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Background: Hepatocellular carcinoma (HCC) is a global health challenge with
complex pathophysiology, characterized by high mortality rates and poor early
detection due to significant tumor heterogeneity. Stemness significantly
contributes to the heterogeneity of HCC tumors, and glycolysis is crucial for
maintaining stemness. However, the predictive significance of glycolysis-related
metabolic genes (GMGs) in HCC remains unknown. Therefore, this study aimed to
identify critical GMGs and establish a reliable model for HCC prognosis.

Methods: GMGs associated with prognosis were identified by evaluating genes
with notable expression changes between HCC and normal tissues retrieved from
the MsigDB database. Prognostic gene characteristics were established using
univariate andmultivariate Cox regression studies for prognosis prediction and risk
stratification. The “CIBERSORT” and “pRRophetic” R packages were respectively
used to evaluate the immunological environment and predict treatment response
in HCC subtypes. The HCC stemness score was obtained using the OCLR
technique. The precision of drug sensitivity prediction was evaluated using
CCK-8 experiments performed on HCC cells. The miagration and invasion
ability of HCC cell lines with different riskscores were assessed using Transwell
and wound healing assays.

Results: The risk model based on 10 gene characteristics showed high prediction
accuracy as indicated by the receiver operating characteristic (ROC) curves.
Moreover, the two GMG-related subgroups showed considerable variation in
the risk of HCC with respect to tumor stemness, immune landscape, and
prognostic stratification. The in vitro validation of the model’s ability to predict
medication response further demonstrated its reliability.

Conclusion:Our study highlights the importance of stemness variability and inter-
individual variation in determining the HCC risk landscape. The risk model we
developed provides HCC patients with a novel method for precisionmedicine that
enables clinical doctors to customize treatment plans based on unique patient
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characteristics. Our findings have significant implications for tailored
immunotherapy and chemotherapy methods, and may pave the way for more
personalized and effective treatment strategies for HCC.
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1 Introduction

HCC is the most common type of liver cancer, and is responsible
for a significant proportion of cancer-related deaths worldwide
(Yang et al., 2019). Established risk factors for HCC include liver
cirrhosis and metabolic syndrome, which have a negative impact on
the prognosis and reduce overall survival rates (Llovet et al., 2016;
Guo et al., 2018; Leslie et al., 2022; Huang et al., 2023). While recent
advances in conventional treatments such as chemotherapy, surgery,
and radiation therapy have shown promise, HCC recurrence and
metastasis remain significant challenges (Sun et al., 2021). Current
prognostic models for liver cancer, which rely on clinical indicators
like grade and TNM stage, may have limited accuracy (Icard et al.,
2021; Zhai et al., 2022; Conche et al., 2023; Wang et al., 2023).
Therefore, there is a need for new biomarkers that can accurately
predict survival and help identify specific therapy targets for HCC.
Molecularly targeted treatments represent a promising avenue for
the future treatment of hepatocellular carcinoma.

Malignant neoplasms are distinguished by their unquenchable
demand for energy to fuel their growth. Consequently, cancer cells
utilize a complex network of interrelated metabolic pathways (Li and
Zhang, 2016; Soltani et al., 2021; Chelakkot et al., 2023). With their
impressive metabolic flexibility, cancer cells can rewire crucial
metabolic pathways like glycolysis to satisfy their heightened
energy requirements (Vaupel et al., 2019). One instance of such
metabolic reprogramming is the Warburg effect, which Warburg
originally proposed in 1956. This phenomenon involves heightened
glucose uptake, lactate accumulation, and increased ATP synthesis
in cancer cells (Warburg, 1956; Vaupel andMulthoff, 2021). Aerobic
glycolysis, which is a key characteristic of the Warburg effect, not
only facilitates the proliferation of cancer cells, but also promotes
invasion and metastasis by creating an acidic microenvironment
(Huang et al., 2021). Several types of cancer, including breast,
pancreatic, and gastric cancers, exhibit this phenomenon (Hu
et al., 2019; Wu et al., 2020; Yang et al., 2021). While the role of
aerobic glycolysis in the initiation, progression, and pharmacological
management of HCC has been widely studied (Feng et al., 2020a;
Feng et al., 2020b; Zhang et al., 2020; Liu et al., 2021), the prognostic
relevance of genes involved in glycolysis remains poorly understood.

In this investigation, we analyzed clinical and sequencing data
from the TCGA-LIHC database to explore the potential correlations
between gene expression markers (GMGs) and the survival
outcomes of HCC patients, as well as the genetic changes
associated with these outcomes. Through LASSO analysis, we
identified eleven GMGs that demonstrated robust associations
with HCC. Subsequently, utilizing the cumulative weights of
these GMGs, we performed patient stratification to classify
individuals into high- and low-risk groups, revealing contrasting
immunological landscapes and stemness features between the two
groups. Notably, our in vitro assays employing GMGs as predictors

of chemotherapy sensitivity yielded a high degree of predictive
accuracy. Taken together, our results present a novel predictive
framework for HCC that may facilitate the creation of customized
treatment plans tailored to individual patients’ unique risk profiles.

2 Materials and methods

2.1 Acquisition of data from the TCGA portal

The Cancer Genome Atlas (TCGA) is a comprehensive database
of genomic cancer information for 33 cancer types, integrating gene
expression patterns and clinical data (Wang et al., 2016; Chi et al.,
2023a). We accessed the TCGA database (https://portal.gdc.cancer.
gov/) to obtain HCC data relevant to our study. The transcriptomic
data of 374 HCC samples and 50 normal samples were incorporated
in The Cancer Genome Atlas Liver Hepatocellular Carcinoma
(TCGA-LIHC) dataset. Following the selection criteria of
complete survival information and exclusion of duplicate HCC
patient IDs, a total of 370 samples with both survival
information and corresponding transcriptomic data were retained
for subsequent analyses.

2.2 Retrieval of GMGs

The Molecular Signatures Database (MsigDB) provides access to
200 glycolysis-related genes (Liberzon et al., 2015; Zhang et al., 2023).

2.3 Identification of a prognostic GMGs
signature

Our univariate Cox regression analysis identified 45 genes
significantly associated with HCC patient survival. The least
absolute shrinkage and selection operator (LASSO) method is a
type of shrinkage estimation (Wang et al., 2022a). It constructs a
penalty function to obtain a more refined model, which compresses
some coefficients and sets certain coefficients to zero. Therefore, it
retains the advantages of subset shrinkage and provides a biased
estimation for handling data with multicollinearity, simultaneously
achieving variable selection during parameter estimation. It
effectively addresses the issue of multicollinearity in regression
analysis, with the model reaching optimal performance when the
lambda value is minimized. In our analysis, the LASSO regression
algorithmwas employed for feature selection, utilizing 10-fold cross-
validation and the R package glmnet for the analysis. Furthermore, a
larger AUC value and a smaller Log-rank p-value indicate better
predictive performance. For model selection, we extracted the
number of genes whose survivalROC yielded an AUC result
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above 0.7. If no genes reached this threshold, we selected the gene
model with the maximum AUC value. Through LASSO regression
analysis, 10 core GMGs formed the basis of a risk signature. We
determined patient risk scores based on their unique gene
expression profiles (Chi et al., 2022a; Wang et al., 2022a).
Riskscore = G6PD*0.0777 + CENPA*0.0751 + KIF20A*0.0242 +
HMMR*0.0474 + STC2*0.1032 + SAP30*0.0179 + RARS1*0.1817 +
B3GAT3*0.163 + TALDO1*0.0135 + EFNA3*0.0412.

2.4 Evaluation of infiltrating immune cells

We utilized the ssGSEA and CIBERSORT R packages (Chi
et al., 2022a; Zhao et al., 2023a) to evaluate immune cell
infiltration. Using the CIBERSORT algorithm, we generated
immune cell type scores for each tissue sample and assigned
a score to each sample based on inferred immune cell type
scores.

FIGURE 1
Constructing a prognostic model based on glycolysis-related genes in HCC. (A) Differential gene screening was conducted to identify GMGs
associated with hepatocellular carcinoma (HCC). (B) 45 genes of prognostic significance, whichwe refer to as GMGs, were identified from the differential
gene screening analysis. These GMGs demonstrated an association with survival in HCC patients. (C) Utilizing the Lasso method, a prognostic model was
constructed based on the identified GMGs. (D) The risk scores, survival status, and expression levels of the top 10-GMGswere plotted to visualize the
distribution of prognostic risk. (E) Kaplan-Meier (KM) analysis was performed to further investigate the prognostic significance of the 10-GMGs in different
HCC subtypes. (F) The predictive efficiency of the prognostic model was evaluated using ROC analysis.
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2.5 Prediction and validation of
chemotherapy response

We utilized the “pRRophetic” R package to calculate IC50 values of
drugs to predict and confirm treatment efficacy in HCC cells (Chi et al.,
2022b; Chi et al., 2023b). Sensitivity of the drugs to HCC cells was then
determined using the CCK-8 test (Liu et al., 2023).

2.6 Analysis of functional enrichment

Functional enrichment analysis was conducted using the GSVA
method and the “c2. cp.kegg.v7.4. symbols.gmt” database
(Hanzelmann et al., 2013; Zhao et al., 2023b).

2.7 Statistical analysis

Statistical analysis was performed using the R 4.1.3 program. The
significance level was set at p-values <0.05 and False Discovery Rates
(FDR) (q) < 0.05. The results of the Student’s t-test were presented as
mean and standard deviation (SD) for the two groups. We used p <
0.05*, p < 0.01**, and p < 0.001*** as the levels of statistical significance.

3 Results

3.1 Gene signature construction

WWe aimed to construct a gene signature related to glycolysis
metabolism by utilizing the Glycolysis_Hallmark gene collection,
consisting of 200 genes, obtained from the MsigDB website. In this
study, we utilized 55,316 gene expression profiles from the TCGA
database, which included 370 tumor samples and 50 samples of
nearby normal tissue, as well as information on HCC. Using the
“limma” R package and applying a logFC filter of 1 and adj.P. Val.
Filter of 0.05, we identified 59 GMGs that were differentially
expressed in HCC tumor and nearby normal samples
(Figure 1A). Additionally, using the “survival” and “survminer” R
packages, we identified 45 GMGs that were significantly associated
with patient survival at p < 0.05 and km score <0.05 (Figure 1B),
enabling us to investigate the potential impact of GMGs on HCC
patient survival. Notably, with the exception of four GMGs, all
others acted as unfavorable prognostic indicators. A lasso analysis
was performed using the 45 GMGs to develop an HCC predictive
model (Figure 1C), which was validated by a time-dependent ROC
curve showinghigh accuracy at one, three,five, and 7 years (AUC=0.803,
0.72, 0.683, and 0.611, respectively) (Figure 1F). Subsequently, based

FIGURE 2
Expression levels of 10-GMGs. (A) Expression levels of 10-GMGs in HCC tumor tissues and adjacent tissues. (B) Expression levels of 10-GMGs in HCC
risk subgroups. (*p < 0.05, **p < 0.01, ***p < 0.001).
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on the median Riskscore, we stratified the 370 HCC patients into
two distinct subgroups, high-risk and low-risk, and found that
the high-risk group had significantly shorter overall survival time
compared to the low-risk group (Figure 1E), with median
survival times of 2.6 and 6.7 years, respectively. Finally, we
generated a heatmap to illustrate the expression patterns of
the top ten GMGs across different Riskscore groups
(Figure 1D), providing additional support for the prognostic
significance of our GMG signature in the evaluation of HCC.

3.2 Analysis of HCC subtypes

To investigate the mRNA expression patterns of the 10 GMGs,
we performed a comparative analysis of their expression levels in
normal and tumor groups (Figure 2A). Notably, we observed that
the expression of these genes was significantly elevated in tumor
tissues when compared to adjacent non-tumor tissues (p < 0.001),
with TALDO1 exhibiting the highest level of expression. The mRNA

expression patterns of the 10 GMGs in high-risk and low-risk
categories (Figure 2B) were consistent with those depicted in
Figure 1A. To evaluate the prognostic value of each GMG, we
generated Kaplan-Meier curves (Supplementary Figure S1) and
found that all 10 GMGs were significantly associated with
unfavorable clinical outcomes (p < 0.05). Further studies are
required to elucidate the molecular mechanisms underlying the
dysregulated expression of these genes in HCC and explore the
potential for developing novel therapeutic interventions.

3.3 Enrichment analysis

Dysregulation of various signaling pathways is known to contribute
to altered tumor microenvironments and tumorigenesis. In this study,
we compared gene expression levels between high-risk and low-risk
groups (Figure 3A) to identify differentially expressed genes. Our
analysis revealed a significant enrichment of pathways related to
cytoplasmic processes in high-risk HCC patients (Figure 3B).

FIGURE 3
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (A) Volcanomap screening for differential genes. (B)Mountain
map showing the enriched KEGG pathway. (C–E) GO enrichment analysis.
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Furthermore, gene ontology (GO) enrichment analysis in the high-risk
group demonstrated a marked activation of the biological process of
cytoplasmic translation (Figure 3C). This pathway was significantly
overrepresented in the differentially expressed genes between high-risk
and low-risk groups (Figures 3D,E), highlighting its potential as a
therapeutic target for HCC treatment.

3.4 Immune infiltration patterns in HCC
patients with different risk profiles

In this study, we utilized a set of 10 GMGs to explore immune
infiltration patterns in heterogeneous risk profiles of patients
with hepatocellular carcinoma. The Lasso method was applied to
conduct dimensionality reduction and clustering analysis, and
our results, depicted in Figure 4A, successfully distinguished

HCC patients across different risk categories. To further
evaluate the immune cell landscape, we assessed immune cell
abundance across different risk scores (Figure 4B). Our findings
revealed a higher infiltration of regulatory T Cells (Tregs) and
macrophage M0 in high-risk patients, compared to that of
macrophage M1 (Figures 4C,D).

One of the GMGs investigated in this study was G6PD, a crucial
metabolic enzyme involved in glycolysis. Our results, presented in
Figure 5, indicated a positive correlation between G6PD and
STC2 expression levels and the infiltration of M2 macrophages.
Conversely, the expression levels of CENPA and HMMR were
negatively correlated with the presence of CD4 memory resting
T Cells, while B3GAT3 and SAP30 expression levels were negatively
correlated with naive B Cells. Our results were consistent with the
riskscore distribution, as shown in Figure 5A. Additionally,
significant associations were found between STC2 and HMMR

FIGURE 4
Identify immune landscape of HCC based on glycolysis-associated signature. (A) UMAP demonstrates different immune profiles among HCC
subgroups. (B) Proportion of immune cells in HCC tissues. (C and D) Differences in immune infiltration between HCC subgroups.
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with multiple immune cell types, as revealed by our correlation
analysis between the ten GMGs and various immune cell types
(Figures 6A,B).

3.5 Relationship between GMG expression
and immunotherapy response

In our previous investigation, we identified unique immunological
microenvironments in patients with high-risk and low-risk HCC.
Specifically, the high-risk group exhibited elevated levels of
Macrophage M0 and Tregs, which have immunosuppressive
properties. Effective activation of CD4 memory T Cells is essential
for a positive response to immune therapy, as these cells display varying
degrees of sensitivity to immunotherapeutic modalities. Notably, we
observed a substantial increase in the expression of ten GMGs in HCC
patients who exhibited positive responses to Anti-PD-L1 and Anti-PD-
1 immunotherapies. This discovery suggests that these genes may serve
as potential biomarkers for predicting the effectiveness of immune
checkpoint blockade (ICB) treatment in HCC patients (Figures 7A,B).

The glycolytic pathway, with G6PD as a key enzyme, plays a
critical role in the metabolism of cancerous cells. We detected a
marked increase in G6PD protein expression in the tissues of

patients with HCC (Figure 8A). To assess the effectiveness of
immune checkpoint blockade (ICB) in HCC patients at high and
low risk, we utilized the TIDE algorithm, an innovative approach
that integrates G6PD expression levels and HBV infection factors
(Figure 8B). Our analysis revealed a positive correlation between
elevated G6PD expression levels and immune response score,
independent of HBV status. We further classified HCC patients
into high and low G6PD expression groups and observed a
significant upregulation of immune checkpoint markers,
including PDCD1 and CD274, in the high G6PD expression
group (Figures 8C,D). Additionally, our Cibersort analysis
revealed substantial differences in immune cell infiltration levels
among normal, low-risk, and high-risk HCC patient tissue samples
(Figures 8E,F). Taken together, our results suggest that G6PD
expression levels may serve as a promising biomarker for
predicting response to ICB in HCC patients.

3.6 Stemness scores in hepatocellular
carcinoma patients

HCC exhibits significant heterogeneity, which affects both
tumor progression and treatment response. To investigate the

FIGURE 5
Correlation with immune cells. (A) The correlation between the risk score and immune cell types, such as Macrophage M0 cells and CD4 memory
resting T Cells, in HCC tissues was analyzed. (B) In addition, the relationship between immune cells and GMGs was also examined.
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stemness phenotype as a contributing factor to this heterogeneity,
we assessed stemness scores in HCC patients stratified by risk level.
Our analysis revealed significantly higher stemness ratings in HCC
patients than in healthy liver tissue (Figure 9A). Moreover, high-risk
HCC patients displayed significantly elevated stemness scores
compared to low-risk individuals (Figure 9B). Notably, even
among low-risk patients, we observed a significant positive
correlation between risk ratings and stemness index (R = 0.31;
Figure 9C). Our results underscore the pivotal role of stemness
in HCC pathogenesis and suggest that targeting stemness may
represent a promising therapeutic approach for HCC.
Nevertheless, a better understanding of the underlying
mechanisms linking stemness to HCC risk stratification is
needed and warrants further investigation.

3.7 Anticipation of drug responsiveness and
authentication

In this study, we aimed to evaluate the efficacy of personalized
therapy for managing HCC in patients with diverse risk profiles by
assessing variations in chemotherapeutic drug sensitivity.
Specifically, we measured the IC50 concentrations of nine

chemotherapeutic agents in HCC subgroups categorized
according to high and low risk scores, as illustrated in Figure 10.
Our analysis revealed significant inter-subgroup heterogeneity in
IC50 values, with Etoposide exhibiting the most pronounced
disparity. Additionally, we confirmed the enhanced susceptibility
of HCC patients with high-risk scores to Etoposide, as demonstrated
in Supplementary Table S1. We calculated the corresponding risk
scores for hepatocellular carcinoma (HCC) cell lines based on the
coefficients derived from the prognostic model of 10-gene
expression signatures (10-GMGs). According to the
computational results, the risk score for Huh7 was significantly
higher than that for HepG2, indicating a greater risk associated with
Huh7. To assess drug treatment efficacy, we selected Huh7 and
HepG2 cells as representatives of the subgroups with high and low
risk scores, respectively, and determined their IC50 values for
Etoposide using the CCK-8 assay (Figure 11A). Notably, the
IC50 of Etoposide in Huh7 cells was significantly lower than that
in HepG2 cells, lending support to the potential therapeutic benefits
of Etoposide chemotherapy for patients with high-risk scores, as
identified by our analysis. These findings are consistent with our
drug sensitivity prediction results (Figure 11B) and underscore the
promise of personalized therapy in improving the efficacy of HCC
treatment across varying risk scores.

FIGURE 6
Correlation between immune cells and 10-GMGs. (A) Heatmap was used to show the correlation between immune cells and 10-glycolysis
metabolic genes (10-GMGs). (B and C) Bar plots were used to illustrate the relationship between STC2 and HMMR with immune cell infiltration.
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4 Discussion

Accurate and timely diagnosis of HCC is essential for optimizing
patient outcomes. However, the high heterogeneity of HCC tissue
poses a significant challenge to the accuracy of current clinical
classification systems (Sung et al., 2021). Moreover, the complex
molecular mechanisms involved in HCC create obstacles for
identifying effective therapeutic targets (Llovet et al., 2018; Cheng
et al., 2020; Soltani et al., 2021). The Warburg effect, a phenomenon
in which tumor cells rely on aerobic glycolysis to evade apoptosis,
plays a crucial role in maintaining cellular function, particularly in
malignancy (Chen et al., 2015; Porporato et al., 2018; Guo et al.,
2022). As the liver plays a vital role in energy metabolism, HCC
tumorigenesis is inextricably linked to glycolysis. Previous studies
have demonstrated that HCC growth, metastasis, and resistance to

treatment are closely associated with glycolytic metabolism (Park
et al., 2021; Wang et al., 2022b; Zhou et al., 2022; Dou et al., 2023;
Vashishta et al., 2023). Therefore, the construction of accurate
prognostic models utilizing machine learning techniques that
incorporate glycolysis-related genes is essential for precise
diagnosis, individualized therapy, and the prediction of clinical
outcomes in HCC patients (Toh et al., 2023).

To identify potential prognostic markers for HCC, our study
employed a screening strategy utilizing a panel of 200 metabolic
genes linked to glycolysis. By conducting a differential gene
expression analysis, we identified 10 GMGs that were
significantly correlated with HCC prognosis. Subsequently, we
employed this subset to establish a predictive model for HCC
prognosis (Figure 1C). Our model effectively predicted overall
mortality rates among HCC patients over different time periods,

FIGURE 7
Immunotherapy response prediction. (A) Prediction of immune therapy response to anti-PD-L1 treatment in HCC patients based on 10-GMGs. (B)
Prediction of immune therapy response to anti-PD-1 treatment in HCC patients based on 10-GMGs.
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including 1, 3, 5, and 7 years following diagnosis. These results
suggest that our GMGs-based predictionmodel may have significant
clinical applications in the decision-making process for HCC
patients. Moreover, our findings indicate that GMGs may serve
as a promising new class of prognostic biomarkers for HCC.

The tumor microenvironment (TME) plays a crucial role in the
pathogenesis of cancers (Song et al., 2021; Li et al., 2023), and recent
studies have demonstrated the promotion of malignancy within
TME via exosome-mediated signaling (Wu et al., 2019; Gong et al.,
2022). Reliable prognostic indicators in HCC include patterns of
immune infiltration within the TME (Kamil and Rowe, 2018; Feng
et al., 2022), with regulatory T Cells (Tregs) contributing to an
immunosuppressive milieu that supports cancer cell survival while
impeding immune surveillance (Wang et al., 2021). In addition,
increasing evidence indicates that neutrophils serve as key
immunosuppressive regulators in the TME of various
malignancies, including HCC (Geh et al., 2022). Our study
reveals a significant association between elevated levels of

neutrophil and Treg infiltration and increased GMG expression,
as demonstrated in Figure 4C. AlthoughM2macrophages have been
extensively studied for their role in promoting tumor development
in HCC, recent investigations have highlighted the ability of
M0 macrophages to inhibit T cell-mediated anti-tumor responses
(Vinnakota et al., 2017). For instance, the miR-149-5p/
MMP9 signaling pathway has been identified as a mechanism
through which M2 macrophages facilitate HCC cell motility and
invasion (Liu et al., 2020).

The metabolic shift towards glycolytic metabolism that leads to
lactate accumulation and polarization of macrophages towards an
M2-like phenotype is a defining characteristic of cancer
development (Zhang and Li, 2020; Jiang et al., 2022). This
change may explain the differential enrichment of M0 and
M2 macrophages observed in individuals with higher GMGs
expression, as depicted in Figure 4D. Cancer therapy often
involves harnessing the immune system to detect and eradicate
cancer cells. Numerous immunotherapy approaches have been

FIGURE 8
The level of immune checkpoint in HCC subtypes. (A) The HPA online database shows that G6PD is overexpressed in HCC tissues. (B)HBV infection
does not affect the effectiveness of immunotherapy. (C and D) There are differences in the expression of immune checkpoint markers between the high-
risk and low-risk groups of HCC. (E and F) CIBERSORT analysis revealed differences in immune infiltration between the subgroups.
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explored, including checkpoint inhibitors, adoptive cell transfer, and
cancer vaccines (Sangro et al., 2021; Jin et al., 2022; Llovet et al.,
2022; Zhao et al., 2022). M0 macrophages in the tumor
microenvironment have been shown to inhibit T cell-mediated
anti-tumor responses and to secrete tumor-promoting factors
(Vinnakota et al., 2017). PD-1 and PD-L1 have close associations
with macrophages (Liu et al., 2018). Additionally, lactic acid can
elevate PD-1 expression in Tregs within glycolytic tumor
microenvironments (Kumagai et al., 2022). Our study revealed
higher PD-1 and PD-L1 mRNA expression levels in the high
GMGs group than in the low GMGs group (Figures 8C,D),
which could indicate the presence of Tregs and macrophages.
This finding may account for the improved response to anti-PD-
1 and anti-PD-L1 therapy observed in the high GMG group of HCC
patients (Figure 7).

Enhanced glycolysis plays a crucial role in the growth and
progression of liver cancer. Through glycolysis, liver cancer cells
can rapidly generate a large amount of energy and biosynthetic

precursors to meet their aberrant proliferative demands. Stemness
refers to the capacity of tumor cells for self-renewal and unrestricted
differentiation. The enhancement of glycolysis is associated with the
presence and proliferation of stem-like liver cancer cells. Stem-like
liver cancer cells tend to sustain their stemness state by producing
lactate through glycolysis. This metabolic characteristic enables
stem-like liver cancer cells to resist conventional therapies such
as radiation and chemotherapy. Our study revealed that high-risk
HCC patients exhibit higher stemness (Figure 9B). Additionally, as
the risk score increases, the stemness of low-risk HCC patients also
increases correspondingly, while the stemness of high-risk patients
remains relatively unchanged (Figure 9C).

In order to gain a comprehensive understanding of the etiology
of HCC, it is crucial to investigate not only the interactions between
tumor cells and immune cells but also the dysregulation of signaling
pathways within tumor cells, as these factors can profoundly impact
the initiation and progression of HCC (Llovet et al., 2018). This
study identified several pathways, including cytoplasmic translation,

FIGURE 9
Stemness score in HCC subtypes. (A) Stemness score between HCC tissues and normal tissues. (B) Stemness score between HCC subtypes. (C)
Stemness index of HCC patients scored by 10-GMGs.
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fibrinolysis, blood microparticles, and cytosolic ribosomes, that were
significantly enriched in HCC patients with elevated gene module
groups (GMGs) and may therefore affect their response to
chemotherapy (Figures 3C,E). Based on the identification of
10 GMGs, we also identified nine potential therapeutic agents
that could be effective for certain subtypes of HCC (Figure 10).
To validate our predictions, we used etoposide as a test substance
and a classification system based on the transcript levels of GMGs in
HCC cell lines, differentiating between Huh7 cells with high GMG
levels and HepG2 cells with low GMG levels. Our results revealed
that Huh7 cells exhibited a lower IC50 after exposure to various
doses of etoposide (Figure 11A). Moreover, Huh7 cells exposed to
etoposide under the same therapeutic conditions and dosage
exhibited greater cytotoxicity than HepG2 cells (Figure 11B).
These findings not only demonstrate the effectiveness of our
methodology but also lend strong support to the drug sensitivity
predictions we made using GMGs.

In recent years, there has been a growing emphasis on
investigating the potential association between glycolytic

metabolism-related genes and tumor development. Emerging
evidence has highlighted the pivotal role of glycolytic gene
expression levels in shaping the tumor microenvironment, which
in turnmodulates the efficacy of chemotherapy and immunotherapy
for HCC patients. Therefore, personalized treatment regimens
tailored to the individual glycolytic profiles of patients are of
paramount importance. Gene expression profiling has been
demonstrated in numerous studies to be a valuable tool for
accurate classification of tumor tissue (Jin et al., 2021; Liu et al.,
2022; Zhong et al., 2022).

HCC is a malignant tumor characterized by pronounced
intratumoral heterogeneity, which is closely associated with
tumor growth and therapeutic resistance, and has been linked to
an increased risk of treatment failure and unfavorable prognosis.
Cancer stem cells (CSCs) are a subset of cells within tumors that
possess unique self-renewal and multipotency capabilities, and have
been implicated in driving tumor heterogeneity, as well as
contributing to treatment resistance and disease recurrence. Thus,
the role of stemness in HCC heterogeneity was investigated by

FIGURE 10
Drug sensitivity prediction. Drug sensitivity in patients with different risks of HCC.
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evaluating stemness levels in patients with varying risk scores. As
illustrated in Figure 9A, the stemness score of HCC patients was
significantly higher than that of normal liver tissue. Furthermore,
high-risk HCC patients exhibited a markedly elevated stemness
score compared to their low-risk counterparts, as indicated by the
results presented in Figure 9B. Notably, our analysis revealed a
positive correlation between risk score and stemness index in HCC
patients, as shown in Figure 9C. These data highlight the potential of
our 10-gene model as an accurate predictor of stemness index in
HCC patients, and suggest its potential use in identifying new
therapeutic targets for intervention in high-risk populations.

Our study aimed to examine the heterogeneity and stemness of
HCC patients and the corresponding changes in their
microenvironment through patient stratification based on gene
expression levels within the glycolysis pathway. Our findings
demonstrated considerable differences in immune infiltration
patterns and prognosis among HCC patients with distinct levels
of glycolytic metabolic gene expression. Remarkably, we discovered
a strong association between the degree of dryness and the
probability of survival in HCC patients. We developed a
glycolysis-related model using ten genes, which displayed a high
degree of accuracy in predicting patient outcomes. This model has
significant implications as a prognostic tool for HCC. To reinforce
the clinical relevance of our model, we conducted cell toxicity
experiments to assess its capacity to predict chemotherapeutic
sensitivity. Our results provide crucial information for physicians
to make informed decisions regarding HCC treatment.

5 Conclusion

Tumor heterogeneity in HCC is primarily attributed to stemness,
which is, in turn, critically regulated by glycolysis. However, the clinical
significance of glycolysis-related metabolic genes in HCC prognosis is
still poorly understood. Thus, the objective of this investigation is to
identify crucial GMGs and develop a robust prognostic model for HCC.
By employing receiver operating characteristic (ROC) curves, we
developed a 10-GMG-based risk model that exhibits high predictive
accuracy, which was subsequently validated. Furthermore, two distinct
GMG-related subtypes were identified, exhibiting significant differences
in tumor stemness, immune landscape, and prognostic stratification,
indicating a considerable degree of heterogeneity in HCC risk. Notably,
these findings also suggest that patterns in immunotherapy and
chemotherapy responses may be associated with HCC heterogeneity
and stemness diversity among patients. In vitro validation confirmed
the predictive value of our model for drug response. In summary, this
study provides clinicians with a potential strategy for precisionmedicine
targeting HCC heterogeneity by utilizing the 10-GMGs model.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Author contributions

Conceptualization, FZ; writing original draft preparation, SZ;
visualization, SZ and YP; data resources, YP; supervision, validation,
and funding acquisition, FZ; review and editing, FZ. All authors
reviewed and approved the final manuscript.

Funding

This study was funded by the 2023 Youth Project of Shanxi
Province Health Commission (2023061).

Acknowledgments

All authors acknowledge the contributions from the TCGA project.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

FIGURE 11
Drug sensitivity in HCC cell lines. (A) IC50 after exposure to
etoposide. (B) Etoposide sensitivity of HCC cell lines in different risk
scores.

Frontiers in Molecular Biosciences frontiersin.org13

Zhang et al. 10.3389/fmolb.2023.1210111

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1210111


organizations, or those of the publisher, the editors and
the reviewers. Any product that may be evaluated in
this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmolb.2023.1210111/
full#supplementary-material

References

Chelakkot, C., Chelakkot, V. S., Shin, Y., and Song, K. (2023). Modulating glycolysis to
improve cancer therapy. Int. J. Mol. Sci. 24, 2606. doi:10.3390/ijms24032606

Chen, L. Q., Cheung, L. S., Feng, L., Tanner, W., and Frommer, W. B. (2015).
Transport of sugars. Annu. Rev. Biochem. 84, 865–894. doi:10.1146/annurev-biochem-
060614-033904

Cheng, A. L., Hsu, C., Chan, S. L., Choo, S. P., and Kudo, M. (2020). Challenges of
combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma.
J. Hepatol. 72, 307–319. doi:10.1016/j.jhep.2019.09.025

Chi, H., Jiang, P., Xu, K., Zhao, Y., Song, B., Peng, G., et al. (2022). A novel anoikis-
related gene signature predicts prognosis in patients with head and neck squamous cell
carcinoma and reveals immune infiltration. Front. Genet. 13, 984273. doi:10.3389/fgene.
2022.984273

Chi, H., Xie, X., Yan, Y., Peng, G., Strohmer, D. F., Lai, G., et al. (2022). Natural killer
cell-related prognosis signature characterizes immune landscape and predicts prognosis
of HNSCC. Front. Immunol. 13, 1018685. doi:10.3389/fimmu.2022.1018685

Chi, H., Yang, J., Peng, G., Zhang, J., Song, G., Xie, X., et al. (2023). Circadian rhythm-
related genes index: A predictor for HNSCC prognosis, immunotherapy efficacy, and
chemosensitivity. Front. Immunol. 14, 1091218. doi:10.3389/fimmu.2023.1091218

Chi, H., Zhao, S., Yang, J., Gao, X., Peng, G., Zhang, J., et al. (2023). T-cell exhaustion
signatures characterize the immune landscape and predict HCC prognosis via
integrating single-cell RNA-seq and bulk RNA-sequencing. Front. Immunol. 14,
1137025. doi:10.3389/fimmu.2023.1137025

Conche, C., Finkelmeier, F., Pesic, M., Nicolas, A. M., Bottger, T. W., Kennel, K. B.,
et al. (2023). Combining ferroptosis induction with MDSC blockade renders primary
tumours and metastases in liver sensitive to immune checkpoint blockade. Gut, gutjnl-
2022-327909. doi:10.1136/gutjnl-2022-327909

Dou, Q., Grant, A. K., Callahan, C., Coutinho de Souza, P., Mwin, D., Booth, A. L.,
et al. (2023). PFKFB3-mediated pro-glycolytic shift in hepatocellular carcinoma
proliferation. Cell Mol. Gastroenterol. Hepatol. 15, 61–75. doi:10.1016/j.jcmgh.2022.
09.009

Feng, H., Zhuo, Y., Zhang, X., Li, Y., Li, Y., Duan, X., et al. (2022). Tumor
microenvironment in hepatocellular carcinoma: Key players for immunotherapy.
J. Hepatocell. Carcinoma 9, 1109–1125. doi:10.2147/JHC.S381764

Feng, J., Dai, W., Mao, Y., Wu, L., Li, J., Chen, K., et al. (2020). Simvastatin re-
sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/
PKM2-mediated glycolysis. J. Exp. Clin. Cancer Res. 39, 24. doi:10.1186/s13046-020-
1528-x

Feng, J., Li, J., Wu, L., Yu, Q., Ji, J., Wu, J., et al. (2020). Emerging roles and the
regulation of aerobic glycolysis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 39,
126. doi:10.1186/s13046-020-01629-4

Geh, D., Leslie, J., Rumney, R., Reeves, H. L., Bird, T. G., and Mann, D. A. (2022).
Neutrophils as potential therapeutic targets in hepatocellular carcinoma. Nat. Rev.
Gastroenterol. Hepatol. 19, 257–273. doi:10.1038/s41575-021-00568-5

Gong, X., Chi, H., Strohmer, D. F., Teichmann, A. T., Xia, Z., and Wang, Q. (2022).
Exosomes: A potential tool for immunotherapy of ovarian cancer. Front. Immunol. 13,
1089410. doi:10.3389/fimmu.2022.1089410

Guo, D., Tong, Y., Jiang, X., Meng, Y., Jiang, H., Du, L., et al. (2022). Aerobic glycolysis
promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα.
Cell Metab. 34, 1312–1324.e6. doi:10.1016/j.cmet.2022.08.002

Guo, L., Wang, D., Ouyang, X., Tang, N., Chen, X., Zhang, Y., et al. (2018). Recent
advances in HBV reactivation research. Biomed. Res. Int. 2018, 2931402. doi:10.1155/
2018/2931402

Hanzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation analysis
for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/1471-2105-14-7

Hu, Q., Qin, Y., Ji, S., Xu, W., Liu, W., Sun, Q., et al. (2019). UHRF1 promotes aerobic
glycolysis and proliferation via suppression of SIRT4 in pancreatic cancer. Cancer Lett.
452, 226–236. doi:10.1016/j.canlet.2019.03.024

Huang, D. Q., Mathurin, P., Cortez-Pinto, H., and Loomba, R. (2023). Global
epidemiology of alcohol-associated cirrhosis and HCC: Trends, projections and risk
factors. Nat. Rev. Gastroenterol. Hepatol. 20, 37–49. doi:10.1038/s41575-022-00688-6

Huang, P., Zhu, S., Liang, X., Zhang, Q., Luo, X., Liu, C., et al. (2021). Regulatory
mechanisms of LncRNAs in cancer glycolysis: Facts and perspectives. Cancer Manag.
Res. 13, 5317–5336. doi:10.2147/CMAR.S314502

Icard, P., Simula, L., Wu, Z., Berzan, D., Sogni, P., Dohan, A., et al. (2021). Why may
citrate sodium significantly increase the effectiveness of transarterial
chemoembolization in hepatocellular carcinoma? Drug Resist Updat 59, 100790.
doi:10.1016/j.drup.2021.100790

Jiang, H., Wei, H., Wang, H., Wang, Z., Li, J., Ou, Y., et al. (2022). Zeb1-induced
metabolic reprogramming of glycolysis is essential for macrophage polarization in
breast cancer. Cell Death Dis. 13, 206. doi:10.1038/s41419-022-04632-z

Jin, W., Yang, Q., Chi, H., Wei, K., Zhang, P., Zhao, G., et al. (2022). Ensemble deep
learning enhanced with self-attention for predicting immunotherapeutic responses to
cancers. Front. Immunol. 13, 1025330. doi:10.3389/fimmu.2022.1025330

Jin, W., Zhang, Y., Liu, Z., Che, Z., Gao, M., and Peng, H. (2021). Exploration of the
molecular characteristics of the tumor-immune interaction and the development of an
individualized immune prognostic signature for neuroblastoma. J. Cell Physiol. 236,
294–308. doi:10.1002/jcp.29842

Kamil, F., and Rowe, J. H. (2018). How does the tumor microenvironment play a role
in hepatobiliary tumors? J. Gastrointest. Oncol. 9, 180–195. doi:10.21037/jgo.2017.06.09

Kumagai, S., Koyama, S., Itahashi, K., Tanegashima, T., Lin, Y. T., Togashi, Y., et al.
(2022). Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic
tumor microenvironments. Cancer Cell 40, 201–218.e9. doi:10.1016/j.ccell.2022.01.001

Leslie, J., Geh, D., Elsharkawy, A. M., Mann, D. A., and Vacca, M. (2022). Metabolic
dysfunction and cancer in HCV: Shared pathways and mutual interactions. J. Hepatol.
77, 219–236. doi:10.1016/j.jhep.2022.01.029

Li, Z., and Zhang, H. (2016). Reprogramming of glucose, fatty acid and amino acid
metabolism for cancer progression. Cell Mol. Life Sci. 73, 377–392. doi:10.1007/s00018-
015-2070-4

Li, Z., Zhou, H., Xia, Z., Xia, T., Du, G., Franziska, S. D., et al. (2023).
HMGA1 augments palbociclib efficacy via PI3K/mTOR signaling in intrahepatic
cholangiocarcinoma. Biomark. Res. 11, 33. doi:10.1186/s40364-023-00473-w

Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J. P., and Tamayo,
P. (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection.
Cell Syst. 1, 417–425. doi:10.1016/j.cels.2015.12.004

Liu, B. H. M., Tey, S. K., Mao, X., Ma, A. P. Y., Yeung, C. L. S., Wong, S. W. K., et al.
(2021). TPI1-reduced extracellular vesicles mediated by Rab20 downregulation
promotes aerobic glycolysis to drive hepatocarcinogenesis. J. Extracell. Vesicles 10,
e12135. doi:10.1002/jev2.12135

Liu, C. Q., Xu, J., Zhou, Z. G., Jin, L. L., Yu, X. J., Xiao, G., et al. (2018). Expression
patterns of programmed death ligand 1 correlate with different microenvironments and
patient prognosis in hepatocellular carcinoma. Br. J. Cancer 119, 80–88. doi:10.1038/
s41416-018-0144-4

Liu, G., Xiong, D., Che, Z., Chen, H., and Jin, W. (2022). A novel inflammation-
associated prognostic signature for clear cell renal cell carcinoma. Oncol. Lett. 24, 307.
doi:10.3892/ol.2022.13427

Liu, G., Yin, L., Ouyang, X., Zeng, K., Xiao, Y., and Li, Y. (2020). M2 macrophages
promote HCC cells invasion and migration via miR-149-5p/MMP9 signaling. J. Cancer
11, 1277–1287. doi:10.7150/jca.35444

Liu, J., Zhang, P., Yang, F., Jiang, K., Sun, S., Xia, Z., et al. (2023). Integrating single-
cell analysis and machine learning to create glycosylation-based gene signature for
prognostic prediction of uveal melanoma. Front. Endocrinol. (Lausanne) 14, 1163046.
doi:10.3389/fendo.2023.1163046

Llovet, J. M., Castet, F., Heikenwalder, M., Maini, M. K., Mazzaferro, V., Pinato, D. J.,
et al. (2022). Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 19,
151–172. doi:10.1038/s41571-021-00573-2

Llovet, J. M., Montal, R., Sia, D., and Finn, R. S. (2018). Molecular therapies and
precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15, 599–616.
doi:10.1038/s41571-018-0073-4

Llovet, J. M., Zucman-Rossi, J., Pikarsky, E., Sangro, B., Schwartz, M., Sherman, M.,
et al. (2016). Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 2, 16018. doi:10.1038/nrdp.
2016.18

Park, M. K., Zhang, L., Min, K. W., Cho, J. H., Yeh, C. C., Moon, H., et al. (2021).
NEAT1 is essential for metabolic changes that promote breast cancer growth and
metastasis. Cell Metab. 33, 2380–2397.e9. doi:10.1016/j.cmet.2021.11.011

Porporato, P. E., Filigheddu, N., Pedro, J. M. B., Kroemer, G., and Galluzzi, L. (2018).
Mitochondrial metabolism and cancer. Cell Res. 28, 265–280. doi:10.1038/cr.2017.155

Frontiers in Molecular Biosciences frontiersin.org14

Zhang et al. 10.3389/fmolb.2023.1210111

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1210111/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1210111/full#supplementary-material
https://doi.org/10.3390/ijms24032606
https://doi.org/10.1146/annurev-biochem-060614-033904
https://doi.org/10.1146/annurev-biochem-060614-033904
https://doi.org/10.1016/j.jhep.2019.09.025
https://doi.org/10.3389/fgene.2022.984273
https://doi.org/10.3389/fgene.2022.984273
https://doi.org/10.3389/fimmu.2022.1018685
https://doi.org/10.3389/fimmu.2023.1091218
https://doi.org/10.3389/fimmu.2023.1137025
https://doi.org/10.1136/gutjnl-2022-327909
https://doi.org/10.1016/j.jcmgh.2022.09.009
https://doi.org/10.1016/j.jcmgh.2022.09.009
https://doi.org/10.2147/JHC.S381764
https://doi.org/10.1186/s13046-020-1528-x
https://doi.org/10.1186/s13046-020-1528-x
https://doi.org/10.1186/s13046-020-01629-4
https://doi.org/10.1038/s41575-021-00568-5
https://doi.org/10.3389/fimmu.2022.1089410
https://doi.org/10.1016/j.cmet.2022.08.002
https://doi.org/10.1155/2018/2931402
https://doi.org/10.1155/2018/2931402
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.canlet.2019.03.024
https://doi.org/10.1038/s41575-022-00688-6
https://doi.org/10.2147/CMAR.S314502
https://doi.org/10.1016/j.drup.2021.100790
https://doi.org/10.1038/s41419-022-04632-z
https://doi.org/10.3389/fimmu.2022.1025330
https://doi.org/10.1002/jcp.29842
https://doi.org/10.21037/jgo.2017.06.09
https://doi.org/10.1016/j.ccell.2022.01.001
https://doi.org/10.1016/j.jhep.2022.01.029
https://doi.org/10.1007/s00018-015-2070-4
https://doi.org/10.1007/s00018-015-2070-4
https://doi.org/10.1186/s40364-023-00473-w
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1002/jev2.12135
https://doi.org/10.1038/s41416-018-0144-4
https://doi.org/10.1038/s41416-018-0144-4
https://doi.org/10.3892/ol.2022.13427
https://doi.org/10.7150/jca.35444
https://doi.org/10.3389/fendo.2023.1163046
https://doi.org/10.1038/s41571-021-00573-2
https://doi.org/10.1038/s41571-018-0073-4
https://doi.org/10.1038/nrdp.2016.18
https://doi.org/10.1038/nrdp.2016.18
https://doi.org/10.1016/j.cmet.2021.11.011
https://doi.org/10.1038/cr.2017.155
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1210111


Sangro, B., Sarobe, P., Hervas-Stubbs, S., and Melero, I. (2021). Advances in
immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 18,
525–543. doi:10.1038/s41575-021-00438-0

Soltani, M., Zhao, Y., Xia, Z., Ganjalikhani Hakemi, M., and Bazhin, A. V. (2021). The
importance of cellular metabolic pathways in pathogenesis and selective treatments of
hematological malignancies. Front. Oncol. 11, 767026. doi:10.3389/fonc.2021.767026

Song, M., He, J., Pan, Q. Z., Yang, J., Zhao, J., Zhang, Y. J., et al. (2021). Cancer-
associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma
progression. Hepatology 73, 1717–1735. doi:10.1002/hep.31792

Sun, Y., Wu, L., Zhong, Y., Zhou, K., Hou, Y., Wang, Z., et al. (2021). Single-cell
landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 184,
404–421.e16. doi:10.1016/j.cell.2020.11.041

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021).
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249. doi:10.3322/caac.21660

Toh, M. R., Wong Yi Ting, E., Wong Hei, S., Ng, W., Tian, A., Lit-Hsin, L., et al.
(2023). Global epidemiology and genetics of hepatocellular carcinoma.Gastroenterology
164, 766–782. doi:10.1053/j.gastro.2023.01.033

Vashishta, M., Kumar, V., Guha, C., Wu, X., and Dwarakanath, B. S. (2023).
Enhanced glycolysis confers resistance against photon but not carbon ion
irradiation in human glioma cell lines. Cancer Manag. Res. 15, 1–16. doi:10.2147/
CMAR.S385968

Vaupel, P., and Multhoff, G. (2021). Revisiting the Warburg effect: Historical dogma
versus current understanding. J. Physiol. 599, 1745–1757. doi:10.1113/JP278810

Vaupel, P., Schmidberger, H., and Mayer, A. (2019). The Warburg effect: Essential
part of metabolic reprogramming and central contributor to cancer progression. Int.
J. Radiat. Biol. 95, 912–919. doi:10.1080/09553002.2019.1589653

Vinnakota, K., Zhang, Y., Selvanesan, B. C., Topi, G., Salim, T., Sand-Dejmek, J., et al.
(2017). M2-like macrophages induce colon cancer cell invasion via matrix
metalloproteinases. J. Cell Physiol. 232, 3468–3480. doi:10.1002/jcp.25808

Wang, H., Zhang, H., Wang, Y., Brown, Z. J., Xia, Y., Huang, Z., et al. (2021).
Regulatory T-cell and neutrophil extracellular trap interaction contributes to
carcinogenesis in non-alcoholic steatohepatitis. J. Hepatol. 75, 1271–1283. doi:10.
1016/j.jhep.2021.07.032

Wang, J., Yu, H., Dong, W., Zhang, C., Hu, M., Ma, W., et al. (2023). N6-
Methyladenosine-Mediated up-regulation of FZD10 regulates liver cancer stem cells’
properties and lenvatinib resistance through WNT/β-Catenin and hippo signaling
pathways. Gastroenterology 164, 990–1005. doi:10.1053/j.gastro.2023.01.041

Wang, J., Zhang, H. M., Dai, Z. T., Huang, Y., Liu, H., Chen, Z., et al. (2022). MKL-1-
induced PINK1-AS overexpression contributes to the malignant progression of
hepatocellular carcinoma via ALDOA-mediated glycolysis. Sci. Rep. 12, 21283.
doi:10.1038/s41598-022-24023-w

Wang, X., Zhao, Y., Strohmer, D. F., Yang, W., Xia, Z., and Yu, C. (2022). The
prognostic value of MicroRNAs associated with fatty acid metabolism in head and neck
squamous cell carcinoma. Front. Genet. 13, 983672. doi:10.3389/fgene.2022.983672

Wang, Z., Jensen, M. A., and Zenklusen, J. C. (2016). A practical guide to the cancer
Genome Atlas (TCGA). Methods Mol. Biol. 1418, 111–141. doi:10.1007/978-1-4939-
3578-9_6

Warburg, O. (1956). On the origin of cancer cells. Science 123, 309–314. doi:10.1126/
science.123.3191.309

Wu, Q., Zhou, L., Lv, D., Zhu, X., and Tang, H. (2019). Exosome-mediated
communication in the tumor microenvironment contributes to hepatocellular
carcinoma development and progression. J. Hematol. Oncol. 12, 53. doi:10.1186/
s13045-019-0739-0

Wu, Z., Wu, J., Zhao, Q., Fu, S., and Jin, J. (2020). Emerging roles of aerobic
glycolysis in breast cancer. Clin. Transl. Oncol. 22, 631–646. doi:10.1007/
s12094-019-02187-8

Yang, D., Chang, S., Li, F., Ma, M., Yang, J., Lv, X., et al. (2021). m6 A transferase
KIAA1429-stabilized LINC00958 accelerates gastric cancer aerobic glycolysis through
targeting GLUT1. IUBMB Life 73, 1325–1333. doi:10.1002/iub.2545

Yang, J. D., Hainaut, P., Gores, G. J., Amadou, A., Plymoth, A., and Roberts, L. R.
(2019). A global view of hepatocellular carcinoma: Trends, risk, prevention and
management. Nat. Rev. Gastroenterol. Hepatol. 16, 589–604. doi:10.1038/s41575-
019-0186-y

Zhai, X., Xia, Z., Du, G., Zhang, X., Xia, T., Ma, D., et al. (2022). LRP1B suppresses
HCC progression through the NCSTN/PI3K/AKT signaling axis and affects
doxorubicin resistance. Genes & Dis. doi:10.1016/j.gendis.2022.10.021

Zhang, L., and Li, S. (2020). Lactic acid promotes macrophage polarization through
MCT-HIF1α signaling in gastric cancer. Exp. Cell Res. 388, 111846. doi:10.1016/j.yexcr.
2020.111846

Zhang, X., Zhuge, J., Liu, J., Xia, Z., Wang, H., Gao, Q., et al. (2023). Prognostic
signatures of sphingolipids: Understanding the immune landscape and predictive role
in immunotherapy response and outcomes of hepatocellular carcinoma. Front.
Immunol. 14, 1153423. doi:10.3389/fimmu.2023.1153423

Zhang, Z., Tan, X., Luo, J., Yao, H., Si, Z., and Tong, J. S. (2020). The miR-30a-5p/
CLCF1 axis regulates sorafenib resistance and aerobic glycolysis in hepatocellular
carcinoma. Cell Death Dis. 11, 902. doi:10.1038/s41419-020-03123-3

Zhao, S., Chi, H., Yang, Q., Chen, S., Wu, C., Lai, G., et al. (2023).
Identification and validation of neurotrophic factor-related gene signatures
in glioblastoma and Parkinson’s disease. Front. Immunol. 14, 1090040.
doi:10.3389/fimmu.2023.1090040

Zhao, S., Zhang, X., Gao, F., Chi, H., Zhang, J., Xia, Z., et al. (2023). Identification of
copper metabolism-related subtypes and establishment of the prognostic model in
ovarian cancer. Front. Endocrinol. (Lausanne) 14, 1145797. doi:10.3389/fendo.2023.
1145797

Zhao, Y., Wei, K., Chi, H., Xia, Z., and Li, X. (2022). IL-7: A promising adjuvant
ensuring effective T cell responses and memory in combination with cancer vaccines?
Front. Immunol. 13, 1022808. doi:10.3389/fimmu.2022.1022808

Zhong, Y., Zhang, Y., Wei, S., Chen, J., Zhong, C., Cai, W., et al. (2022). Dissecting the
effect of sphingolipid metabolism gene in progression and microenvironment of
osteosarcoma to develop a prognostic signature. Front. Endocrinol. (Lausanne) 13,
1030655. doi:10.3389/fendo.2022.1030655

Zhou, L., Zhao, Y., Pan, L. C., Wang, J., Shi, X. J., Du, G. S., et al. (2022). Sirolimus
increases the anti-cancer effect of Huai Er by regulating hypoxia inducible factor-1α-
mediated glycolysis in hepatocellular carcinoma.World J. Gastroenterol. 28, 4600–4619.
doi:10.3748/wjg.v28.i32.4600

Frontiers in Molecular Biosciences frontiersin.org15

Zhang et al. 10.3389/fmolb.2023.1210111

https://doi.org/10.1038/s41575-021-00438-0
https://doi.org/10.3389/fonc.2021.767026
https://doi.org/10.1002/hep.31792
https://doi.org/10.1016/j.cell.2020.11.041
https://doi.org/10.3322/caac.21660
https://doi.org/10.1053/j.gastro.2023.01.033
https://doi.org/10.2147/CMAR.S385968
https://doi.org/10.2147/CMAR.S385968
https://doi.org/10.1113/JP278810
https://doi.org/10.1080/09553002.2019.1589653
https://doi.org/10.1002/jcp.25808
https://doi.org/10.1016/j.jhep.2021.07.032
https://doi.org/10.1016/j.jhep.2021.07.032
https://doi.org/10.1053/j.gastro.2023.01.041
https://doi.org/10.1038/s41598-022-24023-w
https://doi.org/10.3389/fgene.2022.983672
https://doi.org/10.1007/978-1-4939-3578-9_6
https://doi.org/10.1007/978-1-4939-3578-9_6
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1186/s13045-019-0739-0
https://doi.org/10.1186/s13045-019-0739-0
https://doi.org/10.1007/s12094-019-02187-8
https://doi.org/10.1007/s12094-019-02187-8
https://doi.org/10.1002/iub.2545
https://doi.org/10.1038/s41575-019-0186-y
https://doi.org/10.1038/s41575-019-0186-y
https://doi.org/10.1016/j.gendis.2022.10.021
https://doi.org/10.1016/j.yexcr.2020.111846
https://doi.org/10.1016/j.yexcr.2020.111846
https://doi.org/10.3389/fimmu.2023.1153423
https://doi.org/10.1038/s41419-020-03123-3
https://doi.org/10.3389/fimmu.2023.1090040
https://doi.org/10.3389/fendo.2023.1145797
https://doi.org/10.3389/fendo.2023.1145797
https://doi.org/10.3389/fimmu.2022.1022808
https://doi.org/10.3389/fendo.2022.1030655
https://doi.org/10.3748/wjg.v28.i32.4600
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1210111

	Multi-omic analysis of glycolytic signatures: exploring the predictive significance of heterogeneity and stemness in immuno ...
	1 Introduction
	2 Materials and methods
	2.1 Acquisition of data from the TCGA portal
	2.2 Retrieval of GMGs
	2.3 Identification of a prognostic GMGs signature
	2.4 Evaluation of infiltrating immune cells
	2.5 Prediction and validation of chemotherapy response
	2.6 Analysis of functional enrichment
	2.7 Statistical analysis

	3 Results
	3.1 Gene signature construction
	3.2 Analysis of HCC subtypes
	3.3 Enrichment analysis
	3.4 Immune infiltration patterns in HCC patients with different risk profiles
	3.5 Relationship between GMG expression and immunotherapy response
	3.6 Stemness scores in hepatocellular carcinoma patients
	3.7 Anticipation of drug responsiveness and authentication

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


