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Alzheimer’s disease (AD) is a neurodegenerative disease that primarily affects
elderly individuals. Recent studies have found that sigma-1 receptor (S1R) agonists
can maintain endoplasmic reticulum stress homeostasis, reduce neuronal
apoptosis, and enhance mitochondrial function and autophagy, making S1R a
target for AD therapy. Traditional experimental methods are costly and inefficient,
and rapid and accurate prediction methods need to be developed, while drug
repurposing provides new ways and options for AD treatment. In this paper, we
propose HNNDTA, a hybrid neural network for drug–target affinity (DTA)
prediction, to facilitate drug repurposing for AD treatment. The study
combines protein–protein interaction (PPI) network analysis, the HNNDTA
model, and molecular docking to identify potential leads for AD. The HNNDTA
model was constructed using 13 drug encoding networks and 9 target encoding
networks with 2506 FDA-approved drugs as the candidate drug library for S1R and
related proteins. Seven potential drugs were identified using network
pharmacology and DTA prediction results of the HNNDTA model. Molecular
docking simulations were further performed using the AutoDock Vina tool to
screen haloperidol and bromperidol as lead compounds for AD treatment.
Absorption, distribution, metabolism, excretion, and toxicity (ADMET)
evaluation results indicated that both compounds had good pharmacokinetic
properties and were virtually non-toxic. The study proposes a new approach to
computer-aided drug design that is faster andmore economical, and can improve
hit rates for new drug compounds. The results of this study provide new lead
compounds for AD treatment, which may be effective due to their multi-target
action. HNNDTA is freely available at https://github.com/lizhj39/HNNDTA.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that
mainly affects elderly people and whose etiology remains unclear.
The symptoms of patients include a decline in cognitive abilities and
a weakening of memory and thinking abilities (Hung and Fu, 2017;
Srivastava et al., 2021; Briggs et al., 2016). Although there are some
drugs currently used to treat AD, their effectiveness is limited.
However, drug repurposing (DR) has provided a new approach
and selection for the treatment of AD (Padhi and Govindaraju, 2022;
Ihara and Saito, 2020). This method involves reanalyzing the
biological effects of known drugs and applying them to new
areas of disease treatment. DR can accelerate the development of
new drugs, provide more treatment options, and reduce the risk of
drug development.

Previous studies have suggested that sigma-1 receptor (S1R) has
neuroprotective effects and that its physiological function has a
direct impact on endogenous neuroprotective mechanisms
(Voronin et al., 2023). As a protein chaperone, S1R locates on
specialized lipid rafts of mitochondria-associated endoplasmic
reticulum membranes (MAMs), which are known to form
mitochondrial endoplasmic reticulum contacts (MERCs) with the
outer mitochondrial membrane and play a role in various
biochemical processes, such as autophagosome formation, cellular
energy production, and maintenance of IR3R3-dependent calcium
homeostasis. Thus, disruption of this structure is now considered an
early stage in the pathogenesis of neurodegenerative diseases,
including AD. Activation of S1R using agonists has been shown
to maintain the structural and functional stability of MAMs and
MERCs, thereby enhancing autophagic activity, restoring
mitochondrial function, and regulating intracellular calcium
balance (Barazzuol et al., 2021; Leal and Martins, 2021; Wilson
and Metzakopian, 2021; Weng et al., 2017). In AD models, such as
PS1-KI and APP-KI, dendritic spines of hippocampal neurons are
lost both in vitro and in vivo, indicating that the loss of mushroom-
shaped “memory spines” reflects cognitive decline, learning, and
memory deficits in AD (Ryskamp et al., 2019; Fisher et al., 2015),
suggesting the involvement of reduced S1R in AD pathology. The
mixed muscarinic/S1R agonist AF710B stabilizes mature mushroom
spines in hippocampal cultures derived from ADmice in vitro, while
pridopidine, an S1R agonist, stabilizes mushroom spines in an
Alzheimer’s mouse model through its action on S1R. S1R
agonists have demonstrated preclinical efficacy in AD animal
models (Ryskamp et al., 2019; Fisher et al., 2015). Donepezil, a
potent acetylcholinesterase inhibitor used for AD treatment, is also a
high-affinity S1R ligand. Precise pharmacological studies on the
interaction between donepezil and S1R suggest that the drug exerts
anti-amnesic effects primarily through S1R activation against
scopolamine, β-amyloid, or carbon monoxide-induced memory
impairments (Hassan et al., 2017). Overall, S1R agonists exhibit
neuroprotective effects and modulate synaptic plasticity, making
S1R a potential target for AD treatment.

In the past decade, the “one disease–one target–one drug”
paradigm has dominated the approach to drug discovery.
However, this paradigm has certain limitations, and recent
advances in systems biology have shifted the focus from “single-
target drugs to “multi-target drugs” (Noor et al., 2023). When
treating a particular disease, it is not feasible to rely solely on a

single target to identify drugs. Instead, a range of targets within an
imbalanced pathway in the complex biological network must be
considered as inhibiting a single enzyme alone may lead to cancer
cells compensating by activating other enzymes (Ryskamp et al.,
2019; Fisher et al., 2015; Hassan et al., 2017). Zhi et al. utilized
network pharmacology and molecular docking to reveal
dihydroorotate dehydrogenase (DHODH) as a therapeutic target
for small-cell lung cancer. Subsequently, they constructed a
prediction model using graph neural networks (GNNs) and
traditional machine learning methods to screen for potential
DHODH inhibitors (Noor et al., 2023; Zhi et al., 2021). Cantini
et al. introduced a multi-network strategy by integrating multiple
genomic information layers, particularly gene co-expression and
protein–protein interactions, to identify cancer-related targets. They
employed consensus clustering algorithms in a predictive network,
revealing CD46, BTG2, ATF3, HDGF, and F11R as driver genes in
cancer (Noor et al., 2023; Cantini et al., 2015).

In drug repurposing, artificial intelligence (AI) plays an
important role. By analyzing data on existing drugs and diseases
using machine learning and deep learning methods, potential drugs
can be quickly and efficiently screened (Cheng and Cummings,
2022; Yin and Wong, 2021; Vatansever et al., 2021). In addition,
simulating the interactions between drugs and proteins can predict
drug activity and affinity, guiding drug repositioning research. In
recent years, researchers have successfully screened many promising
drugs using AI methods (Selvaraj et al., 2021; Malandraki-Miller and
Riley, 2021; Patel et al., 2020). These studies indicate that drug
repositioning has important clinical application prospects, and AI
methods can provide more powerful support for drug repositioning.

The affinity between drugs and targets is the basis for drug
action, and predicting the affinity between drugs and targets is an
important part of drug repurposing (Pushpakom et al., 2019; Parisi
et al., 2020). Traditional experimental methods have disadvantages
such as high cost and low efficiency, making it necessary to develop a
fast and accurate prediction method. In recent years, with the
development of deep learning technology, using neural networks
to predict the affinity between drugs and targets has gradually
become a research hotspot (Thomas et al., 2022; Choudhury
et al., 2022; Jiang et al., 2022; Wang and Dokholyan, 2022).
Neural networks are powerful computational tools with the
ability to deal with non-linear problems and have achieved some
success in predicting the affinity between drugs and targets.

In recent years, more and more researchers have begun to
explore the use of neural networks to construct computational
models for drug repositioning prediction to screen drugs for
treating AD (Chyr et al., 2022; Wu et al., 2022; Siavelis et al.,
2016). Some related studies have made some progress. For
example, Zhou et al. Fang et al. (2022) proposed an integrated
network-based AI method that can quickly translate genome-wide
association study findings and multi-omics data into genotype-
based therapeutic discoveries in AD, and identified pioglitazone
as a potential new method for treating AD using AI methods. Tsuji
et al. (2021) developed a deep learning-based computational
framework that can extract low-dimensional representations of
high-dimensional protein–protein interaction network data and
infer potential drug target genes using latent features and state-
of-the-art machine learning techniques. The study inferred that
tamoxifen, bosutinib, and dasatinib could serve as repositionable
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candidate compounds against the disease. Rodriguez et al. (2021)
proposed a machine learning framework, DRIAD (drug
repositioning in AD), which quantifies potential associations
between the pathological severity of AD and molecular
mechanisms encoded in a list of gene names, and identified a
ranked list of repositioning candidates for treating AD from
80 FDA-approved and clinically tested drugs.

Using AI methods for drug repurposing has become an
important approach in AD drug research, providing important
ideas and directions for new drug discovery. Although many
studies have used neural networks to predict drug–target affinity,
their application in the field of AD treatment is still relatively
limited. This study aims to use neural networks to predict
drug–target affinity and screen potential drugs for the treatment
of AD, providing new ideas and choices for AD treatment. At the
same time, we will compare and analyze different neural network
models to find the best prediction model.

In this paper, we propose HNNDTA, a hybrid neural network
for drug–target affinity prediction, thereby enabling drug
repurposing for the treatment of AD. As shown in Figure 1,
starting from the pathogenic target of AD, S1R, we conducted
protein–protein interaction (PPI) analysis, screened out proteins
related to S1R, and constructed a dataset based on inhibitors of S1R
and related proteins. Subsequently, we used the HNNDTAmodel to
train the dataset, combined with network pharmacology analysis to
screen FDA-approved drugs, and obtained a batch of candidate
drugs. Then, we use the molecular docking of candidate drugs with
S1R and its related proteins to find potential effective lead

compounds, and predict their pharmacokinetics and toxicity to
ensure the pharmacokinetics of these candidate drugs. The
academic characteristics meet the requirements. Through this
series of studies, we have obtained some lead compounds with
potential therapeutic effects, which provide new ideas and options
for the treatment of AD.

2 Materials and methods

2.1 Dataset

2.1.1 Target
STRING (Szklarczyk et al., 2023) is a database of known and

predicted PPIs. We used STRING to get the PPI network of S1R,
as shown in Figure 2A; we marked the correlation scores of
proteins related to S1R in the network, among which the scores of
dopamine D2 receptor (DRD2) and binding-immunoglobulin
protein (BIP) are highest, 0.983 and 0.990, respectively, so we
picked them as primary targets for network pharmacology
analysis. We obtained the sequences of S1R (Q99720), DRD2
(P14416), and BIP (P11021) from the UniProt repository
(Consortium, 2019). In addition, we obtained S1R (PDB ID:
5HK1) (Schmidt et al., 2016), DRD2 (6 PDB ID: LUQ) (Fan
et al., 2020), and BIP (PDB ID: 3LDN) (Macias et al., 2011) from
the RCSB Protein Data Bank (PDB) (Berman et al., 2000), which
are 2.51 Å, 3.10 Å, and 2.20 Å, respectively, and their structures
are shown in Figure 2A.

FIGURE 1
Flowchart of the overall process. In this paper, we started with the AD pathogenic target S1R and conducted PPI analysis to obtain S1R-related
proteins. Based on the inhibitors of S1R and related proteins, we constructed a dataset. Subsequently, we trained the dataset using the HNNDTA model.
Combining the prediction results of the HNNDTAmodel and network pharmacology analysis, we screened FDA-approved drugs and obtained candidate
drugs. Finally, we performed molecular docking on these candidate drugs, identified lead compounds with potential efficacy, and predicted their
ADMET properties.
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2.1.2 Inhibitors
The half-inhibitory concentration (IC50) refers to the

concentration of the drug or inhibitor required to inhibit half of
the specified biological process, and the inhibition constant Ki
reflects the inhibitory strength of the inhibitor on the target. The
smaller the value, the stronger the inhibitory ability. pIC50 is the
negative logarithm of the IC50 value, which is usually used to
characterize the activity of molecules in drug screening. The
formula for converting IC50 values to pIC50 values is

pIC50 � −log10 IC50( ). (1)
We obtained data on inhibitors of S1R, DRD2, and BIP and their

binding abilities to their targets from the ChEMBL database
(Gaulton et al., 2012). Although both IC50 and Ki can reflect the
activity of the inhibitor, for data consistency, we screened the
inhibitor data with IC50 as the subsequent drug–target affinity

(DTA) training data on the HNN. Similarly, under the premise
of ensuring the number of datasets, we screened the data whose
source description was scientific literature and excluded other data.
Figure 2B shows the simplified molecular input line entry system
(SMILES) length distribution and binding force distribution of the
three protein inhibitors. The inhibitor distribution of S1R and
DRD2 showed a Gaussian distribution trend, while the inhibitor
distribution of BIP was relatively sparse.

2.1.3 Molecules for drug repurposing
The drug screening library used in this study comes from FDA-

approved drugs in the DrugBank database (Wishart et al., 2008).
DrugBank is a comprehensive pharmaceutical knowledge bank that
provides pharmacists, pharmacologists, health professionals, and
drug researchers with free academic resources to help advance drug
development and clinical practice. We chose DrugBank as the

FIGURE 2
PPI network of S1R and related proteins, DRD2 and BIP, and the distribution of their inhibitor datasets. (A) The PPI network of S1R was obtained using
STRING, and the 3D structures of themost related proteins BIP andDRD2. (B)Distribution of SMILES string lengths andDTA values of the inhibitor datasets
for S1R, DRD2, and BIP.
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screening bank because it contains extensive drug information and a
list of FDA-approved drugs, which can be used to screen potential
drugs for the treatment of AD. These drugs have been proven to be
safe and effective treatments in human clinical trials, so they are
expected to be used in the treatment of AD. We selected FDA-
approved drugs in the DrugBank database as screening libraries, and
a total of 2509 drug molecules were available for drug repurposing
studies.

2.2 HNNDTA

2.2.1 Overview of the framework
The overview of the HNNDTA framework proposed in this

study is shown in Figure 3. First, we used a network pharmacology
approach to find other targets in the same pathway as the AD target
S1R, namely, DRD2 and BIP. We searched the ChEMBL website for
inhibitor data for these three targets. The target protein is encoded as
a one-dimensional target embedding, and the drug molecule is
encoded as a one-dimensional drug embedding. The two
encoding vectors are spliced in zero dimension, and after the
calculation of the deep neural network (DNN), the final DTA is
obtained, which can be expressed as follows:

DTA � DNN cat vp, vd( )[ ], (2)

where the function cat(a, b) represents the splicing operation of the
1D a and b vectors, and vp and vd represent the encoding vectors of
the target protein and the drug molecule, respectively. In this paper,
there are 13 kinds of target encoders and 9 kinds of drug encoders,
all of which are built by DeepPurpose (Huang et al., 2020). A suitable

combinedmodel will produce better prediction accuracy. During the
training phase, the dataset was randomly divided into independent
training, validation, and test sets in a ratio of 7:1:2. The training set
was used to train the model, while the validation and test sets were
used to evaluate its performance. Due to the nature of our HNNDTA
framework, which was trained on datasets specific to individual
targets, it exhibits higher predictive accuracy for single targets. We
have observed that models trained on single targets exhibit higher
accuracy than those trained on mixed-target datasets.

2.2.2 Drug encoding network
The drug encoder receives SMILES sequences as input. The

Morgan encoder first uses the ECFP (Rogers and Hahn, 2010)
algorithm to generate the feature representation sequence of the
circular substructure of the drug, with a length of 1,024 bits. Amulti-
layer perceptron (MLP) then processes the sequence of feature
representations to obtain a vector representation that can be fed
into a neural network. The Morgan encoder is expressed as follows:

fmorg SMILES( ) � MLP ECFP SMILES( )( ). (3)

Similar to the Morgan encoder, the daylight encoder also uses
the ECFP algorithm to generate a feature sequence based on the
channel substructure of the drug, which is used as the input of the
multi-layer perceptron to generate a feature sequence with a length
of 2048 bits. The daylight encoder is represented as follows:

fday SMILES( ) � MLP ECFP SMILES( )( ). (4)

The PubChem encoder (Kim et al., 2019) generates feature
sequences using handcrafted important substructures and then
generates a feature sequence with a length of 881 bits through a

FIGURE 3
HNNDTA network framework. The framework consists of drug encoding, target encoding, general encoding, and decoding networks. The encoding
networks are used to encode the SMILES of drugs and the sequences of proteins to obtain corresponding embeddings. Then, the embeddings are
decoded through DNNs to obtain the prediction results of DTA.
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multi-layer perceptron. The PubChem encoder is represented as
follows:

fpub SMILES( ) � MLP Substructure SMILES( )( ). (5)

The rdkit_2d_normalize encoder (Reczko and Bohr, 1994)
generates a feature sequence with a length of 200 bits according
to the global pharmacophore of the drug and then normalizes the
feature sequence by fitting the cumulative density function of a given
molecule sample. The rdkit_2d_normalize encoder is represented as
follows:

frdkit SMILES( ) � MLP Normalize Feature( )( )
Feature � GlobalPharmacophore SMILES( ). (6)

The extended reeb graph (ErG) method (Stiefl et al., 2006) mixes
the simplified graph and the binding attribute pair to generate a
feature sequence and uses the node description of the drug carrier
type to encode the relevant molecular properties; the encoded
features are obtained after the MLP calculation vector. The ErG
coder is expressed as follows:

ferg SMILES( ) � MLP Graph Feature( )( )
Feature � Scaffold − BasedNodeDescriptor SMILES( ). (7)

MLP obtains the output value through feedforward propagation
and updates the model parameters through reverse transmission so
that the model output value gradually approaches the real value. The
output of the MLP forward propagation is expressed as follows:

y � AC ∑Ml

i�1
ωi,l•AC ∑Ml−1

i�1
ωi,l−1• . . .( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (8)

where AC is the activation function and the typical activation
function is the modified linear unit ReLU; Ml is the number of
neurons in the lth layer network, ωi,l is the weight of the ith neuron
in the lth layer network; and the termination condition of (. . .) in
the aforementioned formula is the first layer of the neural network,
that is, the input layer. The reverse transfer uses the Adam optimizer
to update the model weights. The underlying algorithm is the
gradient descent method. The update on the weight of ωi,l can be
expressed as follows:

ωi,l ← ωi,l − η
zE

zωi,l
, (9)

where E is the difference between the predicted value and the real
value, zE

zωi,l
is the partial derivative of E to ωi,l, and η is the

learning rate.

2.2.3 Target encoding network
The input to a target encoder is the amino acid sequence of the

target. The signature sequence generated by the amino acid
composition (AAC) coder is 8420 positions in length, where each
position is consistent with the maximum length of overlapping
subsequences (k-mers) of one amino acid. The amino acid
composition coder is expressed as follows:

AACi � fi

L
, i � 1, 2, . . . , 20, (10)

where fi represents the number of occurrences of amino acid i in the
protein and L represents the length of the amino acid sequence. The

AAC encoder concatenates 20 AAC values for each position in the
amino acid sequence to obtain a signature sequence of
8420 elements in length.

The pseudo amino acid composition (PseAAC) encoder adds
the hydrophobic and hydrophilic pattern information on the
protein based on AAC to generate a 30-bit feature vector
representation. The pseudo-amino acid composition encoder is
expressed as follows:

PseAACi,j � ∑L
k�1fk,iwk,j∑L

k�1fk,i

,

i � 1, 2, . . . , 20; j � 1, 2, . . . , 30,

(11)

where fk,i represents the frequency of amino acid i in the kth position
in the protein sequence and wk,j represents the weight of the pattern
of the kth amino acid and the relative position j. The PseAAC
encoder concatenates 30 PseAAC values for each position in the
amino acid sequence, resulting in a feature vector of 30 elements in
length.

The conjoint triad (ConTriad) encoder (Shen et al., 2007) forms
a 7-letter alphabet based on amino acid triplet features, generating a
feature vector with a length of 343 elements. The ConTriad encoder
is expressed as follows:

ConTriadi �
∑7

j�1fj,iwj

L − 2
, i � 1, 2, . . . , 3430, (12)

where fj,i indicates that the three adjacent amino acids in the protein
sequence are converted into a number according to the 7-letter
alphabet, the ith element indicates the frequency of the jth triplet
appearing in the protein sequence, and wj is the weight of the jth
triplet. The ConTriad encoder concatenates 343 ConTriad values for
each position in the amino acid sequence, resulting in a feature
vector of 343 elements in length.

The quasi-sequential encoder consists of a 100-element feature
vector of quasi-sequential descriptors (Chou, 2000). The feature
vectors generated by the aforementioned manual feature encoder
will be further processed as input to MLP to obtain the feature vector
of the target. The quasi-sequential encoder is expressed as follows:

QuasiSeqi � ∑ j � 1( )Nρj
dij

, i � 1, 2, . . . , 100, (13)

where ρj represents the weight of the jth quasi-sequential
descriptor and dij is the distance between the ith amino acid
and the jth sequence descriptor. The quasi-sequential encoder
concatenates 100 QuasiSeq values for each position in the amino
acid sequence, resulting in a feature vector of 100 elements in
length.

2.2.4 General encoding network
The aforementioned drug and target feature extraction methods

are based on prior chemical knowledge and manual transformation,
so these encoders cannot be mixed. The encoders introduced in this
section are general-purpose encoders based on DNNs, including
convolutional neural networks (CNNs) (Krizhevsky et al., 2017),
gated recurrent units (GRUs) (Chung et al., 2014), long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997), and
transformers (Vaswani et al., 2017). These neural networks treat
amino acid sequences as one-dimensional data.
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The CNN encoder is a multilayer 1D CNN (Krizhevsky et al.,
2017). After encoding the amino acid sequence character by
character, the obtained deep feature vector will pass through
multiple 1D convolutional layers and finally pass through the
one-dimensional maximum pooling layer to obtain the output of
the target feature vector. The output of the 1D convolutional layer is
the result of convolving the input with the convolution kernel, which
can be expressed as follows:

out � input ⊗ kernel, (14)
where ⊗ represents a convolution operation. Assuming that the
convolution kernel size is 2k + 1, k ∈ N+, the ith convolution output
can be expressed as follows:

outi � ∑i+k
j�i−k

∑2k+1
a�1

inputj•kernela. (15)

GRU and LSTM encoders are types of recurrent neural
networks. In both networks, each node will get an output
based on the state at the last moment and the current input
and update the state of the node. This can solve the problem of
traditional convolutional networks without long-term memory
to a certain extent. Specifically, the SMILES sequence or amino
acid sequence will first pass through the CNN for feature
extraction and then use the output of the CNN as the input of
the recurrent network.

The transformer encoder applies a self-attention mechanism
(Vaswani et al., 2017). Due to the computational time and
memory cost of the transformer, amino acid sequences are
decomposed into moderately sized protein substructures, such
as motifs, and each segmentation is then treated as a token and
fed into a self-attention-based encoder. If a SMILES sequence or
amino acid sequence is treated as a sentence, cut into several
meaningful phrases, and encoded into several vectors with the
same number of phrases, denoted as x, then the output of the
transformer can be expressed as

x1 � norm x + attn x, mask( )( ),
out � norm x1 + feedforward x1( )( ), (16)

where attn is a self-attention function,mask is a Boolean value about
whether the input x is eliminated, feedforward is a feedforward
neural network, and norm is a layer normalization operation.

2.2.5 Evaluation metrics
In mathematical statistics, mean-squared error (MSE) is a

method used to measure the difference between the predicted
and real values. It calculates the mean of the squared difference
between predicted and true values, which is the expected value of the
squared difference between predicted and true values. The smaller
the value of the MSE, the higher the prediction accuracy of the
prediction model. Assuming there are n samples, MSE can be
expressed by the following formula:

MSE � 1
n
∑n
i�1

yi − ŷi( )2, (17)

where yi and ŷi are the true and estimated values of the ith sample,
respectively. In this paper, the MSE is used to evaluate the accuracy
of the model to predict the binding affinity of the drug to the target.

Harrell’s C-index (also known as the concordance index, CI)
is a widely used metric for evaluating the performance of risk
models. It is commonly employed in survival analysis, especially
when dealing with censored data (Harrell et al., 1982). The
C-index measures the degree of concordance between
predicted and observed rankings of survival times. It serves as
an indicator of the model’s accuracy with values closer to 1,
indicating a higher level of consistency between the predicted
outcomes and the actual observed outcomes.

Suppose the data are represented by vectors
(T̃i,Δi, Xi1, . . . , Xip), i � 1, . . . , n, where T̃i is a possibly right-
censored continuous survival time and (Xi1, . . . , Xip)T is a vector of
predictor variables. It is assumed that T̃i is the minimum of the true
survival time Ti and an independent continuous censoring time Ci.
The variable Δi≔I(Ti < = Ci) indicates whether Ti has been fully
observed (Δi = 1) or not (Δi = 0). A one-dimensional score ηi ∈ R is
estimated for each observation i = 1, . . ., n, by averaging the
cumulative hazard estimates over all trees and all time points.
The concordance index is given by

C � ∑i,jI T̃i > T̃j( ) · I ηj > ηi( ) · Δj∑i,jI T̃i > T̃j( ) · Δj

, (18)

where the indices i and j refer to pairs of observations in the sample
(Schmid et al., 2016).

2.3 Network pharmacology

Network pharmacology (NP) (Hopkins, 2008) is a new drug
development method based on systems biology. It reveals the
multi-target action mechanism of drugs by integrating protein
interaction and drug compound networks. To construct a
network pharmacology-based analysis, we mapped
protein–protein and protein–drug interaction networks (Hasan
et al., 2020). We fetch the PPI network from the STRING
database and select the protein most related to the target we
need to study. We then used the HNNDTA model to predict the
binding forces between these proteins and compounds. To
identify the best compounds, we picked the top 20 most
binding proteins for each protein and mapped them into a
protein–compound network. We use Sankey diagrams (Lee
et al., 2019) to visualize drug–protein interaction networks to
better understand and analyze the mechanism of action of drugs
in biological systems. In this network, we can identify which
compounds may be the most promising drug candidates by
analyzing the interactions between proteins and compounds.
In particular, for those compounds that bind strongly to
multiple proteins, we can select them as our drug candidates.

2.4 Molecular docking

In molecular docking tasks, AutoDock Vina (Eberhardt et al.,
2021) is one of the widely used docking engines in AutoDock Suite,
and its open-source code and fast docking speed are favored. We use
AutoDock Vina 1.1.2 for molecular docking experiments. First, we
obtained the 3D molecular structure files of all receptor molecules
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and processed them to remove crystal water and hydrogenate them
to generate preprocessed receptors. Next, we first removed the
crystal water and the original ligand, then added hydrogen and
charge distribution, and manually set the active site area of the
receptor as the grid box according to the feature information on the
protein in UniProt. For the ligand file, we obtained its structure from
PubChem (Kim et al., 2019) and then performed hydrogenation and
charge addition to obtain the preprocessed ligand file. Then, we used
AutoDock Vina for docking; exhaustiveness is set to 32; a total of
10 docking poses are generated; the top 5 best poses are kept, and
finally, the binding energy value (in k/mol) of the best pose is used as
the docking score. The results of molecular docking were output in
pdbqt format and visualized and analyzed using PyMOL molecular
visualization software. The docking results are evaluated by factors
such as hydrogen bonds, van der Waals forces, and electron static
energy.

3 Results

3.1 Performance evaluation

The HNNDTA framework was constructed using 13 drug
encoders and 9 target encoders. We fixed the target encoder as
AAC and constructed 13 different drug encoder models. The MSE
and CI of the test models are shown in Figures 4A, B. The orange
column is the test result of the ligand dataset of the S1R protein, and
the sky blue column is the test result of the ligand dataset of the
DRD2 protein. The smaller the MSE and the larger the CI, the
smaller the difference between the predicted results of the model and
the real results, and the higher the accuracy of the model. In the
figure, the MSE value of the Morgan encoder is the smallest and the
CI value is the largest, indicating that the Morgan encoder will make
the model perform better, and the Morgan encoder should be

FIGURE 4
Performance comparison of drugs and encoders. (A, B) Comparison of MSE and CI of drug encoders. (C, D) Comparison of MSE and CI of target
encoders.
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considered in the subsequent grid search for the best drug
encoder–target encoder combination. We fixed the drug encoder
as Morgan, constructed nine models with different target encoders,
and compared the MSE and CI of the test models, as shown in
Figures 4C, D. The MSE values of each encoder are basically at the
same level because there is only a very small amount of target data in
the dataset, and the difference in information provided by the target
is less.

We have a total of 117 models of 13 drug encoders and 9 target
encoders, and conduct a grid search on the ligand datasets of the
three targets of S1R, DRD2, and BIP to find the best models. After
testing, there are eight models with both MSE and CI in the top 10,
as shown in Figure 5; Table 1. Among them, theMorgan encoder has

the best encoding effect on drugs, and the transformer and
PseudoAAC encoders have better encoding effects on protein
targets. Overall, the performance of these eight models is
comparable and complements each other. In the next step of
screening candidate drugs, the average of the votes predicted by
the eight models is taken as the drug–target interaction score.

3.2 Virtual screening of HNNDTA and
network pharmacology

In this study, 2506 FDA-approved drugs were used as drug
candidates for the AD target protein S1R and other targets of the

FIGURE 5
Fit plot of the best-performing model.
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same pathway, DRD2 and BIP. For S1R and DRD2, the respective
models were trained using ligand datasets obtained from the
ChEMBL website. For BIP, due to the lack of ligand data on BIP
on the ChEMBL website, it is not enough to train a good model. We
can pre-train the model with a large amount of ligand data for the
same pathway target of S1R and then fine-tune the model with the
ligand data on BIP itself.

The HNNDTA model was used to predict the activities of FDA-
approved drugs and targets S1R, DRD2, and BIP, and the 20 drugs

with the highest binding activities to these three targets are shown in
Figure 6A. On the left side of the Sankey diagram are the three target
proteins, and on the right side are the 20 drugs with the highest
binding activity to these three targets. At the intersection, there are a
total of 40 drugs. The prediction results show that most drugs can
only have high activity with one or two targets, while the seven drugs
DB13928, DB06287, DB00626, DB09265, DB00502, DB12401, and
DB01369 have high binding activity with three targets, indicating
that they can simultaneously inhibit these three AD-related targets.
Therefore, these seven drugs can be used as alternative drugs for the
treatment of AD. The DTA values of the aforementioned seven
candidate drugs and S1R, DRD2, and BIP are shown in Figure 6B.
The DTA values of these seven drugs and three targets stand out
among more than 2,000 FDA drugs. The two drugs, DB00502 and
DB12401, have the highest combined affinity for the three targets
and are expected to become candidate drugs for the treatment
of AD.

3.3 Benchmark testing

To assess the accuracy of the model predictions and validate the
efficacy of the drugs identified through network pharmacology
(i.e., haloperidol and bromperidol), benchmark testing was
conducted. Known high-affinity ligands for S1R, DRD2, and BIP

TABLE 1 Best-performing model.

Drug encoder Target encoder MSE CI

Morgan Transformer 0.332 0.816

Morgan PseudoAAC 0.335 0.822

Morgan LSTM 0.353 0.818

Morgan Conjoint_triad 0.353 0.813

Morgan AAC 0.356 0.817

Morgan CNN 0.363 0.811

Morgan GRU 0.366 0.814

Morgan ESPF 0.383 0.815

FIGURE 6
Sankey diagram of the DTI network for the top 20 drugs with the highest affinity to S1R, DRD2, BIP, and DTA heatmaps of the candidates. (A) Sankey
diagram of the drug–target interaction network is shown, with the sky-blue nodes indicating the selected candidates. (B) Binding affinity heatmap of the
candidates with S1R, DRD2, and BIP. Red represents the highest DTA value, while gray represents the lowest DTA value. Both DB12041 and
DB00502 exhibit high affinity to S1R and DRD2.
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were collected from the ChEMBL and BindingDB databases for
validating the docked scores of the screened drugs as being higher
than or comparable to the known high-affinity ligands. Conversely,
known low-affinity ligands were gathered to demonstrate that the
docked scores of the screened drugs are superior to them. The
information on known ligands and their affinities is presented in
Table 2.

First, the HNNDTA model was utilized to predict the binding
affinities (pIC50) of the collected ligands to the three targets. The
prediction results are shown in Table 3, where the green boxes and
red boxes represent known high- and low-affinity drug–target pairs,
respectively. Overall, the predicted affinities in the green boxes are
higher than those in the red boxes, indicating that our model can
accurately differentiate between high and low affinities among
drug–target pairs. Subsequently, blind docking of ligand–protein
was performed using QuickVina-W software (Hassan et al., 2017),
and the docking scores are presented in Table 4. Lower docking
scores indicate smaller binding energies and higher binding affinity.
The docking scores in the green boxes are generally lower than those
in the red boxes, suggesting the effectiveness of the docking
procedure.

Our screened drugs, haloperidol and bromperidol, exhibit lower
overall docking scores with the three targets compared to most other
drugs. Furthermore, the docking scores of the screened drugs are
comparable to those of known high-affinity ligands and significantly
lower than those of known low-affinity ligands. This indicates that
the HNNDTA model successfully identified high-affinity drugs
suitable for multiple targets. It is worth noting that Table 4
shows that the drug pimozide has the best multi-target docking
score. However, molecular docking requires manual preprocessing
of 3D structures and is computationally time-consuming, making it
difficult to apply to high-throughput drug target screening in
network pharmacology. The HNNDTA model can expedite this
process and successfully screen multi-target high-affinity drugs,
even if it may represent a suboptimal solution.

TABLE 2 Collected known drug–target pairs with high and low binding
affinities.

Target Inhibitor Affinity Type

S1R Haloperidol 8.54 Ki

S1R Donepezil 7.84 Ki

S1R Fluvoxamine 7.44 Ki

S1R Corticosterone 4.45 Ki

S1R Cocaine 5.05 Ki

DRD2 Haloperidol 8.76 Ki

DRD2 Pimozide 7.93 Ki

DRD2 Amisulpride 7.90 Ki

DRD2 Procaterol 4.07 Ki

DRD2 Isoproterenol 4.32 Ki

BIP CHEMBL462871 7.22 Kd

BIP CHEMBL516197 4.85 Kd
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3.4 Virtual screening of molecular docking

Small molecules have smaller molecular weights, which favor better
pharmacokinetics and less toxicity. The molecular weight of antibiotics
is large, and the metabolic process affects the drug’s efficacy. Small
molecules have good medicinal properties, such as high bioavailability,
good tissue specificity, and low toxicity and side effects, and are suitable
for drug research and development. Therefore, we only choose small
molecules with a weight of less than 500 as lead compounds. In
AutoDock Vina docking, we use the binding energy value of the
best pose as the docking score and tabulate the results in Table 5.
The molecules of DB09265 and DB13928 are very large, beyond the
active site region of the receptor, causing errors in Vina, which indicates
that the binding between the two ligands and the receptor is difficult.
Since Vina uses binding energy as a docking score, a smaller score
indicates tighter binding between the two molecules, which generally
indicates better docking. However, when the score is positive, it means
that docking is difficult to produce. Both of these conditions can
indicate a docking failure. Table 5 shows that although the ligands
DB01369 and DB06287 have good docking effects on DRD2 and BIP
receptors, they are difficult to bind to S1R receptors. Ligands DB00502
(bromperidol) and DB12401 (haloperidol) have good binding abilities
to the three receptors, and themolecular weight is less than 500,meeting
the screening requirements, so they may become potential drugs
for AD.

3.5 Explanatory analysis of DTA

Figure 7 shows the 2D chemical structures of haloperidol and
bromperidol, and the 2D poses resulting from docking with the target
S1R. As shown in Figure 7A, their chemical structures are very similar,
differing only by one halogen atom: haloperidol with a Cl atom and
bromperidol with a Br atom. They are both high-affinity ligands for S1R,
with only slight differences. This may be caused by the different
interaction distances between the halogen atoms in the bromperidol
molecule and the six amino acids of S1R. As shown in Figure 7B, both
drugs produced hydrogen bondswith SER34, SER99, and LEU100 amino
acids of S1R, and produced π − π interactions with TRP29, HIS72,
LEU214, and TYR217 amino acids of S1R. The two molecules stabilize
the association between them through their interaction with S1R.

In order to further observe the docking poses of haloperidol and
bromperidol with S1R, we also plotted the 3D docking simulation
results, as shown in Figure 8. Both haloperidol and bromperidol
dock at the S1R surface and interact with surrounding S1R amino
acids. As shown in Figures 8A, B, the docking poses of haloperidol
and bromperidol are very close to S1R, which is related to their
similar chemical structures. They jointly participate in the stable
combination with S1R and produce more interactions.

To evaluate the ADMET, of haloperidol and bromperidol, we
evaluated them using the ADMETlab 2.0 tool (Xiong et al., 2021), as
shown in Figure 9. The evaluation results of haloperidol and bromperidol
are roughly similar, except for logD and logP, and their compound
properties are distributed between the upper and lower limits. This shows
that haloperidol and bromperidol have better pharmacokinetic
conditions and almost no toxicity. Haloperidol is an antipsychotic
drug used to treat schizophrenia and other psychotic disorders, as
well as symptoms of agitation, irritability, and delirium. BromperidolTA
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is used to treat schizophrenia and other psychotic symptoms and has
been used in trials investigating the treatment of dementia, depression,
schizophrenia, anxiety disorders, and psychosomatic disorders, among
others. It further illustrates the accuracy of our HNNDTA screening by
finding a trial that is already in the treatment of AD and, at the same time,
screening a new potential drug for the treatment of AD.

4 Discussion

Alzheimer’s disease is a significant age-related illness that has
garnered widespread attention in society. In this article, we propose
a drug-screening framework that combines network pharmacology

and hybrid neural networks to discover potential drugs for treating
Alzheimer’s disease. Existing evidence supports S1R as a potential
therapeutic target for Alzheimer’s disease. Initially, we conducted
protein–protein interaction analysis using the STRING database to
identify the most relevant targets associated with S1R, including
DRD2 and BIP. These targets were then utilized in network
pharmacology for drug screening. We developed a hybrid neural
network framework to predict the binding affinity between targets
and ligands, enabling the prediction of multi-target interactions for
drug candidates. Benchmark testing was performed using a
collection of known ligands with high and low affinity,
demonstrating our model’s ability to differentiate between high-
and low-affinity ligands. Furthermore, our model identified two

TABLE 5 Overview of candidate compounds and their docking scores with S1R, DRD2, and BIP proteins. The docking scores were calculated using the molecular
docking software application AutoDock Vina, with higher scores indicating stronger interactions.

DrugBank ID Generic name Summary Docking score

S1R DRD2 BIP

DB00502 Haloperidol Antipsychotic −8.856 −7.265 −8.585

DB00626 Bacitracin Antibiotic −7.979 −6.412 −6.35

DB01369 Quinupristin Antibiotic - −9.455 −9.689

DB06287 Temsirolimus Antineoplastic - −9.674 −9.858

DB09265 Lixisenatide GLP-1 receptor agonist - - -

DB12401 Bromperidol Antipsychotic −8.516 −7.031 −8.245

DB13928 Semaglutide Peptide 1 receptor agonist - - -

The bold values indicate the docking scores of the top two drugs with the highest docking scores for a specific target.

FIGURE 7
2D chemical structures of haloperidol and bromperidol and their 2D poses generated by docking with the target S1R. In the 2D chemical structures
(A) and 2D docking poses (B), the chemical structures of haloperidol and bromperidol are shown on the upper part and their 2D poses generated by
docking with S1R are shown on the lower part. Although their chemical structures are very similar, their affinities to S1R differ when binding to it. This may
be due to the different interaction distances between the halogen atoms in the bromperidol molecule and the six amino acids of S1R.
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drugs, haloperidol and bromperidol, with overall higher docking
scores than other drugs, thereby validating the effectiveness of our
proposed framework.

In PPI analysis, our results indicated that BIP and DRD2 have a
higher combined score than other proteins related to S1R. A substantial
body of evidence suggests that S1R, in combination with BIP, a

FIGURE 8
Simulation results of 3D docking of haloperidol and bromperidol with the target S1R. Through docking simulation, we demonstrated the surface and
3D docking poses of haloperidol (A) and bromperidol (B)with S1R. In the 3D docking poses, green represents hydrogen bonding and pink represents π − π
interactions. The two molecules stabilize their binding through interactions with S1R.

FIGURE 9
Results of the ADMET evaluation of haloperidol and bromperidol by the ADMETlab 2.0 tool. The evaluation results of haloperidol (A) and bromperidol
(B) are generally similar, with compound properties distributed between the upper and lower limits, except for logD and logP.
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regulator of endoplasmic reticulum stress (ERS), plays a pivotal role in
the ERS pathway, which is a component of cellular stress and a core
mechanism underlying synaptic loss and neurodegeneration in AD
pathology (Ortega-Roldan et al., 2013; Venkataraman et al., 2022).
S1R-dependent neuroprotection is likely to be mediated by the
regulation of the unfolded protein response (UPR) in ERS (Voronin
et al., 2023). Under ERS conditions, S1R agonists promote the
dissociation of S1R-BIP calcium ion-sensitive chaperone complexes,
resulting in enhanced chaperone activity of BIP toward misfolded
proteins and S1R binding to client protein IRE1α. The regulatory effect
of S1R agonists can increase the expression of BIP and brain-derived
neurotrophic factor (BDNF) and decrease the expression of pro-
inflammatory interleukin-6 (IL-6) (Hayashi and Su, 2007; Rosen
et al., 2019; Zhemkov et al., 2021). Thus, S1R agonist regulation
presents a viable strategy for the neuroprotective treatment of AD,
aimed at reducing ERS and neuroinflammation while enhancing
neural plasticity (Voronin et al., 2023).

It should be noted that the HNNDTAmodel does not differentiate
between ligands as agonists or antagonists of the targets. Unfortunately,
the existing literature reports that haloperidol is an antagonist of S1R
(Maurice and Su, 2009), while S1R agonists are potential drugs for
treating AD. Therefore, haloperidol is not suitable for the treatment of
AD. On the other hand, bromperidol, which was selected by the
HNNDTA model, may be the optimal candidate drug for AD
treatment. The existing literature has discussed the potential of
antipsychotic drugs, including bromperidol, on multiple targets
related to AD (Kumar et al., 2017).

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

CY-C designed the research. XW, GC, ZL, and YY worked
together to complete the experiment. XW and ZL contributed to
analytic tools. GC and YY analyzed the data. XW, GC, ZL, YY, and
CY-C wrote the manuscript together. All authors contributed to the
article and approved the submitted version.

Funding

This work was supported by the National Natural Science
Foundation of China (grant No. 62176272), the Research and
Development Program of Guangzhou Science and Technology
Bureau (No. 2023B01J1016), the Key-Area Research and
Development Program of Guangdong Province (No.
2020B1111100001), and China Medical University Hospital
(DMR-112-085).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Barazzuol, L., Giamogante, F., and Calì, T. (2021). Mitochondria associated
membranes (MAMs): Architecture and physiopathological role. Cell Calcium 94,
102343. doi:10.1016/j.ceca.2020.102343

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al.
(2000). The protein data bank. Nucleic acids Res. 28, 235–242. doi:10.1093/nar/28.1.235

Briggs, R., Kennelly, S. P., and O’Neill, D. (2016). Drug treatments in alzheimer’s
disease. Clin. Med. 16, 247–253. doi:10.7861/clinmedicine.16-3-247

Cantini, L., Medico, E., Fortunato, S., and Caselle, M. (2015). Detection of gene communities
in multi-networks reveals cancer drivers. Sci. Rep. 5, 17386. doi:10.1038/srep17386

Cheng, F., and Cummings, J. (2022). “Artificial intelligence in Alzheimer's drug
Discovery,” in Alzheimer's disease drug development: research and development
ecosystem. Editors H. Fillit, J. Kinney, and J. Cummings (Cambridge: Cambridge
University Press), 62–72. doi:10.1017/9781108975759.007

Chou, K.-C. (2000). Prediction of protein subcellular locations by incorporating
quasi-sequence-order effect. Biochem. biophysical Res. Commun. 278, 477–483. doi:10.
1006/bbrc.2000.3815

Choudhury, C., Murugan, N. A., and Priyakumar, U. D. (2022). Structure-based drug
repurposing: Traditional and advanced ai/ml-aided methods. Drug Discov. Today 27,
1847–1861. doi:10.1016/j.drudis.2022.03.006

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:
1412.3555

Chyr, J., Gong, H., and Zhou, X. (2022). Dota: Deep learning optimal transport
approach to advance drug repositioning for alzheimer’s disease. Biomolecules 12, 196.
doi:10.3390/biom12020196

Consortium, U. (2019). Uniprot: A worldwide hub of protein knowledge. Nucleic
acids Res. 47, D506–D515. doi:10.1093/nar/gky1049

Eberhardt, J., Santos-Martins, D., Tillack, A. F., and Forli, S. (2021). Autodock vina
1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf.
Model. 61, 3891–3898. doi:10.1021/acs.jcim.1c00203

Fan, L., Tan, L., Chen, Z., Qi, J., Nie, F., Luo, Z., et al. (2020). Haloperidol bound
d2 dopamine receptor structure inspired the discovery of subtype selective ligands. Nat.
Commun. 11, 1074. doi:10.1038/s41467-020-14884-y

Fang, J., Zhang, P., Wang, Q., Chiang, C.-W., Zhou, Y., Hou, Y., et al. (2022).
Artificial intelligence framework identifies candidate targets for drug repurposing
in alzheimer’s disease. Alzheimer’s Res. Ther. 14, 7–23. doi:10.1186/s13195-021-
00951-z

Fisher, A., Bezprozvanny, I., Wu, L., Ryskamp, D. A., Bar-Ner, N., Natan, N., et al.
(2015). AF710B, a novel M1/σ1 agonist with therapeutic efficacy in animal models of
alzheimer’s disease. Neurodegener. Dis. 16, 95–110. doi:10.1159/000440864

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., et al.
(2012). Chembl: A large-scale bioactivity database for drug discovery. Nucleic acids Res.
40, D1100–D1107. doi:10.1093/nar/gkr777

Harrell, F. E., Jr, Califf, R. M., Pryor, D. B., Lee, K. L., and Rosati, R. A. (1982).
Evaluating the yield of medical tests. JAMA 247, 2543–2546. doi:10.1001/jama.1982.
03320430047030

Hasan, M. R., Paul, B. K., Ahmed, K., and Bhuyian, T. (2020). Design protein-protein
interaction network and protein-drug interaction network for common cancer diseases:
A bioinformatics approach. Inf. Med. Unlocked 18, 100311. doi:10.1016/j.imu.2020.
100311

Frontiers in Molecular Biosciences frontiersin.org15

Wu et al. 10.3389/fmolb.2023.1227371

https://doi.org/10.1016/j.ceca.2020.102343
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.7861/clinmedicine.16-3-247
https://doi.org/10.1038/srep17386
https://doi.org/10.1017/9781108975759.007
https://doi.org/10.1006/bbrc.2000.3815
https://doi.org/10.1006/bbrc.2000.3815
https://doi.org/10.1016/j.drudis.2022.03.006
https://doi.org/10.3390/biom12020196
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1021/acs.jcim.1c00203
https://doi.org/10.1038/s41467-020-14884-y
https://doi.org/10.1186/s13195-021-00951-z
https://doi.org/10.1186/s13195-021-00951-z
https://doi.org/10.1159/000440864
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1016/j.imu.2020.100311
https://doi.org/10.1016/j.imu.2020.100311
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1227371


Hassan, N.M., Alhossary, A. A., Mu, Y., and Kwoh, C.-K. (2017). Protein-ligand blind
docking using QuickVina-W with inter-process spatio-temporal integration. Sci. Rep. 7,
15451. doi:10.1038/s41598-017-15571-7

Hayashi, T., and Su, T.-P. (2007). Sigma-1 receptor chaperones at the er-
mitochondrion interface regulate ca2+ signaling and cell survival. Cell 131, 596–610.
doi:10.1016/j.cell.2007.08.036

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi:10.1162/neco.1997.9.8.1735

Hopkins, A. L. (2008). Network pharmacology: The next paradigm in drug discovery.
Nat. Chem. Biol. 4, 682–690. doi:10.1038/nchembio.118

Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C., and Sun, J. (2020). Deeppurpose:
A deep learning library for drug–target interaction prediction. Bioinformatics 36,
5545–5547. doi:10.1093/bioinformatics/btaa1005

Hung, S.-Y., and Fu, W.-M. (2017). Drug candidates in clinical trials for alzheimer’s
disease. J. Biomed. Sci. 24, 47–12. doi:10.1186/s12929-017-0355-7

Ihara, M., and Saito, S. (2020). Drug repositioning for alzheimer’s disease:
Finding hidden clues in old drugs. J. Alzheimer’s Dis. 74, 1013–1028. doi:10.
3233/JAD-200049

Jiang, H., Wang, J., Cong, W., Huang, Y., Ramezani, M., Sarma, A., et al. (2022).
Predicting protein–ligand docking structure with graph neural network. J. Chem. Inf.
Model. 62, 2923–2932. doi:10.1021/acs.jcim.2c00127

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2019). Pubchem
2019 update: Improved access to chemical data. Nucleic acids Res. 47, D1102-–D1109.
doi:10.1093/nar/gky1033

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with
deep convolutional neural networks. Commun. ACM 60, 84–90. doi:10.1145/3065386

Kumar, S., Chowdhury, S., and Kumar, S. (2017). In silico repurposing of
antipsychotic drugs for Alzheimer’s disease. BMC Neurosci. 18, 76. doi:10.1186/
s12868-017-0394-8

Leal, N. S., and Martins, L. M. (2021). Mind the gap: Mitochondria and the
endoplasmic reticulum in neurodegenerative diseases. Biomedicines 9, 227. doi:10.
3390/biomedicines9020227

Lee, W.-Y., Lee, C.-Y., Kim, Y.-S., and Kim, C.-E. (2019). The methodological trends
of traditional herbal medicine employing network pharmacology. Biomolecules 9, 362.
doi:10.3390/biom9080362

Macias, A. T., Williamson, D. S., Allen, N., Borgognoni, J., Clay, A., Daniels, Z., et al.
(2011). Adenosine-derived inhibitors of 78 kda glucose regulated protein (grp78)
atpase: Insights into isoform selectivity. J. Med. Chem. 54, 4034–4041. doi:10.1021/
jm101625x

Malandraki-Miller, S., and Riley, P. R. (2021). Use of artificial intelligence to enhance
phenotypic drug discovery. Drug Discov. Today 26, 887–901. doi:10.1016/j.drudis.2021.
01.013

Maurice, T., and Su, T.-P. (2009). The pharmacology of sigma-1 receptors.
Pharmacol. Ther. 124, 195–206. doi:10.1016/j.pharmthera.2009.07.001

Noor, F., Asif, M., Ashfaq, U. A., Qasim, M., and Tahir ul Qamar, M. (2023). Machine
learning for synergistic network pharmacology: A comprehensive overview. Briefings
Bioinforma. 24, bbad120. doi:10.1093/bib/bbad120

Ortega-Roldan, J. L., Ossa, F., and Schnell, J. R. (2013). Characterization of the human
sigma-1 receptor chaperone domain structure and binding immunoglobulin protein
(bip) interactions. J. Biol. Chem. 288, 21448–21457. doi:10.1074/jbc.M113.450379

Padhi, D., and Govindaraju, T. (2022). Mechanistic insights for drug repurposing and
the design of hybrid drugs for alzheimer’s disease. J. Med. Chem. 65, 7088–7105. doi:10.
1021/acs.jmedchem.2c00335

Parisi, D., Adasme, M. F., Sveshnikova, A., Bolz, S. N., Moreau, Y., and Schroeder, M.
(2020). Drug repositioning or target repositioning: A structural perspective of drug-
target-indication relationship for available repurposed drugs. Comput. Struct.
Biotechnol. J. 18, 1043–1055. doi:10.1016/j.csbj.2020.04.004

Patel, L., Shukla, T., Huang, X., Ussery, D. W., and Wang, S. (2020). Machine
learning methods in drug discovery. Molecules 25, 5277. doi:10.3390/
molecules25225277

Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., et al. (2019).
Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov.
18, 41–58. doi:10.1038/nrd.2018.168

Reczko, M., and Bohr, H. (1994). The def data base of sequence based protein fold
class predictions. Nucleic acids Res. 22, 3616–3619.

Rodriguez, S., Hug, C., Todorov, P., Moret, N., Boswell, S. A., Evans, K., et al. (2021).
Machine learning identifies candidates for drug repurposing in alzheimer’s disease.Nat.
Commun. 12, 1033. doi:10.1038/s41467-021-21330-0

Rogers, D., and Hahn, M. (2010). Extended-connectivity fingerprints. J. Chem. Inf.
Model. 50, 742–754. doi:10.1021/ci100050t

Rosen, D. A., Seki, S. M., Fernández-Castañeda, A., Beiter, R. M., Eccles, J. D.,
Woodfolk, J. A., et al. (2019). Modulation of the sigma-1 receptor–ire1 pathway is
beneficial in preclinical models of inflammation and sepsis. Sci. Transl. Med. 11,
eaau5266. doi:10.1126/scitranslmed.aau5266

Ryskamp, D., Wu, L., Wu, J., Kim, D., Rammes, G., Geva, M., et al. (2019). Pridopidine
stabilizes mushroom spines in mouse models of Alzheimer’s disease by acting on the
sigma-1 receptor. Neurobiol. Dis. 124, 489–504. doi:10.1016/j.nbd.2018.12.022

Schmid, M., Wright, M., and Ziegler, A. (2016). On the use of Harrell’s C for clinical
risk prediction via random survival forests. Nature Publishing Group. ArXiv:
1507.03092 [stat].

Schmidt, H. R., Zheng, S., Gurpinar, E., Koehl, A., Manglik, A., and Kruse, A. C.
(2016). Crystal structure of the human σ1 receptor. Nature 532, 527–530. doi:10.1038/
nature17391

Selvaraj, C., Chandra, I., Singh, S. K., and Abhirami, R. (2021). Artificial
intelligence and machine learning approaches for drug design: Challenges and
opportunities for the pharmaceutical industries. Mol. Divers. 126, 1–38. doi:10.
1016/bs.apcsb.2021.02.001

Shen, J., Zhang, J., Luo, X., Zhu, W., Yu, K., Chen, K., et al. (2007). Predicting
protein–protein interactions based only on sequences information. Proc. Natl. Acad. Sci.
104, 4337–4341. doi:10.1073/pnas.0607879104

Siavelis, J. C., Bourdakou, M. M., Athanasiadis, E. I., Spyrou, G. M., and Nikita, K. S.
(2016). Bioinformatics methods in drug repurposing for alzheimer’s disease. Briefings
Bioinforma. 17, 322–335. doi:10.1093/bib/bbv048

Srivastava, S., Ahmad, R., and Khare, S. K. (2021). Alzheimer’s disease and its
treatment by different approaches: A review. Eur. J. Med. Chem. 216, 113320. doi:10.
1016/j.ejmech.2021.113320

Stiefl, N., Watson, I. A., Baumann, K., and Zaliani, A. (2006). Erg: 2d pharmacophore
descriptions for scaffold hopping. J. Chem. Inf. Model. 46, 208–220. doi:10.1021/
ci050457y

Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., et al.
(2023). The string database in 2023: Protein–protein association networks and
functional enrichment analyses for any sequenced genome of interest. Nucleic Acids
Res. 51, D638–D646. doi:10.1093/nar/gkac1000

Thomas, S., Abraham, A., Baldwin, J., Piplani, S., and Petrovsky, N. (2022). Artificial
intelligence in vaccine and drug design. Vaccine Des. Methods Protoc. 1, 131–146.
doi:10.1007/978-1-0716-1884-4_6

Tsuji, S., Hase, T., Yachie-Kinoshita, A., Nishino, T., Ghosh, S., Kikuchi, M., et al.
(2021). Artificial intelligence-based computational framework for drug-target
prioritization and inference of novel repositionable drugs for alzheimer’s disease.
Alzheimer’s Res. Ther. 13, 92–15. doi:10.1186/s13195-021-00826-3

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. arXiv. doi:10.48550/arXiv.1706.03762

Vatansever, S., Schlessinger, A., Wacker, D., Kaniskan, H. Ü., Jin, J., Zhou, M.-M.,
et al. (2021). Artificial intelligence and machine learning-aided drug discovery in central
nervous system diseases: State-of-the-arts and future directions. Med. Res. Rev. 41,
1427–1473. doi:10.1002/med.21764

Venkataraman, A. V., Mansur, A., Rizzo, G., Bishop, C., Lewis, Y., Kocagoncu, E.,
et al. (2022). Widespread cell stress and mitochondrial dysfunction occur in patients
with early alzheimer’s disease. Sci. Transl. Med. 14, eabk1051. doi:10.1126/scitranslmed.
abk1051

Voronin, M. V., Abramova, E. V., Verbovaya, E. R., Vakhitova, Y. V., and
Seredenin, S. B. (2023). Chaperone-dependent mechanisms as a
pharmacological target for neuroprotection. Int. J. Mol. Sci. 24, 823. doi:10.
3390/ijms24010823

Wang, J., and Dokholyan, N. V. (2022). Yuel: Improving the generalizability of
structure-free compound–protein interaction prediction. J. Chem. Inf. Model. 62,
463–471. doi:10.1021/acs.jcim.1c01531

Weng, T.-Y., Tsai, S.-Y. A., and Su, T.-P. (2017). Roles of sigma-1 receptors on
mitochondrial functions relevant to neurodegenerative diseases. J. Biomed. Sci. 24,
74–14. doi:10.1186/s12929-017-0380-6

Wilson, E. L., and Metzakopian, E. (2021). Er-Mitochondria contact sites in
neurodegeneration: Genetic screening approaches to investigate novel disease
mechanisms. Cell Death Differ. 28, 1804–1821. doi:10.1038/s41418-020-00705-8

Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., et al. (2008).
Drugbank: A knowledgebase for drugs, drug actions and drug targets. Nucleic acids Res.
36, D901–D906. doi:10.1093/nar/gkm958

Wu, Y., Liu, H., Yan, J., and Hu, X. (2022). Drug repositioning for alzheimer’s disease
with transfer learning. arXiv. 10.48550/arXiv.2210.15271.

Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., et al. (2021). Admetlab 2.0: An
integrated online platform for accurate and comprehensive predictions of admet
properties. Nucleic Acids Res. 49, W5–W14. doi:10.1093/nar/gkab255

Yin, Z., and Wong, S. T. (2021). Artificial intelligence unifies knowledge and actions
in drug repositioning. Emerg. Top. life Sci. 5, 803–813. doi:10.1042/ETLS20210223

Zhemkov, V., Geva, M., Hayden, M. R., and Bezprozvanny, I. (2021). Sigma-1
receptor (s1r) interaction with cholesterol: Mechanisms of s1r activation and its role
in neurodegenerative diseases. Int. J. Mol. Sci. 22, 4082. doi:10.3390/ijms22084082

Zhi, H.-Y., Zhao, L., Lee, C.-C., and Chen, C. Y.-C. (2021). A novel graph neural
network methodology to investigate dihydroorotate dehydrogenase inhibitors in small
cell lung cancer. Biomolecules 11, 477. doi:10.3390/biom11030477

Frontiers in Molecular Biosciences frontiersin.org16

Wu et al. 10.3389/fmolb.2023.1227371

https://doi.org/10.1038/s41598-017-15571-7
https://doi.org/10.1016/j.cell.2007.08.036
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1038/nchembio.118
https://doi.org/10.1093/bioinformatics/btaa1005
https://doi.org/10.1186/s12929-017-0355-7
https://doi.org/10.3233/JAD-200049
https://doi.org/10.3233/JAD-200049
https://doi.org/10.1021/acs.jcim.2c00127
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.1145/3065386
https://doi.org/10.1186/s12868-017-0394-8
https://doi.org/10.1186/s12868-017-0394-8
https://doi.org/10.3390/biomedicines9020227
https://doi.org/10.3390/biomedicines9020227
https://doi.org/10.3390/biom9080362
https://doi.org/10.1021/jm101625x
https://doi.org/10.1021/jm101625x
https://doi.org/10.1016/j.drudis.2021.01.013
https://doi.org/10.1016/j.drudis.2021.01.013
https://doi.org/10.1016/j.pharmthera.2009.07.001
https://doi.org/10.1093/bib/bbad120
https://doi.org/10.1074/jbc.M113.450379
https://doi.org/10.1021/acs.jmedchem.2c00335
https://doi.org/10.1021/acs.jmedchem.2c00335
https://doi.org/10.1016/j.csbj.2020.04.004
https://doi.org/10.3390/molecules25225277
https://doi.org/10.3390/molecules25225277
https://doi.org/10.1038/nrd.2018.168
https://doi.org/10.1038/s41467-021-21330-0
https://doi.org/10.1021/ci100050t
https://doi.org/10.1126/scitranslmed.aau5266
https://doi.org/10.1016/j.nbd.2018.12.022
https://doi.org/10.1038/nature17391
https://doi.org/10.1038/nature17391
https://doi.org/10.1016/bs.apcsb.2021.02.001
https://doi.org/10.1016/bs.apcsb.2021.02.001
https://doi.org/10.1073/pnas.0607879104
https://doi.org/10.1093/bib/bbv048
https://doi.org/10.1016/j.ejmech.2021.113320
https://doi.org/10.1016/j.ejmech.2021.113320
https://doi.org/10.1021/ci050457y
https://doi.org/10.1021/ci050457y
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1007/978-1-0716-1884-4_6
https://doi.org/10.1186/s13195-021-00826-3
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1002/med.21764
https://doi.org/10.1126/scitranslmed.abk1051
https://doi.org/10.1126/scitranslmed.abk1051
https://doi.org/10.3390/ijms24010823
https://doi.org/10.3390/ijms24010823
https://doi.org/10.1021/acs.jcim.1c01531
https://doi.org/10.1186/s12929-017-0380-6
https://doi.org/10.1038/s41418-020-00705-8
https://doi.org/10.1093/nar/gkm958
https://doi.org/10.1093/nar/gkab255
https://doi.org/10.1042/ETLS20210223
https://doi.org/10.3390/ijms22084082
https://doi.org/10.3390/biom11030477
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1227371

	Hybrid neural network approaches to predict drug–target binding affinity for drug repurposing: screening for potential lead ...
	1 Introduction
	2 Materials and methods
	2.1 Dataset
	2.1.1 Target
	2.1.2 Inhibitors
	2.1.3 Molecules for drug repurposing

	2.2 HNNDTA
	2.2.1 Overview of the framework
	2.2.2 Drug encoding network
	2.2.3 Target encoding network
	2.2.4 General encoding network
	2.2.5 Evaluation metrics

	2.3 Network pharmacology
	2.4 Molecular docking

	3 Results
	3.1 Performance evaluation
	3.2 Virtual screening of HNNDTA and network pharmacology
	3.3 Benchmark testing
	3.4 Virtual screening of molecular docking
	3.5 Explanatory analysis of DTA

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


