
How can we discover developable
antibody-based biotherapeutics?

Joschka Bauer1,2, Nandhini Rajagopal2,3, Priyanka Gupta2,3,
Pankaj Gupta2,3, Andrew E. Nixon3 and Sandeep Kumar2,3*†

1Early Stage Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG,
Biberach/Riss, Germany, 2In Silico Team, Boehringer Ingelheim, Hannover, Germany, 3Biotherapeutics
Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States

Antibody-based biotherapeutics have emerged as a successful class of
pharmaceuticals despite significant challenges and risks to their discovery and
development. This review discusses the most frequently encountered hurdles in
the research and development (R&D) of antibody-based biotherapeutics and
proposes a conceptual framework called biopharmaceutical informatics. Our
vision advocates for the syncretic use of computation and experimentation at
every stage of biologic drug discovery, considering developability
(manufacturability, safety, efficacy, and pharmacology) of potential drug
candidates from the earliest stages of the drug discovery phase. The
computational advances in recent years allow for more precise formulation of
disease concepts, rapid identification, and validation of targets suitable for
therapeutic intervention and discovery of potential biotherapeutics that can
agonize or antagonize them. Furthermore, computational methods for de
novo and epitope-specific antibody design are increasingly being developed,
opening novel computationally driven opportunities for biologic drug
discovery. Here, we review the opportunities and limitations of emerging
computational approaches for optimizing antigens to generate robust immune
responses, in silico generation of antibody sequences, discovery of potential
antibody binders through virtual screening, assessment of hits, identification of
lead drug candidates and their affinity maturation, and optimization for
developability. The adoption of biopharmaceutical informatics across all
aspects of drug discovery and development cycles should help bring
affordable and effective biotherapeutics to patients more quickly.
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1 Introduction

Since the inception of hybridoma technology, which facilitated large-scale monoclonal
antibody (mAb) production, biotherapeutics have experienced significant growth (Koehler
and Milstein, 1975). The Food and Drug Administration’s (FDA) approval of the pioneering
mAb therapeutic, muromonab or Orthoclone OKT3, in 1986 (Smith, 1996), set the stage for
numerous groundbreaking developments in biotherapeutics. As of 2022, over 110 approved
mAbs andmore than 65 mAbs in phase-2/3 and phase-3 clinical trials have emerged (Kaplon
et al., 2022). Clinically, mAbs have demonstrated their efficacy in treating serious conditions
such as neurodegenerative diseases, autoimmune diseases, and diverse types of cancers
(Reichert et al., 2009; Lu et al., 2020).
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Despite the promising trajectory of biotherapeutics, the
biopharmaceutical industry faces mounting pressure due to
decreasing productivity and increasing research and development
(R&D) costs. The average R&D cost surged from $1.2 billion in 2007
(adjusted United States dollar value of $1.6 billion in 2020) to
$2.8 billion in 2016 (equivalent to $3.1 billion in 2020) (DiMasi
and Grabowski, 2007; DiMasi et al., 2016; Farid et al., 2020).
Concurrently, the success rate of phase-1 to approval dropped
from 30% in 2007 to 12% or lower in 2016 (Farid et al., 2020).
These trends suggest the presence of several challenges along various
stages of discovery and development of novel biological
therapeutics. A lack of detailed understanding of disease biology,
the inability of model systems to reliably predict human diseases and
outcomes of therapeutic interventions, the lack of efficacy, target-
mediated toxicity and other safety issues, and suboptimal
developability profiles are among the major reasons that may
contribute to drug failures during clinical trials (Mehta et al.,
2017; Fogel, 2018). The identification of new targets presents
additional challenges toward development of novel therapeutic
concepts and discovery of multi-specific biotherapeutics, resulting
in low approval rates despite high development costs (Swinney and
Anthony, 2011). Next-generation biotherapeutics such as
nanobodies, bi- and multi-specific antibodies, and T-cell receptor
mimetics are broadening clinical applications (Strohl, 2018);
however, these novel formats are often more challenging to
develop into marketed biologic drug products (Runcie et al.,
2018; Wang et al., 2019; Sawant et al., 2020). Furthermore, as the
biopharmaceutical industry shifts its focus toward patient
convenience, drug product development processes must be
tailored to emerging routes of drug administration such as
subcutaneous or intravitreal delivery, necessitating high-
concentration protein formulations (HCPFs) (Garidel et al.,
2017). These requirements introduce additional challenges to the
manufacturability and developability of novel drugs. Integrating
developability early in the drug discovery process can help avoid
costly delays or failures at later stages and potentially increase the
likelihood of success during clinical trials and approvals. Numerous
technological advancements have been made since the approval of
the first mAb to overcome challenges in the R&D pipelines and
accelerate novel drug discovery and development (Martin et al.,
2023). However, every new technology comes with associated risks
and limitations (Gray A. C. et al., 2020; González-Fernández et al.,
2020).

In silico techniques have been well established in small-molecule
drug discovery (Shaker et al., 2021). Over the past decade,
considerable progress has been made toward developing in silico
strategies for the discovery and development of biologic drugs as
well. In fact, developability has emerged as a key concept for biologic
drugs over this time (Jarasch et al., 2015; Kumar and Singh, 2015;
Bailly et al., 2020; Garripelli et al., 2020; Khetan et al., 2022;
Mieczkowski et al., 2023). A variety of computational tools and
procedures are now employed across various stages of drug
development, such as hit selection, lead identification,
optimization, affinity maturation, and early developability
assessment. However, a significant potential of in silico
technologies toward the discovery of biotherapeutics still remains
untapped. As collaborative academic and industrial initiatives
continue to demonstrate the viability of in silico antibody

discovery techniques, it is important to acknowledge that the
nascent nature of these methods often results in a lack of
historical evidence to support their success and therefore requires
a cultural shift toward proactive adoption of innovation to
continually improve drug discovery and development processes.
To address these challenges and enhance the success rate of novel
targets, there is an urgent requirement for an integrated vision to
create a platform that streamlines biotherapeutic discovery and
development via syncretic use of experimentation and
computation. Such a vision would not only accelerate the
development of new biotherapeutics and reduce costs but also
expand the druggable target space.

2 Biopharmaceutical informatics:
integrating drug discovery and
development

In the realm of biotherapeutics, it is crucial for drug candidates
to be both developable and functional. Biotherapeutic drug
candidates often encounter developability challenges related to
manufacturing, safety, immunogenicity, efficacy, pharmacology,
and drug product heterogeneity. Many of these risks can be
linked to the inherent physicochemical properties of a biologic
drug candidate, as determined by its protein sequence, three-
dimensional structure, and molecular dynamics (MD) (Xu et al.,
2018). Considering the intrinsic physicochemical properties of a
biotherapeutic drug candidate, which are encoded in its amino acid

FIGURE 1
Strategic components for the vision of biopharmaceutical
informatics. The digital transformation of the biopharmaceutical
industry, achieved through capturing and curing experimental data,
can enable the development and continuous improvement of
digital twins for laboratory processes and prediction of experimental
results before their execution. Fundamental research connecting
molecular sequences, structures, and dynamics of biologic drug
candidates can enhance our understanding of experimental
observations, reduce empiricism, and enable more data-informed
decision-making at various project stages. Moreover, the integration
of computational learning technologies with principles of molecular
modeling and simulations can potentially facilitate the in silico
discovery of biotherapeutics. It is important to note that the key to
biopharmaceutical informatics lies in the syncretic use of
experimentation and computation, with a shared goal of making the
discovery and development of biotherapeutics more efficient.
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sequence and structure, early in the discovery and development can
help identify and mitigate risks associated with various
developability issues, such as chemical, conformational, colloidal,
and physical instabilities. Moreover, by employing the innovative
approach of biopharmaceutical informatics, these sequence–structural
attributes can be modified for improved developability as described
previously by Kumar et al. (2018a). Figure 1 outlines the primary
components of biopharmaceutical informatics. This interdisciplinary
field advocates for the digital transformation of the biopharmaceutical
industry by converting experimental data collected during drug
discovery and development phases into FAIR (findable, accessible,
interoperable, and reusable) information systems. These systems can
be leveraged by data scientists to create predictive tools such as digital
twins of actual laboratory processes. Additionally, the field promotes the
increased use of AI/ML (artificial intelligence/machine learning) and
computational biophysics to address fundamental challenges in drug
discovery and development through research. Biopharmaceutical
informatics seeks to enable data-driven decision-making at every
stage of biologic drug discovery and development. Developability is
a key aspect of biopharmaceutical informatics, encompassing both in
silico tools and experimental studies such as developability assessments.
Rooted in the energy landscape theory, the concept of developability
posits that the conformational ensembles and potential energy
landscapes of large macromolecules, like mAbs, change with their
environment (e.g., pH, temperature, and physicochemical state)
(Onuchic, 1997; Ma et al., 2000; Kumar et al., 2009). As a result, the
physicochemical properties of conformational ensembles of
biotherapeutics under a given set of environmental conditions
dictate their biophysical experiment outcomes. If proteins with the
same size and fold are analyzed under identical conditions using
standardized experiments, differences in the results should be
attributable to sequence–structural variations among the proteins.
The ability to predict experimental outcomes by analyzing the
sequence–structural characteristics of biotherapeutic drug candidates
is a primary goal for biopharmaceutical informatics, as part of the
development of computational methods that facilitate discovery of
antibodies in silico (DAbI).

Optimal synergies and benefits can be achieved by integrating
cost-effective, rapid computational methods with standardized
biophysical experimental studies, which are characteristic of
current developability assessments in biologic drug discovery and
early-stage product development (Zurdo, 2013; Jarasch et al., 2015;
Xu et al., 2018). Late-stage development approaches typically focus
on assessing the changing conditions of a single molecule in the drug
manufacturing process using quantitative unit operation models
(Smiatek et al., 2020), while early-stage approaches require
analyzing a diverse set of molecules under identical conditions.
Biopharmaceutical informatics plays a pivotal role in bridging the
gap between biologic drug discovery and development by improving
the understanding of the relationship between macromolecular
sequence–structure–function and developability.

A key challenge in biopharmaceutical informatics is correlating
the “macroscopic” experimentally determined properties of a
biologic with its “microscopic” sequence–structure features
computed in silico. Uncovering these correlations can guide
molecular sequence optimization strategies, proactively
addressing potential obstacles in drug product development by

predicting the performance of the final drug candidate in the
streamlined platform processes used during development stages.
This process necessitates combining data from standardized
biophysical experiments with descriptors computed from
molecular modeling and simulations in a common database.
Various statistical and machine learning approaches can be
employed to develop mathematical models that predict the
solution behavior of mAbs based solely on their
sequence–structure information, depending on the available data
(Tomar et al., 2016; Jain et al., 2017b; Chiu et al., 2019; Hebditch and
Warwicker, 2019; Lecerf et al., 2019; Raybould et al., 2019; Starr and
Tessier, 2019; Kuroda and Tsumoto, 2020; Zhang et al., 2020). As a
result, the interdisciplinary field of biopharmaceutical informatics
aims to seamlessly integrate techniques from computational and
experimental biophysics, information technology, and data science
to provide data-driven inputs for the decision-making framework
for all stages of biologic drug discovery and development.

3 Opportunities for computation at
various stages of biotherapeutic
discovery and early development

There are numerous opportunities to collaboratively apply
computational and experimental tools to facilitate faster and
more efficient drug engineering and development. In this review
article, we present a diverse set of use cases at various stages of
biotherapeutics discovery and development projects that could
benefit with increased use of computation in synchrony with the
experiments to demonstrate the practical feasibility of our vision.
The major challenges faced at distinct stages of biotherapeutic
discovery and early drug development are described in Table 1
along with potential computational opportunities to address them.
The pros and cons of these computational opportunities are also
presented in Table 1. It is important to note that the field has not
matured uniformly across all stages of discovery and development
cycles for biotherapeutics. For example, computational approaches
to developability assessments and lead optimization (LO) are
currently more advanced than in silico antibody discovery and in
silico formulation development. Moreover, there are also
opportunities to modify the workflows and transitions between
the different discoveries and development stages in view of the
rapidly growing capabilities of computation. These opportunities are
described in the following sections.

3.1 Antigen optimization

The discovery of antibody-based biotherapeutics adheres to a
stepwise approach once a target antigen or multiple antigens for
simultaneous targeting in a multi-specific format have been
identified. The initial phase entails producing enough target
antigens to enable animal immunization, in vitro selection of
antigen-specific antibodies, and functional activity
characterization. However, some antigens exhibit favorable
expression in vivo but encounter conformational stability and
solubility issues in vitro, outside the cellular context (Qing et al.,
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TABLE 1 Opportunities for the expanded use of computational approaches throughout the discovery and development process of biotherapeutics.

Process stage Typical problems Potential applications of
computational approaches

Pros Cons

In vitro synthesis of
immunogens/antigens to
generate corresponding
antibodies

1. Availability of structural models
for immunogens and accurate
definition of epitope(s) of
therapeutic interest
2. Aggregation tendency, protein
insolubility, and reduced
conformational stability may
result in limited material
availability for immunization
experiments
3. Epitope(s) of therapeutic
interest might not be
immunodominant

1. Protein structure prediction and
precise definition of epitope(s) of
therapeutic interest
2. Sequence/structure-based
optimization for improved solubility
via APR disruption, supercharging;
and increased conformational
stability via residue scan can help
improve quantity as well as quality of
material needed for immunization
3. Strategies for disruption or
masking of immunodominant but
therapeutically irrelevant epitopes to
improve chance of antibody binders
to the therapeutically relevant
epitopes

1. Protein structure is crucial for
structure-based approaches to
drug discovery defining epitopes
of therapeutic interest. The
emergence of AI-based protein
structure prediction methods has
enhanced the structural
definition of immunogens in
recent years
2. Judiciously selected mutations
at single or multiple sites can
significantly improve the
availability of immunogen
material in the laboratory

1. Confidence levels in different
regions of the structure should be
considered, as flexible regions are
typically predicted with lower
confidence levels
2. Defining the epitope(s) of
therapeutic interest and avoiding
mutations in and around them is
important
3. Implementing site-directed
mutagenesis of immunogens to
improve material availability also
requires a cultural shift among
experimental scientists

Antibody generation 1. Animal immunizations can be
time-consuming, expensive, and
may yield inconsistent results
2. The lead antibody molecule
identified through animal
immunization may necessitate
humanization and developability
enhancements
3. Humanized mice and display
technologies do not entirely
capture the complete human
immunome
4. Phage and yeast display
technologies can quickly identify
high-affinity binders, but these
may require further optimization
for developability

1. Generative AI can aid in designing
antigen-specific and agnostic
libraries with incorporated
developability features
2. Virtual screening of antibody
libraries against given antigen(s)/
epitope(s), followed by docking and
structure-based affinity
enhancements
3. Utilizing computational methods
to design phage and yeast display
libraries for enhanced developability
and/or affinity
4. Employing computational
approaches to redesign antibody
CDRs for altered specificities

1. Adopting computational
methods can reduce timelines
and costs associated with
antibody discovery
2. Expanded druggable antigen
space
3. Opportunities to explore a
broader sequence diversity,
thereby maximizing the odds for
antibody discovery compared to
conventional methods
4. Addressing developability
during library design can help
reduce time required for lead
optimization

1. Emerging technology
2. Necessitates more extensive
validation and experimental
demonstration of its capabilities
before routine project use
3. Requires a cultural shift from
experimentally driven antibody
discovery to computationally
driven approaches

Hit selection and lead
identification

1. Sequencing of identified hits
2. Epitope mapping of the hits to
ensure the desired therapeutic
effect in the absence of structural
models for the antigen-antibody
complex
3. Experimental evaluation of
several hundreds of candidates for
functionality and developability
can be time and resource-intensive

1. Establishment of suitable
sequencing pipelines
2. Computational prediction of
epitopes and paratopes for epitope
mapping purposes
3. In-silico evaluations of candidates
for developability and
manufacturability can facilitate the
selection of developable hits and
identification of lead candidate(s)
with favorable developability
characteristics
4. Development of digital twins for
biophysical processes via
computational biophysics and data
science

1. Incorporation of
computational assessments can
aid in guiding hit selection for
experimental testing
2. Proactive consideration of
developability can help reduce
costs and efforts to identify lead
molecules
3. Opportunities to enhance our
understanding of the connection
between molecular sequence-
structural properties and
experimental outcomes

1. Greater availability of data is
needed to connect ’microscopic’
sequence-structural features of
antibodies with the ’macroscopic’
biophysical outcomes
2. Lack of digitization and digital
transformation present
significant challenges
3. A cultural shift from protecting
experimental data to sharing it
with computational scientists is
required among discovery
scientists

Lead optimization Lead candidates may require
humanization, affinity
optimization, and elimination of
physicochemical liabilities in the
CDRs for enhanced developability

1. Structure-based modeling of the
lead candidates can assist in their
humanization, affinity maturation,
and identification of potential
sequence/structural motifs that may
contribute to their physicochemical
degradation. Access to this
information can help direct protein
engineering strategies for lead
optimization
2. Assessment of the optimized lead
candidates for their drug likeness

1. Computational guidance for
lead optimization efforts can
decrease timelines and costs
2. This aspect represents the
most developed application of
computational protein design in
biotherapeutic drug discovery
3. Numerous well-developed
computational solutions are
available

1. There remains cultural
resistance to the adoption of
computational protein design for
lead optimization among
industrial scientists
2. Greater dissemination of
successful case studies, where
computational protein design
makes a difference, is needed to
raise awareness

(Continued on following page)
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2022). Producing recombinant antigens can be particularly challenging
for certain target classes, such as membrane proteins (G protein–coupled
receptors and ion channels) (Bill et al., 2011). If antigen binding is
impacted by the in vitro conformational stability and/or solubility of the
antigen, then these issues may hinder the entire antibody discovery
strategy and functional validation of the antibody hits.

Computational methods can aid in the redesign of antigens with
enhanced conformational stability and solubility when a
threedimensional crystal structure or model is available.
Bioinformatic tools can enable crystal structure refinement,
modeling of breaks and gaps, loop modeling, energy
minimization and molecular dynamics simulations to support
antigen redesign. When the crystal structure of an antigen is
unavailable, protein structure prediction techniques can often
estimate it (Nimrod et al., 2018). For example, homology-based
structure modeling can be employed using crystal homologs. A
sequence identity of at least 30% between the protein of interest and
its crystal homologue is typically sufficient for structure generation
through homology modeling. However, some novel targets may not
have homologs with existing crystal structures. This can be due to
the inherent difficulty in obtaining crystal structures of membrane-
associated proteins, which often have poor solubility. Membrane
proteins represent a significant class of drug targets, and the
discovery pipeline frequently proceeds without knowledge of the
antigen structure. In such challenging cases, recent groundbreaking
advances in de novo protein structure prediction techniques have
achieved remarkable success and accuracy by leveraging machine
learning and deep learning algorithms (AlQuraishi, 2019; Gao et al.,
2020; Pereira et al., 2021; Jones and Thornton, 2022). Deep
learning–based structure prediction methods, such as
AlphaFold2 and RoseTTAFold, combined with physical
modeling, have outperformed numerous conventional approaches
(Baek et al., 2021; Jumper et al., 2021; Pereira et al., 2021; Jones and
Thornton, 2022). Understanding of the antigen’s three-dimensional
structure can be crucial for accurately assessing its stability and
solubility, computationally. This knowledge can also help enhance
solubility without sacrificing stability and functional activity,
allowing for the extraction of crystal structures, and facilitating
experimental assays that measure target binding. Care should be

taken, however, to minimize the impact of such mutations on the
overall molecular structure of the target antigen and preserve its
potential to generate adequate immune response to epitopes of
therapeutic interest. Bioinformatics can also support rational
strategies to immunize only therapeutically relevant epitopes on
the antigen surface. This means epitopes that may be immune-
dominant but are of no therapeutic interest or relevance can be
either eliminated or masked to facilitate the immunization of the
desired epitopes of therapeutic importance.

3.2 Antibody generation

Immunization strategies have long been employed to generate
high-affinity antibodies, using previously expressed and purified
antigens to establish immune reactions in animals (typically
laboratory mice, humanized/transgenic mice, or other animals
like chickens, rabbits, or cows). Antibody binding to specific
antigens can be obtained through techniques such as hybridoma
(Koehler and Milstein, 1975), single B cells (Yu et al., 2008), or
screening natural and/or synthetic antibody libraries via display
technologies using phage or yeast (Benatuil et al., 2010; Chen and
Sidhu, 2014; Alfaleh et al., 2020; Gray A. et al., 2020; Nagano and
Tsutsumi, 2021; Ledsgaard et al., 2022; Valldorf et al., 2022).
Promising candidates are selected and validated using antigen-
binding assays that align with the research target profile.
Currently used methods in the biopharmaceutical industry for
antibody generation are almost exclusively experimental, and
depending on the techniques used, it can take several months
before an initial set of antibody-based binders is available for
further investigation and lead identification. Fully synthetic
human antibody libraries containing Fabs chosen for their
biophysically favorable development characteristics have been
developed using experimental means (Valldorf et al., 2022).
Special emphasis has been placed on selecting molecules with
enhanced chemical, conformational, and colloidal stabilities
(Tiller et al., 2013). The availability of such libraries can
significantly help accelerate the discovery of antibody-based
biotherapeutics by pre-paying for developability.

TABLE 1 (Continued) Opportunities for the expanded use of computational approaches throughout the discovery and development process of biotherapeutics.

Process stage Typical problems Potential applications of
computational approaches

Pros Cons

Early stage
developability
assessments

1. Assessing molecular stability
and compatibility of drug
candidates, identified during drug
discovery, with platform processes
utilized in drug development
2. Adapting to multiple product
development goals such routes of
administration and product
presentations

1. Structure prediction of full length
antibodies and novel formats
2. In-silico development of
formulations
3. Employing multi-scale
simulations to anticipate platform
compatibility and evaluate molecular
responses to stresses encountered
during manufacturing, storage, and
transportation
4. Utilization of predictive
algorithms to determine suitable
bioprocess conditions
5. Establishing digital twins for
various facets of drug development

1. Developing full-length models
of the drug substance can
facilitate improved prediction of
molecular origins of dominant
degradation routes during
manufacturing, storage, and
shipping
2. Accelerating formulation
process development and saving
costs of drug development can be
achieved through pH and buffer
screening of antibody
formulations via in-silico
characterization of molecular
integrity of the drug substance
3. Resource savings can be
realized with the development of
digital twins

1. Computationally intensive
calculations
2. Need for improved
correlations between
experimental results and
molecular simulations
3. Consistent availability of
development data across
different projects
4. Requirement for greater
investments in the digitalization
of drug development data
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The concept of optimized antibody libraries for generating
developable antibodies can be integrated with de novo
computational databases containing an immense variety of
human-like light- and heavy-chain combinations (Pan and
Kortemme, 2021; Akbar et al., 2022). Targeted mutations at
specific sequence positions [e.g., complementarity-determining
regions (CDRs)] in the antibody sequences could further broaden
the library, either to recognize different antigens or to optimize
binding affinity toward a specific antigen (Ledsgaard et al., 2022).
Recently, a generative adversarial network was successfully
employed to create a diverse library of novel antibodies that
emulate somatically hypermutated human repertoire responses
(Amimeur et al., 2020). This in silico method further revealed
residue diversity throughout the variable region, which could be
useful for additional computational tools like CDR redesign. CDR
redesign utilizes a highly developable antibody framework and
modifies the original CDRs, or paratope, to recognize a new
antigen. In recent years, noteworthy progress has been made in
designing not only thermodynamically stable but also biologically
functional antibodies (Baran et al., 2017).

Computational technologies, initially developed for small-
molecule drug discovery, can also be applied to antibody-based
drug discovery. Once fully developed and implemented, these
computational methods will provide additional means to generate
diverse antibody binders against a target antigen. Thesemethods will
not only help reduce animal use in biologic drug discovery but also
decrease reliance on experimental trial and error for finding initial
hits. Initial case studies describing such methods are beginning to
emerge in the literature (bioRxiv.org for preprints) (Sever et al.,
2019; Wilman et al., 2022). Additionally, it becomes feasible to find
potential binders to difficult targets, thereby expanding the
druggable target space for antibody-based biotherapeutics.

Figure 2 provides an overall conceptual roadmap for Discovery
of antibodies in silico (DAbI). The proposed roadmap encompasses
three major parts where each part can have multiple stages
depending upon the project in hand. In the first part, the key is
to use different computational algorithms to generate medicine-like
human antibody sequence libraries in silico. These libraries can be
either antigen-specific or antigen-agnostic and are of orthogonal
utilities. For example, creation of antigen- or epitope-specific
antibody libraries via machine learning can help us achieve early
success in each antibody discovery project by facilitating a focused
path to the discovery of lead candidates toward the antigen and
support the therapeutic concept. A biological analog of such libraries
shall be the sequence repertoires obtained from immunized animals,
hybridomas, or the results obtained by panning the display libraries
against a specific antigen. However, such libraries have to be
generated repeatedly for each different antigen or epitope.
Antigen-/epitope-agnostic libraries on the other hand can be
incredibly useful toward supporting multiple drug discovery
projects simultaneously. Such libraries can be thought of as naive
B-cell repertoires obtained from humanized animals prior to
immunization with specific antigens. The computationally
generated naive antibody repertoires can potentially capture
greater sequence diversities than those feasible from humanized
animals, display technologies, or observable B-cell repertoires.
Within a discovery organization, such libraries have to be
constructed only once and be potentially useful toward pre-

computation of binders for all the targets of interest to the
organization. These pre-computed antibody binder libraries can
potentially accelerate early antibody discovery projects because now
the discovery process does not have to wait for availability of target
reagent in the laboratory. Therefore, such libraries can be
particularly useful toward difficult to express and purify targets
such as membrane proteins. Irrespective of the purpose of in silico
generated antibody libraries, it is important to generate structural
models of (at least) the variable regions of the antibodies sampled
from these libraries. The generated structures can then be used for
assessing their medicine-likeness and developability. Early
elimination of non–medicine-like antibodies from such libraries
can improve their utility and differentiate them from those
generated using the experimental means solely. The structural
models can also be used for predicting antibody paratopes. Many
computational methods are currently available for the structural
prediction of antibodies. The major challenges in this field include
prediction of HCDR3 conformation and pairing of the light- and
heavy-chain variable regions (Fernández-Quintero et al., 2023).

In addition to the design of the in silico antibody libraries,
currently available computational methods also provide an
opportunity to design single or a few human antibody variable
regions against specific antigen epitopes de novo (Chowdhury et al.,
2018; Nimrod et al., 2018). The design process can also commence
with a structural model of an antigen:antibody (Ag:Ab) complex,
generated using molecular docking of the antigen and antibody
structures (Nimrod et al., 2018). Subsequently, the affinity of the
antigen toward the antibody can be either altered by randomly
introducing sequence variations or selectively re-designing
interfaces using structure-based approaches (Nimrod et al., 2018).
For example, interfacial residues in the Ag:Ab complexes that
significantly contribute to their stability and instability can be
identified through computational alanine (Ala) scanning. In the
following step, the identified residue positions can be scanned for
mutations that either increase or decrease the stability of the Ag:Ab
complex and enhance or reduce the affinity of the antibody toward
its cognate antigen (Sheng et al., 2022), depending on the project
requirements. Another appealing alternative for rational antibody
design involves hotspot grafting with CDR loop swapping, which
only requires information about interactions with the antigen (Liu
et al., 2017).

The goal of epitope-driven antibody generation is to design an
antibody variable region with a paratope that complements the given
epitope. Since CDRs make up most of the paratope, initial efforts to
design epitope-specific antibodies have focused on ab initio CDR
redesign and modeling. OptCDR (Pantazes and Maranas, 2010),
used in conjunction with Rosetta Antibody Modeler, generates
epitope-specific high-affinity CDRs by selecting the most feasible
canonical loop conformations followed by iterative model
optimization and improvements in binding energy. This method
enables the generation of a focused library of antibody binders, quite
like hit sequences obtained from experiments. OptCDR was later
optimized (OptMAVEn) to consider the entire fragment variable
(Fv) region rather than just CDRs as the starting point for generating
antibody binders (Li et al., 2014), allowing for the incorporation of
humanness at the antibody generation stage through careful
selection of human framework region residues. Further advances
have incorporated MD simulations for accurate evaluation of
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binding energetics (Chowdhury et al., 2018). A one-to-one residue
matching method called epitoping, which starts from antibody
structures with basic shape complementarity, was developed to obtain
an accurate epitope–paratope binding match (Nimrod et al., 2018).
Although this process requires a pre-identified approximate match, it
can be considered for lead optimization to improve binding.

Recent advancements in generative deep learning and the
availability of approximately 2,000 solved crystal structures of the
antibody–antigen complexes have opened possibilities for structure-
based de novo antibody generation. A proof-of-concept study
utilizing a variational autoencoder (VAE)–based generative
algorithm demonstrated the capability to directly generate 3D
coordinates of antibody backbones that complement a specific
epitope (Eguchi et al., 2022). Additionally, another deep learning
algorithm was developed to learn the 3D features of antibodies from
1D sequences, enabling the generation of antibody sequences with
desired structural characteristics (Akbar et al., 2022). Although the
proof-of-concept study primarily aimed to achieve high-affinity
binder antibody sequences for a given epitope, the method holds
potential for encoding additional features, allowing the model to be
tailored to produce highly developable sequences. As stated
previously, generation of epitope-specific antibodies or libraries
thereof has immediate applications for individual drug discovery
projects, since the knowledge of epitopes is often required for
defining novel therapeutic concepts.

3.3 Early screening for developability of in
silico generated antibody libraries

Once the in silico antibody sequence libraries have been
generated, it is worth assessing the generated antibody sequences
for developability and advancing highly developable sequences to
further stages of discovery. The developability assessment tools to be
employed here can be ported over easily from those used at the hit
selection and lead identification, lead optimization, and early
development stages in the conventional biotherapeutic discovery
and development workflows.

Lipinski’s “rule-of-five” revolutionized the discovery and
development of small molecules by providing guidelines for
improving their solubility and permeability (Lipinski, 2000).
However, establishing similar rules for new biological entities
(NBEs) has proven challenging due to their complex structures.
In response, researchers have turned to biophysical evaluations and
computational approaches to better understand these entities and
overcome inherent obstacles. Biophysical evaluations of clinical-
stage antibodies have contributed to the empirical definition of
analogous boundaries, offering valuable insights for NBE
development (Jain et al., 2017b; Raybould et al., 2019; Jain et al.,
2023). Additionally, marketed antibodies have been profiled using
calculated physicochemical descriptors, in an approach known as
the DEvelopability Navigator In Silico (DENIS) (Ahmed et al., 2021;

FIGURE 2
Conceptual roadmap for the discovery of antibodies in silico (DAbI). This conceptual roadmap can be divided into three major parts that can be
developed either independently or in synchrony. The first part focuses on the in silico generation of medicine-like, antigen-agnostic, or specific antibody
sequence libraries. Several machine learning algorithms are currently being developed to facilitate the in silico generation of antibodies. In the second
part, these in silico generated antibodies and their structural models can be used to screen against a given antigen or an epitope on an antigen via
virtual screening, docking, or other computational chemistry-based algorithms. Conversely, a large set of potential antigens can also be pre-screened
against the antibody libraries using the same computational technologies. In both cases, the goal is to obtain atomistic definitions of putative
antibody–antigen complexes. At this stage, it is preferable to virtually screen a larger number of antibodies (e.g., 1–10 million) and then select a much
smaller number (e.g., 10–100) for docking simulations. This will help speed up the calculations and save computational resources. It is also important to
quantitatively assess the quality of modeled antibody–antigen complexes by comparing them against crystal structures of other antigen–antibody
complexes. A third option is to convert thewhole or portions of the in silico generated antibody libraries intomolecular libraries suitable for phage or yeast
display and then pan them against a diverse panel of desired antigens. In the third part, the structural models of the putative antibody–antigen complexes
obtained previously can be used to identify potential lead antibody candidates andmodify their binding affinities to the desired levels via single- or multi-
residue mutations in the paratope regions through computational protein design. These structural models can also be used to impart cross-reactivity to
homologous antigens from other non-human species and/or to even create surrogate antibodies. Care should be taken to avoid introducing residues
susceptible to physicochemical degradation and therefore reducing the developability of the lead candidates. It is important to note that DAbI will require
changing the discovery workflows because it is pre-paying for developability and may therefore require significantly reduced effort during lead
optimization (LO).
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Licari et al., 2022). These advances have significantly contributed to
our understanding of NBEs and their development processes.

Biotherapeutics can undergo various levels of conformational
changes over time, which presents significant challenges regarding
conformational stability during manufacturing, shipping, and
storage. This is because the environment of a biotherapeutic drug
candidate can influence its structure, highlighting the importance of
understanding these complex molecules in more detail. To address
this, biophysical analysis employs a variety of techniques, such as
thermodynamic, spectroscopic, and hydrodynamic methods, for
characterizing protein-based drug candidates. These techniques
are routinely used during the discovery phase to guide the
identification and characterization of the lead drug candidates.
Some properties commonly assessed during biophysical analysis
include post-translational modifications (e.g., glycosylation,
deamidation, isomerization, oxidation, and fragmentation),
aggregation, self-association, hydrophobicity, molecule pI, and
viscosity for high-concentration liquid formulations. While these
techniques are well established, they can be time- and resource-
consuming and demand expert knowledge and advanced
instrumentation. This has driven researchers to seek more
efficient and accessible methods for obtaining critical data. In
silico tools can predict the intrinsic biophysical properties of drug
candidates along with identifying their degradation routes, whose
knowledge is important for establishing appropriate formulation
strategies. These tools demonstrate significant relationships between
the Fv domain sequences and physicochemical properties that define
antibody developability. For example, post-translational
modification sites, such as deamidation, aspartate isomerization,
oxidation, and fragmentation can be identified using computational
approaches (Irudayanathan et al., 2022; Vatsa, 2022). Similarly,
hydrophobic interaction chromatography (HIC) retention times
have been successfully correlated with sequence and structure
features through diverse methods such as quantitative
structure–property relationship (QSPR) modeling and machine
learning (Jain et al., 2017a; Jetha et al., 2018; Karlberg et al.,
2020). Although solution and colloidal state properties are
challenging to predict due to multiple influencing factors,
computational tools like SOLpro and PROSO II have
demonstrated their ability to predict solubility upon expression
with an accuracy of ~75% (Magnan et al., 2009; Smialowski
et al., 2012). The isoelectric point (pI) is a crucial
physicochemical property for mAbs. It has been associated with
specific developability aspects such as thermostability, viscosity, and
resistance to high molecular weight species formation at low pH.
Tools like MassLynx, Vector NTI, and EMBOSS (Rice et al., 2000)
calculate pI based on sequence data, achieving results within a 15%
range of experimentally determined values (Goyon et al., 2017).
Tools that predict the pI based on protein structure can provide a
more accurate result, since the underlying residue pKa values are
calculated by considering the residual microenvironments. Viscosity
is also a critical factor in the colloidal stability of biologics and is
influenced by electrostatics and hydrophobicity, which are in turn
determined by the Fv sequence and structure. The in silico tool,
spatial charge map (SCM), can identify highly viscous antibodies
based on the mAb structure (Agrawal et al., 2015). Biomolecule
aggregation is related to sequence and structural characteristics,

such as the presence of aggregation-prone regions, hydrophobicity
(Münch and Bertolotti, 2010), electrostatics (Buell et al., 2013),
and dipole moments (Tartaglia et al., 2004), which enable both
sequence- and structure-based computational predictions.
Various in silico tools play a significant role in guiding mAb
candidate design with high colloidal stability by predicting the
impact of single or multiple amino acid exchanges on
aggregation propensity. Alternative tools such as TANGO, PASTA,
FoldAmyloid, SALSA, and AggreRATE-Pred can detect aggregation-
prone regions based on the physicochemical principles of secondary
structure elements, particularly the ability to form intermolecular
cross-β-structures (Fernandez-Escamilla et al., 2004; Trovato et al.,
2007; Zibaee et al., 2007; Garbuzynskiy et al., 2010; Walsh et al., 2014;
Rawat et al., 2019). In summary, these in silico tools can effectively
predict various biophysical properties of biotherapeutics. Their high-
throughput capabilities make them particularly attractive for
biophysical assessments during various stages of the drug discovery
process.

3.4 Hit selection and lead identification

Following the production of antigen-binding antibodies
through immunized animals, hybridoma cells, or phage and
yeast display techniques, the variable regions of the antibodies
are sequenced, and the binders are validated in the conventional
workflows adapted by the biopharmaceutical industry. The
immunization methods, strength and diversity of the immune
responses, and sequencing technologies used can yield numerous
unique hits, particularly via B-cell cloning and repertoire
sequencing. Subsequently, these diverse hits must be
prioritized to identify the most promising lead candidates,
necessitating extensive resources to experimentally test each
hit and confirm antigen binding.

Several bioinformatic techniques can aid in prioritizing and
selecting hits for in vitro confirmation of antigen binding and lead
identification (Figure 3). A common strategy involves clustering hits
into high-, medium-, and low-binding bins based on the initial
estimates, analyzing each bin for heavy- and light-chain germline
diversity, and then examining CDR diversity to select multiple
representatives from each germline pair in each bin for
experimental testing. Alternatively, hits can be binned based on
the germline pair and CDR diversity, with selections made according
to their estimated antigen binding. At this stage of hit selection,
developability aspects can also be considered using computational
tools introduced in the previous section. In a basic application,
heavy- (HC) and light-chain (LC) sequences of hits can be scored
based on the presence of potential chemical degradation motifs,
aggregation-prone regions (APRs), and T-cell immune epitopes
present in or overlapping with the CDRs of the heavy and light
chains. The scoring schemes can be further optimized by assigning
different weights based on which CDRs contain these motifs and
whether they are in the Vernier zones or middle of the CDRs.

Structure-based approaches require accurate three-dimensional
antibody fold information, typically generated via homology
modeling. This process includes 1) identifying a high-identity
structural template for framework (FW) regions, 2) loop
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modeling of LCDR1-3 and HCDR1-2 using canonical loop
conformations, 3) HCDR3 loop modeling and optimization of
the orientation of heavy-chain variable region (VH) and light-
chain variable region (VL), and 4) sidechain packing and
refinement. The key challenges involve obtaining high-resolution
templates with optimal VH-VL orientations and accurately
modeling loops, particularly the HCDR3 loop. Recent progress in
Fv structure modeling has led to advanced tools, such as
RosettaAntibody (Weitzner et al., 2017; Adolf-Bryfogle et al.,
2018; Schoeder et al., 2021), AbPredict2 (Lapidoth et al., 2018),
ABodyBuilder (Leem et al., 2016), LYRA (Klausen et al., 2015),
MoFvAb (Bujotzek et al., 2015), and Kotai Antibody Builder
(Yamashita et al., 2014), which demonstrate high performance in
the AMA-II benchmark test. Commercial packages like Molecular
Operating Environment (MOE) and BioLuminate are popular for
high-throughput full-length Fv structure modeling. A detailed
discussion of recent advancements in Fv structure modeling tools
can be found in focused reviews (Fernández-Quintero et al., 2023).
Additionally, tools like FREAD, H3LoopPred, SPHINX,
MODELER, PLOP, SCWRL, BetaSCPWeb, Chothia canonical
assignment, and SCALOP have significantly contributed to full-
length Fv region three-dimensional structure modeling. Tools such
as TopModel efficiently examine the structure for cis-amide bonds,
D-amino acids, and steric clashes, allowing for rapid evaluation of
model quality and accuracy prior to conducting further analysis
(Norman et al., 2019;Wilman et al., 2022; Fernández-Quintero et al.,
2023). The generated three-dimensional structural models of all or a
subset of hits can then be analyzed regarding their physicochemical
descriptors, such as pI, charge, dipole moment, and solvent-exposed
hydrophobic and ionic patches. These physicochemical properties
have been demonstrated to potentially influence the chemical,
conformational, colloidal, and physical stabilities of antibodies,
and consequently their developability. In subsequent studies, a
few of the best hits are rigorously tested in the laboratory for
biological function, cross-reactivity across species, non-specific
binding, and pharmacological indicators, such as serum stability.
This process results in the identification of one or more lead
candidates.

3.5 Virtual screening and docking as
potential alternatives to in vitro hit selection
and lead identification

Identification of potential binders through immunization
campaigns can be accomplished using bioinformatics tools for
paratope and epitope prediction, followed by rapid virtual
screening, as outlined in Part 2 of the in silico roadmap, we call
DAbI (Figure 2). This approach involves three-dimensional
structure modeling of a diverse antibody sequence library and
screening it against a given antigen by taking advantage of the
shape and charge complementarity between the epitopes and
paratopes. The antibody libraries to be screened can be endowed
with the biophysical characteristics desired from a developability
perspective as described previously.

Small-molecule drug discovery has successfully employed
virtual screening to identify binders from a library of drug
candidates (Gorgulla et al., 2020; Maia et al., 2020; Yan et al.,
2020). Typically, millions of small-molecule drug candidates
undergo structural and energetic screening processes through
docking, pharmacophore-, or ligand-based approaches. Modern
techniques involving computer vision, image-based, and
geometric learning–based algorithms have reached advanced
stages of validation and are now well established among the
marketed small-molecule drugs designed using in silico methods
(Eguida and Rognan, 2020; Gorgulla et al., 2020; Yan et al., 2020).
Similarly, a curated and modeled antibody library may be treated as
a potential set of drugs to be screened against a given antigen.
However, directly applying these techniques may not be feasible due
to the significant structural and functional differences between
small-molecule drugs and large antibodies, with size (molecular
weights, 500–1,000 Da versus approximately 25,000 Da for the Fv)
being a primary concern even when considering only the Fv regions.
Additionally, given the estimated theoretical diversity of B-cell
repertoire (BCR) based on V(D)J recombination, which is about
1013–1020 unique sequences, it is crucial to consider large antibody
libraries to allow screening over a highly diverse sample space of
paratopes.

FIGURE 3
Integration of in vivo, in vitro, and in silico approaches for hit selection in the discovery phase of the pharmaceutical industry. Next-generation
screening and virtual screening methods are employed to identify promising leads, which are then prioritized using clustering techniques based on 1)
antigen binding and 2) a combination of germline pair clustering and CDR diversity. Finally, computational developability screens that analyze the amino
acid sequence, structure, and combinatorial methods such as QSPR or machine learning are performed to select the most promising hits.
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Hypothetically speaking, we consider an antibody library of
1 million Fv sequences and assume a screening time of 1 min per Fv
for a given antigen, the total runtime would amount to
approximately 695 days (close to 23 months) for screening a
single antigen against the library, which consists of only a small
fraction of BCR diversity. Currently existing docking methods have
runtimes of several minutes per complex. On the bright side, rapid
virtual screening may not necessarily require rigorous energy-based
binding evaluations employed in modern docking programs.
Sacrificing the accuracy afforded by pose refinement can allow
for greater speed in the screening process. Consequently, novel
techniques have to be developed to enable the screening of large
antibody libraries by considering the key aspects of the structural
and chemical complementarity of the antigen:antibody interfaces
and ensuring high-throughput rapid execution. An ideal in silico
antibody virtual screening process could narrow down the potential
binding hits to the order of 101–102, meaning that virtual screening
would enable identifying binders at least as accurately as about one
in a thousand to a few thousand sequences from the library,
significantly impacting the discovery pipeline.

While in silico virtual screening does not replicate the generation
of antigen binders via experimental methods in terms of binding
affinity or functional efficacy, it can allow for comprehensive
screening of the antibody library to identify all possible structural
matches of epitopes and paratopes. Iterative refinement of these
matches can help discover antibody binders to a given antigen with a
diverse set of binding affinities and therefore suitable for antagonist
as well as agonist function. Novel techniques, such as image-based
and graph-based deep learning algorithms, have been proposed for
identifying complementary paratope/epitope interfaces. These
approaches can be further accelerated through pre-identified or
predicted paratope and epitope information (Gainza et al., 2020;
Pittala and Bailey-Kellogg, 2020; Akbar et al., 2021; Ripoll et al.,
2021). Schneider et al. (2021) proposed a structure-based virtual
screening method using voxel representation of the interfacing
surface atom groups in their screening method called Deep
Learning for AntiBodies (DLAB), adapted and extended from its
small-molecule counterpart (Imrie et al., 2018). Recently proposed
image fingerprinting–based approaches, with analogous
applications in small molecules, show promising potential for
protein interface matching and could be further expanded to
predict paratope/epitope binders for hit selection (Gainza et al.,
2020; Ripoll et al., 2021). More recently, a geometric deep learning
method called ScanNet has been introduced to predict
protein–protein and protein–antibody binding interfaces through
geometric deep learning of three-dimensional structural features
(Tubiana et al., 2022). Moreover, some of the paratope/epitope
prediction methods involving deep learning of interfacial
interactions may be extrapolated to interface screening and
predicting binders.

The in silico virtual screening of antibodies against a given
antigen can also borrow techniques such as fragment-based drug
design (Sormanni et al., 2015; Sormanni et al., 2018) and
pharmacophore modeling from the realm of small-molecule drug
discovery. By facilitating the identification of binding sites,
improving antibody–antigen docking, and enabling more
accurate structure-based virtual screening, these methods can
accelerate the development of novel therapeutic antibodies and

enhance our ability to target a wider range of diseases and
conditions.

Recent molecular docking protocols feature highly robust,
energy-based scoring functions for evaluating and ranking
protein–protein or protein–antibody binding partners. This offers
a suitable toolkit for further optimization of hits identified through
virtual screening of target antigens against an antibody library.
Docking methods have demonstrated accurate prediction of
protein-binding interfaces; however, speed has not been a
priority for molecular docking programs. Although the current
speed of implementation poses a bottleneck, rapid advancements
in the field of protein–protein docking have spurred the
development of new methods utilizing advanced machine
learning algorithms and hybrid physics and learning-based
technologies, promising faster docking methods soon. Moreover,
such advancements may bridge the gap between virtual screening
and docking, further accelerating in silico antibody screening, hit
selection, and lead identification processes altogether.

Antibody–antigen docking has often been considered with
paratope/epitope prediction and improving CDR modeling
accuracy. SnugDock combines docking with accurate modeling
prediction of the paratope (CDR loop construction), where the
Rosetta Antibody Modeler operates alongside the docking
protocol, iteratively improving docking and model prediction
(Sircar and Gray, 2010; Jeliazkov et al., 2021). Additionally,
methods employing more rigorous energy-defined constructs to
evaluate multiple docking poses through the MM-GBSA
(molecular mechanics—generalized Born solvent accessibility)
method have shown promising outcomes (Shimba et al., 2016).
Information-driven docking methods depend on a set of data to
reduce the number of decoys, thus saving prediction time. Interface
prediction-based methods, such as Antibody i-patch and EpiPred,
focus on refining docking poses through paratope/epitope interface
prediction (Krawczyk et al., 2013) By contrast, proABC adopts a
more site-directed approach driven by the interface (paratope)
(Olimpieri et al., 2013; Krawczyk et al., 2014). Advances in
machine learning and deep learning algorithms have significantly
contributed to enhancing docking prediction methods.

Other widely employed programs such as ClusPro, LightDock,
ZDOCK, and HADDOCK, coupled with CDR and binding epitope
information for directed/biased docking approaches, have shown
promising results, with HADDOCK demonstrating notable
performance improvement (Ambrosetti et al., 2020a). Pro-ABC-2,
another information-driven docking approach and an updated
version of Pro-ABC, utilizes deep learning convolutional neural
networks (CNNs) for paratope prediction to assist in docking
(Ambrosetti et al., 2020b). Such information-driven methods may
also be applicable in pipelines using commercial docking techniques
offered by MOE from Chemical Computing Group, PIPER from
Schrodinger, and others with additional efforts.

Several other methods that employ deep learning through
CNNs, recurrent neural networks (RNNs), or graph-based
learning have demonstrated promise in predicting binding
interfaces, consequently improving docking accuracy (Liberis
et al., 2018; Deac et al., 2019; Pittala and Bailey-Kellogg, 2020; Lu
et al., 2021; Myung et al., 2021; Vecchio et al., 2021; Davila et al.,
2022). Additionally, research groups have been exploring the
exceptional modeling performance of AlphaFold2 in docking
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prediction. The accelerated advancements in AI related to
AlphaFold and other docking methods offer significant potential
for the development of faster and more accurate docking programs
in the future.

3.6 In silico affinity maturation of lead
candidates

In a conventional discovery workflow, the lead candidates
identified may have to be optimized for affinity, cross-reactivity,
and developability. Among these, the focus is often on
developability of the lead candidates. By contrast, DAbI may
yield developable lead candidates already since the sequence and
structural features that support good developability are already
included in the library design (Part 1 of DAbI, see Figure 2).
Depending on the library choice (antigen-agnostic or antigen-
specific), the in silico generated lead candidate may have to be
optimized for binding affinity and any residual physicochemical
developability issues, particularly from the CDRs. For these
reasons, the third part of our conceptual roadmap, DAbI
(Figure 2), envisages an ability to adjust the binding affinity as
per the project requirements. Depending upon the novel
therapeutic concept (NTC), both enhancement (affinity
maturation) and decrease (affinity de-maturation) in binding
affinities may be required. However, affinity maturation may be
required more often than de-maturation, particularly when the
lead antibody binders have been derived from antigen-agnostic
libraries. In our conceptual roadmap, both affinity maturation
and de-maturation begin with a structural representation of the
atomic interaction between two proteins, namely, the antigen and
the antibody. The methodology’s reliability depends on
accurately analyzing the interacting sites. Therefore, co-
crystallized antibody–antigen complexes are typically preferred
over structure-based homology models or AI predictions, which
may lead to less reliable results if CDRs are not precisely modeled.
The in silico affinity maturation relies on accurate molecular
interactions for free energy or MM-GBSA–based calculations
(Comeau et al., 2023; Thorsteinson et al., 2023), highlighting the
importance of improving antibody–antigen complex predictions
and the implicit incorporation of multiple conformational
ensembles to enhance the effectiveness of in silico calculations
and optimize library design. Despite this limitation, these
methods have been already applied to predicted
antibody–antigen complexes (Rangel et al., 2022), facilitating
the generation of in silico affinity maturation libraries (Conti
et al., 2022; Thorsteinson et al., 2023).

The in silico scanning of the individual paratope residues
yields potential mutations and estimates of the corresponding
free energy changes in binding to the target. The subsequent
challenge involves designing a combinatorial assembly of these
mutations into a library suitable for phage/yeast display. This is
because the in silico affinity maturation often involves
computationally expensive calculations that tend to be more
accurate at identifying the single point mutations rather than
combinations thereof (Comeau et al., 2023; Thorsteinson et al.,
2023). The physical display libraries built using computational
guidance can be used to pan combinatorial mutations. Therefore,

this part of DAbI requires an understanding of the limitations
associated with the library size and panning methodology
(Tsumoto and Kuroda, 2022). It is also in consonance with
the spirit of biopharmaceutical informatics which calls for
taking advantage of the strengths of computation and
experiments in a synergistic manner. When combined with
library technologies like phage display, computational tools
have proven particularly powerful in guiding the design of
affinity maturation libraries (Tiller et al., 2017; Nelson et al.,
2018; Wang et al., 2018; Thorsteinson et al., 2023). Incorporation
of additional considerations along with the binding affinity can
help narrow down the mutations for experimental testing and
therefore the size of the display libraries. At this stage, the
mutations that enhance specificity, humanness, and CDR
germlining along with developability can be considered by
incorporating relevant physicochemical properties and stability
criteria (Khan et al., 2023; Svilenov et al., 2023). Consequently,
the selection of lead antibody candidates with high binding
affinity and favorable biophysical properties can be achieved
simultaneously. In-house, we successfully improved binding
affinities of the antibody drug candidates 10- to 1,000-fold in
multiple proprietary projects using this strategy.

Several studies have demonstrated the computational design
of functional antibodies using multiple structural models
supported by statistical or machine learning models (Nimrod
et al., 2018; Liu et al., 2019; Amimeur et al., 2020). Upon selecting
an initial antibody scaffold, mutations to enhance
complementarity with a given epitope can be designed to
obtain specific antibody binders to an antigen. For example,
the generative adversarial network (GAN) model was trained
on over 400,000 light- and heavy-chain human antibody
sequences to learn the rules of human antibody formation
(Amimeur et al., 2020). The resulting model outperforms
common in silico techniques, generating diverse libraries of
novel antibodies mimicking somatically hypermutated human
repertoire responses. Through transfer learning, the GAN can
generate molecules with improved stability, developability, lower
predicted major histocompatibility complex class II binding, and
specific CDR characteristics. In-house, we could independently
train the GAN on a much smaller set of approximately
31,500 paired antibody sequences belonging to the VH3-VK1
germline pair and format them as single chain variable regions
(ScFvs). These sequences were selected based on their high
percent humanness, low incidence of chemical liabilities in the
CDRs, and high medicine-likeness. The in-house developed GAN
model was then used to generate 100,000 unique antibody ScFv
sequences and a small yet highly diverse subset of them was
produced in the laboratory as immunoglobulin G1K (IgG1K)
antibodies. The initial experimental characterization showed that
most of the generated antibodies showed desirable attributes for
expression, purification, thermal stability, and colloidal stabilities
that compare favorably with those of trastuzumab, a
biotherapeutic well known for its good developability profile
(unpublished results). In summary, these in silico approaches
enable the control of pharmaceutical properties for antibodies,
potentially offering a more rapid and cost-effective screening,
docking, and binding affinity maturation against a given target
antigen.
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3.7 Humanization and optimization of lead
candidates

During the conventional discovery workflow, lead
optimization (LO) is carried out as soon as one or more lead
candidates have been identified and revalidated for function. The
Fv regions may require humanization if the lead molecule is from
a non-human source, the removal of post-translational
modification (PTM) sites, optimization of affinity, and ideally,
improvement of developability (Figure 4). When all parts of
DAbI are fully enabled, time and efforts required for LO may
be significantly reduced, if not eliminated completely as stated
earlier. However, for now, humanization and optimization of the
functional lead candidates remain an integral part of
biotherapeutic drug discovery. The following describes how
computation can support every aspect of the LO process for
therapeutic antibodies.

Humanization optimizes the amino acid sequence of non-
human Fv regions, decreasing immunogenicity and anti-drug
antibodies (ADAs) (Roguska et al., 1994; Townsend et al., 2015).
Computational protein design methods can efficiently increase
antibody humanness while maintaining structural stability (Choi
et al., 2015). State-of-the-art software like MOE (ULC, 2021)
enables CDR grafting and humanness optimization through in
silico calculations (Abhinandan and Martin, 2007; Lazar et al.,
2007; Gao et al., 2013; Seeliger, 2013; Olimpieri et al., 2015; Choi
et al., 2017; Kuroda and Tsumoto, 2020). Bioinformatic studies
have also revealed structural differences between the lambda
(VL) and kappa (VK) isotypes, which must be considered
during re-engineering (van der Kant et al., 2019). Structure-
guided approaches can aid in enhancing the biophysical
properties of a therapeutic mAb by transitioning from a
problematic lambda framework (FWR) region to a more stable
kappa FWR (Lehmann et al., 2015).

The humanized sequences progress to liability engineering
campaigns. Pre-formulation assessments, forced degradation
studies, and in silico evaluations are incorporated into the
engineering design plan. Phage display or other screening
technologies can be employed to screen a large panel of variants.
In silico tools monitor and guide the redesign of candidates’
individual liabilities (see Figure 4), and medicine-likeness can be
estimated by comparing molecular characteristics with marketed
antibodies (Ahmed et al., 2021).

Computational tools have successfully guided antibody
optimization campaigns, improving solubility, viscosity, self-
association, colloidal stability, and binding specificity (Yadav
et al., 2011, 2012; Nichols et al., 2015; Kumar et al., 2018b; Shan
et al., 2018; Zhang et al., 2018; Navarro and Ventura, 2019; Sakhnini
et al., 2019; Bauer et al., 2020). In silico–guided LO campaigns have
demonstrated single amino acid residue exchanges that can improve
multiple chemistry, manufacturing, and control (CMC) properties,
such as expression titer, yield, purity, and colloidal stability (Bauer
et al., 2020). A case study enhanced antibody developability using a
multi-stage approach, starting with in silico screening for mutations
addressing liabilities while preserving thermodynamic stability,
followed by production and characterization of stable candidates
(Sakhnini et al., 2019). An alternative hybrid method combined
computational and experimental alanine scans to identify CDR

positions for mutagenesis, maintaining antigen binding and
creating antibody libraries (Tiller et al., 2017). Structure-based
computational designs have been effectively employed to
improve the affinity and specificity of therapeutic antibodies
by pinpointing the key residues in the paratope for site-
directed single, double, or even triple mutations (Kiyoshi
et al., 2014; Grossman et al., 2016; Kumar et al., 2018b; Chiba
et al., 2020). Computational methods offer conformational
stability predictions for humanization or LO (Dehouck et al.,
2011; Baets et al., 2015; Folkman et al., 2016; Quan et al., 2016;
Pandurangan et al., 2017; Cao et al., 2019; Leman et al., 2020),
with some tools using ML on experimental data (Pandurangan
et al., 2017; Cao et al., 2019). Furthermore, glycoengineering
reduces aggregation propensity and enhances conformational
stability of biotherapeutics (Hristodorov et al., 2013; Courtois
et al., 2015).

Recommendations for amino acid substitutions help design a
customized humanization and optimization strategy for the lead
mAb candidate. The top lead optimized candidates (3–6) are
selected for large-scale production and biophysical
characterizations. These processes can be extended to multi-
specific antibodies, with additional engineering for optimizing
Fv or ScFv domains and identifying optimal multi-specific
formats.

FIGURE 4
Lead humanization and optimization involve converting non-
human sequences to human-like sequences while maintaining critical
key attributes. In vitro binding affinity, which acts as surrogate for
function, is the paramount criteria for accepting the mutations.
Furthermore, in silico tools can be used to identify potential T-cell
reactive epitopes, resulting in leads with lowest potential for
immunogenicity and high percentage human content by germlining
of the CDRs. Another aspect of optimization includes developability,
which involves identifying leads with desirable biophysical properties
and avoiding incidence of the post-translational modification sites
such as N-linked glycosylation, unpaired cysteines, oxidation,
deamidation, or aspartate isomerization, particularly in the CDRs.
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3.8 Formatting of conventional and next-
generation antibodies

After optimizing Fv regions, biotherapeutic engineering
proceeds with formatting Fvs into the desired antibody format,
combining Fv with the chosen IgG Fc isotype. Fc engineering may be
required to adjust receptor-mediated functions like antibody-
dependent cell-mediated cytotoxicity (ADCC), antibody-
dependent cellular phagocytosis (ADCP), complement-dependent
cytotoxicity (CDC), and endosomal recycling (Mimoto et al., 2016).
For next-generation biotherapeutics like bi- and multi-specific
antibodies, an intermediate formatting step assesses compatibility
and developability properties. Structure-based engineering supports
antibody formatting, as demonstrated in a study where TGFβ1
(transforming growth factor β1) binder affinity was restored after
converting from ScFv to IgG (Lord et al., 2018). Similar approaches
can support formatting complex next-generation antibodies.

In the discovery process’s final step, top-performing lead
variants undergo pre-formulation studies before transferring to
development for cell line generation and early developability
assessments (Bailly et al., 2020). The research phase concludes
with the final candidate selection, after which conventional and
DAbI-enabled workflows for antibody discovery are identical.

3.9 In silico assessments in early
development

The initial stages of drug substance and drug product
development are resource intensive, with full development
programs justified only for the final candidate. At the time of
selecting the final lead candidate, experimental data are often
scarce due to material limitations. The sequence of the final lead
candidate becomes locked at the start of development. This decision
puts product development at a disadvantage, as real-time stability
data are typically unavailable but crucial for meeting regulatory
requirements concerning shelf-life, Critical Quality Attributes
(CQA), and product heterogeneity. There is significant demand
for early, rapid, and reliable stability predictions addressed through
hybrid approaches combining in vitro and in silico techniques.
Computational approaches can help estimate a molecule’s fit to
specific platform processes and tailor subsequent development
programs to the biologic candidate’s inherent liabilities and
characteristics (Figure 5). Conversely, platform processes
continuously gather data for new molecules, improving existing
and developing novel bioinformatic predictions.

One platform step is the ultrafiltration/diafiltration (UF/DF),
typically employed to process the antibody into the desired
formulation. Recently, in silico models have demonstrated that
protein charge can predict common UF/DF effects, such as
Gibbs–Donnan and volume-exclusion phenomena (Kannan et al.,
2023). After antibody formulation, certain stability aspects become
most relevant for evaluating the developability of the final lead
candidates using hybridized assessments.

Conformational stability is generally not an issue for
conventional mAbs but can pose a significant challenge for next-
generation biologics like ScFvs and multi-specific antibodies (Bailly
et al., 2020). Numerous bioinformatics tools have been developed to

calculate conformational stability, mostly applicable during LO for
analyzing stability changes upon point mutations (Koenig et al.,
2017; Pandurangan et al., 2017; Steinbrecher et al., 2017; Cao et al.,
2019; Kuroda and Tsumoto, 2020; Leman et al., 2020; Harmalkar
et al., 2023). Prediction accuracy heavily relies on the quality of the
underlying structure or homology model, allowing comparisons
between similar sequence variants.

Recent advancements in homology modeling and MD-based
free energy calculations offer potential for enhancing thermal
stability prediction (Kuhlman and Bradley, 2019; Berner et al.,
2021; Tomar et al., 2021; Ko et al., 2022; Licari et al., 2022).
Soon, these simulation approaches will extend from antibody
fragments to full-length structures (Tomar et al., 2021). MD-
derived predictions will improve by considering formulation
aspects influencing conformational stability (Somani et al., 2021;
Blanco, 2022; Saurabh et al., 2022; Shmool et al., 2022). High-
throughput (HTP) screening of biologics’ thermal stabilities in
platform formulations enables AI, ML, and neural networks to
train computational tools to predict the thermal stabilities of
diverse candidates (Gentiluomo et al., 2019a; Cao et al., 2019;
Wei, 2019; Bailly et al., 2020; Harmalkar et al., 2023). The
pharmaceutical industry will benefit from bioinformatic tools
predicting optimal formulation composition for specific
candidates or identifying the best-suited candidate for a given
formulation.

Predicting colloidal stability and aggregation propensity of drug
products is critical, with bioinformatics offering significant
advantages in development efforts. First, real-time stability
studies may take years, allowing bioinformatics to reduce
development time and risk of late-stage failure. Second, stability
studies require large material amounts, particularly for HCPF,
increasing the cost of failures. Third, extrapolations from
accelerated stability studies often inaccurately reflect molecular
behavior under storage conditions. Simplified approaches using
conformational stability to estimate aggregation propensity only
account for non-native aggregation (Brader et al., 2015), neglecting
self-association and aggregation of natively folded mAbs. Fourth,
analytical techniques like HIC, dynamic light scattering (DLS), self-
interaction nanoparticle spectroscopy (SINS), size exclusion
chromatography (SEC), and micro-flow imaging (MFI) partially
characterize colloidal instability and aggregation, often necessitating
a comprehensive analytical panel (Kopp et al., 2020). Last, colloidal
instability and aggregation can be triggered by various intrinsic
(molecule-related) (Alam et al., 2019; Gentiluomo et al., 2019b; Lai
et al., 2022) and extrinsic (process-related) factors, following
complex mechanisms. Conventional methods struggle to
accurately predict shelf-life, leading to resource-intensive
development studies and troubleshooting efforts when the
development success is at risk.

A thorough understanding of molecular behavior is essential for
addressing self-association, aggregation, or particulate formation
issues. Computational approaches have been developed to estimate
mechanistic and kinetic characteristics for better comprehension
and prediction of colloidal instability and aggregation. Mechanistic
tools aid in screening and minimizing APRs during the discovery
phase (Kuhn et al., 2017; Prabakaran et al., 2017, 2020; van der Kant
et al., 2017; Gil-Garcia et al., 2018; Rawat et al., 2018; Bauer et al.,
2020; Ebo et al., 2020; Shahfar et al., 2022), while kinetic predictors
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estimate aggregation rates, crucial for liquid formulation
development meeting regulatory requirements for shelf life
(Rawat et al., 2019; Yang et al., 2019; Santos et al., 2020).
Machine Learning (ML) can train kinetic models using extensive
data sets with experimental and sequence/structure information
(Rawat et al., 2019; Yang et al., 2019), facilitating prediction of
optimal formulation compositions (pH, salt, excipients) for minimal
kinetics.

In the final development stage, creating liquid drug products
with stable physical properties is vital. Manufacturing, processing,
and administration of highly concentrated antibody formulations
often face viscosity challenges. Viscosity is linked to surface charge
and hydrophobicity of the mAb (Tomar et al., 2018; Apgar et al.,
2020; Lai et al., 2021; Blanco, 2022; Han et al., 2022; Lai, 2022).
Studies have shown computational ability to predict viscosity
profiles at platform conditions using mAb sequence and structure
(Tilegenova et al., 2019; Bauer et al., 2020; Thorsteinson et al., 2021;
Han et al., 2022; Lai et al., 2022; Rosace et al., 2022). A recent deep
learning approach utilized a 3D convolutional neural network to
predict high-concentration viscosity of therapeutic antibodies (Rai
et al., 2023). Feature attribution analysis identified key biophysical
drivers of viscosity, such as the electrostatic potential surface. The
predictor was successfully trained despite limited data. Early
integration of viscosity predictors enables addressing viscosity
issues and adjusting platform formulations and technologies
before finalizing the development strategy.

4 Discussion and conclusion

In this review, we have presented numerous opportunities for
computation to play a greater role in biotherapeutics discovery and
development. However, the excitement around computation’s
enhanced role should be tempered with pragmatism. Machine
learning experts often lack practical experience in biotherapeutics

discovery and development and vice versa. Thus, a strong
collaboration between bench scientists and data scientists is
recommended. Computational biophysics and antibody
structure–function–developability relationship experts should work
with machine learning and artificial intelligence experts, as well as
experimentalists, to fully enable biopharmaceutical informatics.
Additionally, technical limitations exist in emerging technologies like
machine learning and artificial intelligence. For instance, deep learning
model performance often depends on size and diversity within training
data sets (Wittmund et al., 2022), posing challenges in sparse or less
diverse data settings. Moreover, the lack of insights into the latent space
and interpretability of AI models in terms of the underlying
physicochemical rules hinders our ability to better understand the
models and extend their applicability beyond the tasks they have
been trained for. For example, AI-based methods have transformed
protein structure prediction, but contrary to popular belief, they have
not solved the protein folding problem (Chen et al., 2023), as they do
not provide insights into protein folding processes, such as initial
building blocks, intermediate states, energy landscapes, and pathways.

In the specific context of protein engineering, the complexity of
prediction tasks is escalated by non-additive mutational interactions
or epistatic effects, which can significantly alter the impact of single
or multiple mutational outcomes (Reetz, 2013; Miton and Tokuriki,
2016; Cadet et al., 2022). A further layer of complication is presented
by the dynamic interplay between mutated amino acids and the
subsequent establishment of intramolecular interaction networks,
which can alter the protein function (Acevedo-Rocha et al., 2021).
The situation is exacerbated by the limitations of tools such as
AlphaFold2 or ProteinMPNN, which may struggle to predict how
individual amino acid changes affect protein structure due to their
heavy reliance on evolutionary perspectives and variant sequences
(Eisenstein, 2021; Dauparas et al., 2022). Deep learning methods
offer a way to investigate protein attributes, such as stability,
solubility, aggregation, and binding affinity. However, these
methods operate within the confines of the training data.

FIGURE 5
Computational approaches analyze the physicochemical properties of the antibody structure to predict various developability aspects and stability
factors. These in silico methods evaluate factors such as aggregation propensity, conformational stability, colloidal stability, and post-translational
modifications and help to select candidates with improved developability and reduced risk of immunogenicity or manufacturing challenges.
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Although this does not eliminate the possibility of identifying
beneficial protein variations within these parameters, it may fail
to recognize or accurately predict variants exhibiting fitness values
outside the learned range. This means that while beneficial variants
can be identified, the optimal variant, particularly if it is an epistatic
variant, might be overlooked. Against this backdrop, the use of deep
learning models in conjunction with conventional neural network
architectures is being explored as a solution for these challenges. By
representing numerical quantities as individual neurons without
non-linearity, these models can learn to perform systematic
numerical computation, enabling them to handle data that lie
outside the range used during training (Trask et al., 2018). The
adaptability of these models across various task domains augments
their potential to tackle challenges encountered in antibody
therapeutics. Importantly, the ability to harness epistatic effects
and predict mutational outcomes could significantly enhance the
design of therapeutic antibodies. Moreover, other studies have
indicated the potency of a Machine learning (ML) approach
focused exclusively on sequences in accurately predicting epistatic
phenomena (Cadet et al., 2018). Unlike most ML and deep learning
methodologies that predominantly capture low-order non-linear
interactions and predict the additive effects of mutations, this
innovative strategy comprehensively encapsulates both low- and
high-order non-linear interactions. By utilizing ML in tandem
with digital signal processing such as Fourier transform, case
studies have demonstrated a significant improvement in the
resistance of proteins to unfavorable unfolding and
aggregation. Crucially, this method unveils the correlation
between epistatic mutational interactions and protein
resilience, offering unique, predictive insights beyond those
provided by conventional machine learning or deep learning
approaches (Li et al., 2021). This approach has considerably
enhanced precision, reduced overfitting, and surpassed
conventional methods without increasing complexity (Medina-
Ortiz et al., 2022). Understanding the rules underlying these
interactions could contribute to a more efficient model design
and a more predictive performance, thereby bolstering the
success of deep learning in the realm of biopharmaceutical
informatics.

In conclusion, this review article aims to broaden our strategic
perspective on biopharmaceutical informatics. Initially, we emphasized
the syncretic use of computation and experimentation for the drug
product development of antibody-based biotherapeutics (Kumar et al.,
2015; Kumar et al., 2018a). Subsequently, Khetan et al. (2022)
demonstrated its feasibility by spelling out different methods and
published studies already available in the public domain to support
our vision. Here, we propose a more generalized vision of
biopharmaceutical informatics by including DAbI and digital
transformation. It is widely agreed that digital transformation is
essential for modernizing the biopharmaceutical industry’s work
processes, leading to more judicious use of resources and reduced
costs in biotherapeutics discovery and development. Recent
advancements in AI and ML, along with the availability of large-scale
antibody sequencing data in the public domain, have fueled excitement
for DAbI. When fully embraced by the biopharmaceutical industry,

DAbI will revolutionize the way biotherapeutic drugs are discovered and
developed. Current drug discovery processes and workflows are
dominated by experimental trials and errors, with computation
playing an assistive role at the best. DAbI can support the start of
projects even before the availability of antigen material for in vitro
experimental studies. This is particularly attractive when the antigens
involved are difficult to express and purify. DAbI can also accelerate
discovery projects by pre-paying for developability and therefore save on
resources and time required to fix these issues at the later stages.
These two features may eventually lead to situations where
computation plays an equal, if not greater, role alongside
experimentation in supporting biotherapeutics discovery and
development projects. Therefore, our vision of
biopharmaceutical informatics points to an exciting future
where we can better serve patients by addressing unmet
medical needs through more successful, faster, and affordable
discovery and development of biotherapeutics. Additionally, the
discovery and development of antibody-based biotherapeutics
are rapidly becoming industrialized, with several aspects
becoming more uniform (e.g., discovery processes and drug
formulations), while multiple options are being explored for
others, such as molecular formats, routes of administration,
and dosing options (Martin et al., 2023). Biopharmaceutical
informatics contributes toward accelerating this
industrialization and helping to improve human health.
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Glossary

Ab Antibody

ADA Anti-drug antibodies

ADCC Antibody-dependent cell-mediated cytotoxicity

ADCP Antibody-dependent cellular phagocytosis

Ag Antigen

AI Artificial intelligence

Ala Alanine

APR Aggregation-prone region

BCR B-cell repertoire

CDC Complement-dependent cytotoxicity

CDR Complementarity determining region

CMC Chemistry, manufacturing, and control

CNN Convolutional neural networks

CQA Clinical Quality Attributes

DAbI Discovery of antibodies in silico

DENIS DEvelopability Navigator In Silico

DLAB Deep Learning for AntiBodies

DLS Dynamic light scattering

Fab Fragment antigen binding

FAIR Findable, accessible, interoperable, and reusable

FDA Food and Drug Administration

Fv Fragment variable

FW Framework

GAN Generalized adversarial network

HC Heavy chain

HCDR1-3 Heavy-chain complementarity determining regions 1–3

HCPF High-concentration protein formulations

HIC Hydrophobic interaction chromatography

HTTP High-throughput

IgG Immunoglobulin G

LC Light chain

LCDR1-3 Light-chain complementarity determining regions 1–3

LO Lead optimization

mAb Monoclonal antibody

MaSIF Molecular surface interaction fingerprints

MD Molecular dynamics

MFI Micro-flow imaging

MHC Major histocompatibility complex

ML Machine learning

MM-GBSA Molecular mechanics—generalized Born solvent accessibility

MOE Molecular Operating Environment

NBE New biologic entity

NTC Novel therapeutic concept

pI Isoelectric point

PTM Post-translational modification

QSAR Quantitative structure–activity relationship

QSPR Quantitative structure–property relationship

R&D Research and development

RNN Recurrent neural networks

RTP Research target profile

ScFv Single-chain fragment variable

SCM Spatial charge map

SEC Size exclusion chromatography

SINS Self-interaction nanoparticle spectroscopy

TGFβ1 Transforming growth factor β1

UF/DF Ultrafiltration/diafiltration

VH Heavy-chain variable region

VK Light-chain variable region (kappa isotype)

VL Light-chain variable region (lambda isotype)
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