 1C). Therefore, an AI structure
may be used as a reference for the creation of a reliable model
structure from a previously flawed ALAD model (Figure 1D).

3 Discussion

PDB users employ experimentally determined structures to
comprehend molecular mechanisms and design experiments
applicable in various fields, including rational protein engineering
or inhibitor designing for novel drug design. Numerous biological
studies have employed experimentally determined PDB structures to
elucidate their findings. Accordingly, an accurate and reliable
experimentally determined 3D structure is essential for
supporting current and future research. The resolution, R-free
value, and validation report are excellent criteria for evaluating
model structures, as indicated in several incisive studies.
However, this information does not constrain the accuracy of the
PDB model structures. To date, all coordinates and structure factors
have been deposited in the PDB; consequently, structural biologists
can validate experimentally determined coordinates using an
electron density map and assess the precision of the model
structure. However, it is difficult for researchers lacking structural
expertise to find building errors in PDB model structures, which can
subsequently result in catastrophically negative conclusions in
future studies. Therefore, for credible results in subsequent
research, the experimental model structures must be improved to
precise structures with the modern crystallography software or a
reliable model structure for main-chain tracing. In this respect, it is
crucial to enhance the experimentally determined structures
deposited in the PDB using cutting-edge technology. This study
demonstrated the enhancement of the experimentally ambiguous
parts of the structures (PDB codes 1JHN and 2Z1B) using an AI
model structure. This reinforces the significance of AI in increasing
the efficiency of subsequent studies through precise improvement of
existing experimental results. The use of AI models to improve the
existing experimental structures yielded the following empirical
findings: 1) The experimental results for the protein-folding
components were highly consistent with those predicted by the
AI model. 2) The linker region, where the protein is flexible, has a
relatively low concordance and requires further model refinement.
3) For proteins with two or more domains, the experimental results
and the prediction model may differ regarding the conformation of
the two domains. 4) The AI model cannot be referenced when the
quality of the electron density in the experimental data is inaccurate
or disordered. These findings may be helpful in contributing to the
improvement of other experimentally determined structures using

AI models. Meanwhile, structural differences may arise between the
experimentally determined crystal structures and the AI model
structures. In crystallographic structures, the conformations of
loops are often affected by crystal contacts, which may not
correspond to the conformation in solution as determined by
NMR (Laurents, 2022). As a result, the accuracy of the
Alphafold2 model may be subject to bias and limitations.
However, Alphafold2 generates metrics such as PAE and
pLDDT, which provide valuable information about the model’s
quality. By considering these metrics, one can objectively evaluate
the strengths and limitations of AI predictive models.

In conclusion, the AI-based model structures can improve the
experimentally determined PDB structures. However, the wider
utility of this theory for all existing structures requires further
research. Based on the experimental findings, it is evident that
the use of AI models for ambiguous electron-density maps
improves model structures. Experimental results can be improved
when the experimental and AI structures are used complementarily.
The determination of more structures and continuous
advancements in AI will generate more precise structural data.
Consequently, with the future provision of a platform for the
deposition of AI-based improved models, the use of PDB
structures may facilitate more credible and convincing follow-up
studies.
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