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Introduction: Co-normalization of RNA profiles obtained using different
experimental platforms and protocols opens avenue for comprehensive
comparison of relevant features like differentially expressed genes associated
with disease. Currently, most of bioinformatic tools enable normalization in a
flexible format that depends on the individual datasets under analysis. Thus, the
output data of such normalizations will be poorly compatible with each other.
Recently we proposed a new approach to gene expression data normalization
termed Shambhala which returns harmonized data in a uniform shape, where
every expression profile is transformed into a pre-defined universal format. We
previously showed that following shambhalization of human RNA profiles, overall
tissue-specific clustering features are strongly retained while platform-specific
clustering is dramatically reduced.

Methods: Here, we tested Shambhala performance in retention of fold-change
gene expression features and other functional characteristics of gene clusters
such as pathway activation levels and predicted cancer drug activity scores.
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Results:Using6,793 cancer and 11,135 normal tissuegeneexpression profiles from the
literature and experimental datasets, we applied twelve performance criteria for
different versions of Shambhala and other methods of transcriptomic
harmonization with flexible output data format. Such criteria dealt with the
biological type classifiers, hierarchical clustering, correlation/regression properties,
stability of drug efficiency scores, and data quality for usingmachine learning classifiers.

Discussion: Shambhala-2 harmonizer demonstrated the best results with the close
to 1 correlation and linear regression coefficients for the comparison of training vs
validation datasets andmore than two times lesser instability for calculation of drug
efficiency scores compared to other methods.

KEYWORDS

gene expression, transcriptional profiles, RNA sequencing, microarray hybridization, data
normalization and harmonization, platform bias, cancer transcriptomics, correlation
analysis

1 Introduction

Gene expression data are widely used in the fields of functional
genomics and molecular medicine, e.g., in cancer research
(~350,000 PubMed papers found using search terms gene expression
and cancer in April 2023). Two major approaches are used nowadays
for large-scale transcriptional profiling: microarray hybridization (MH)
of mRNA (Lashkari et al., 1997; Bednár, 2000; King and Sinha, 2001;
Rew, 2001) and mRNA sequencing (RNAseq) (Nagalakshmi et al.,
2008; Maher et al., 2009; Wang et al., 2009; Chu and Corey, 2012;
Ingolia et al., 2012; Korir et al., 2015; Taylor et al., 2016). Both
approaches utilize different rationales and can be further subdivided
in several technological platforms. Consequently, the output data of
MH and RNAseq are essentially platform-biased and require specific
normalization/harmonization procedures in case of any inter-
comparison may be needed.

Many aspects of such intra- and cross-platform normalization of
MH gene expression profiles were studied in the recent 2 decades.
Namely, the approaches were formulated for studying the
incomparability of profiles obtained using different platforms (Shi
et al., 2006; Chen et al., 2007; Liang, 2007), for normalization of their
expression data (Bolstad et al., 2003; Benito et al., 2004; Jiang et al., 2004;
Warnat et al., 2005; Johnson et al., 2007; Marron et al., 2007; Martinez
et al., 2008; Shabalin et al., 2008; Xia et al., 2009; Huang et al., 2012), and
for assessing quality of their co-normalization (Shi et al., 2006; Chen
et al., 2007; Liang, 2007; Rudy and Valafar, 2011; Deshwar and Morris,
2014). In turn, the routine next-generation sequencing (NGS) of mRNA
(RNAseq) has largely replacedMH inmany applications and became the
gold standard for transcriptomic profiling (Nagalakshmi et al., 2008;
Maher et al., 2009;Wang et al., 2009; Chu and Corey, 2012; Ingolia et al.,
2012; Korir et al., 2015; Taylor et al., 2016).

However, the emergence of NGS did not eliminate the problem
of cross-platform bias, e.g., because different library preparation kits
and different sequencing engines are in use, based on the different
principles of signal detection (Borisov et al., 2022). In addition, in
many applications comparisons of RNAseq and MH profiles were
made that required cross-platform harmonization of data (Anders
and Huber, 2010; Piccolo et al., 2013; Love et al., 2014; Maza, 2016;
Thompson et al., 2016; Varet et al., 2016; Franks et al., 2018;
Maleknia et al., 2020; Zhang et al., 2020; Fauteux et al., 2021;
Tang et al., 2021; Huang et al., 2022, 292).

Most of such cross-platform harmonization/normalization
methods return the results in a flexible format. As such, the shape
of the output normalized gene expression profiles fully depends on the
group of samples under normalization and can be poorly compatible
with the results of another normalization involving different
transcriptional profiles. Thus, a new normalization procedure is
typically required for every comparison.

Furthermore, taking into account next-order variables utilizing
gene expression data, such as molecular pathway activation levels
(PALs) (Buzdin et al., 2014; Ozerov et al., 2016; Aliper et al., 2017;
Borisov et al., 2017; Borisov et al., 2020a), drug efficiency scores (DES)
(Poddubskaya et al., 2019; Tkachev et al., 2020b; Zolotovskaia M. et al.,
2020), andmachine learning (ML) models (Borisov et al., 2018; Borisov
and Buzdin, 2019; Tkachev et al., 2019; Tkachev et al., 2020a; Borisov
et al., 2020b; Borisov et al., 2021a; Borisov et al., 2021b), this flexibility
may unpredictably complicate gene expression analyses due to probable
inconsistence of quantitative characteristic gene expression features.

More recently, a new concept was formulated for the harmonization
methods: conversion of a whole set of profiles into the shape of a pre-
defined experimental platform, e.g., in the Training Distribution
Machine (TDM) method (Thompson et al., 2016). According to this
paradigm, the harmonized results should look as if they were obtained
using a single pre-defined gene expression profiling platform.

We then introduced a new type of uniformly shaped cross-
platform harmonizers that use several mathematical transforms
(Borisov et al., 2019; 2022; Borisov and Buzdin, 2022). The first
version of such software, Shambhala-1 (Borisov et al., 2019) used
uniformly shaped harmonization that employed the piecewise-
linear gene expression transformation method XPN (Shabalin
et al., 2008; Rudy and Valafar, 2011). Later on, the XPN method
was replaced in Shambhala by a more advanced piecewise-cubic
method CuBlock (Junet et al., 2021), thus giving next version termed
Shambhala-2 (Borisov et al., 2022).

Current versions of Shambhala utilize transformation of a
fraction of ~8,000 most strongly expressed human genes
because their transcriptional activities can be assessed with the
greatest precision compared to the low-expressed genes (Borisov
et al., 2019). In our previous report (Borisov et al., 2022) we showed
that Shambhala-2 returns transformed gene expression profiles
that are clustered according to their biological origin rather than by
their experimental platform. However, it remained unexplored
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whether this harmonization also retains differential gene
expression features that can functionally characterize the
samples under analysis.

Here, we tested Shambhala performance in retention of fold-
change gene expression features and other functional characteristics
of gene clusters such as pathway activation levels and predicted
cancer drug activity scores. Using 6,793 cancer and 11,135 normal
tissue gene expression profiles from the literature and experimental
datasets, we applied twelve performance criteria for different
versions of Shambhala and other methods of transcriptomic
harmonization with flexible output data format. Such criteria
dealt with the biological type classifiers, hierarchical clustering,
correlation/regression properties, and stability of drug efficiency
scores. We also assessed the quality of Shambhala output data for
building both local and global machine learning expression-based
classifiers of human cancer and normal tissue types. The piecewise-
cubic Shambhala-2 harmonizer demonstrated the best results with
the close to 1 correlation and linear regression coefficients for the
comparison of training vs. validation datasets and more than two
times lesser instability for calculation of drug efficiency scores
compared to other methods.

2 Materials and methods

2.1 Study design

Our validation of the Shambhala method for uniformly-shaped
harmonization included the following tests (Figure 1).

1) Comparison of different cancer and normal tissue datasets of gene
expression profiles obtained using different equipment/protocols.
The normalization methods included QN (Bolstad et al., 2003),
DESeq2 (Love et al., 2014), Empirical Bayes a.k.a ComBat
(Johnson et al., 2007; Lagani et al., 2016), and different
modification of linear and cubic Shambhala. The quality
control metrics included:
- the accuracy of the transfer learning classifier, where the ML
model is trained on profiles obtained in one batch and
validated on profiles obtained in different batches and using
different platforms/protocols;

- clustering quality of expression profiles after harmonization:
“good harmonization”means that such clustering corresponds
to biological type of the sample rather than to batch or
experimental platform;

- correlation and linear regression coefficient between
expression profiles for the same tissue type, obtained using
different equipment/protocols: should be close to 1 for a good
harmonization.

2) Analysis of correlation and linear regression coefficients, as well as
sign stability for downstream measures of gene expression
derivatives (case-no-control log-fold changes, pathway
activation levels (PALs) (Aliper et al., 2017), and drug balanced
efficiency score (BES) (Tkachev et al., 2020b). For a good
harmonization, the correlation and linear regression coefficients
should be close to 1, and the sign change rates should be as low as
possible. The correlation, linear regression and sign stability tests
were performed in the following conditions:

- different linear and cubic Shambhala modes vs. QN;
- LFC, PAL, and BES values calculated using Oncobox ANTE
control sampling vs. GTEx control sampling.

3) Retention of biologically relevant differences between various
types of profiles after harmonization (QN, DESeq2, and multiple
Shambhala modifications):
- differences between the male and female individual samples
for the genes located on sex chromosomes,

- differences between cancer expression profiles in hormone-
dependent, HER2-positive, and triple-negative breast cancer
patients.

2.2 Gene expression datasets

We curated six gene expression datasets for cancer and
corresponding normal transcriptomic profiles, namely, The Cancer
Genome Atlas (TCGA) (Tomczak et al., 2015)—both for cancer (i) and
normal (ii) tissues; Gene-Tissue Expression Consortium (GTEx) (GTEx
Consortium, 2013; The GTEx Consortium et al., 2015)—normal
samples obtained using both RNAseq (iii) and MH (iv); (v)
Oncobox Atlas of Normal Tissue Expression, ANTE, (Suntsova
et al., 2019), and (vi) Oncobox experimental collection of human
cancer expression profiles. Among these six gene expression datasets,
five were obtained by RNA sequencing (with platforms Illumina HiSeq
2000 and 3000, and one–using expression microarray platform
Affymetrix Human Gene 1.1 ST Array (Table 1). Four RNA
expression profiling protocols were used to obtain the above six
datasets. Two datasets represented cancer samples, and four were
obtained for normal human tissues (Table 1). All sequencing data
used here represented full-length RNA sequencing.

2.3 Shambhala harmonization of gene
expression profiles

Harmonization of datasets using Shambhala-1 and Shambhala-2
methodswas done as previously described (Borisov et al., 2022), Figure 2.
Both methods perform harmonization of each gene expression profile
independently in the initial raw (R) dataset. The procedure relies on two
preselected auxiliary datasets: the calibration (P) and reference definitive
(Q) datasets. Every single profile is taken from the R-dataset, and
quantile-normalize (Bolstad et al., 2003) with the P-dataset, to form
the transformed dataset Pʹ. Then Pʹ-dataset is normalized using the XPN
(Shabalin et al., 2008) or CuBlock (Junet et al., 2021) protocols for
Shambhala-1 and -2 methods, respectively, to produce the double
transformed dataset Pʺ. From the dataset Pʺ, the finally harmonized
individual profile is obtained; the harmonization procedure is repeated
for every different profile in the dataset R. The whole procedure converts
the initial dataset R into the harmonized dataset H.

We used three alternative rescaling modes for Shambhala-2
method. The P-based rescaling (Borisov et al., 2022) utilizes simple
translation and multiplication of the log-expression level (LEgʺ) for
each gene g in the dataset H as follows: LEg = μgQ + LEgʺ·σgQ, where
μgQ and + σgQ are mean value and standard deviation, respectively,
for log-expression level of gene g in the Q-dataset. Second mode
termed Q-based rescaling, utilizes setting the mean value, and the
standard deviation, for the log-expression levels of each gene in the

Frontiers in Molecular Biosciences frontiersin.org03

Borisov et al. 10.3389/fmolb.2023.1237129

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1237129


dataset H, to the corresponding levels of the dataset Q, equal to μgQ
and σgQ, respectively: LEg = μgQ + (LEgʺ − μgH)·σgQ/σgH. The third
mode termed R-based rescaling, has the mean value, and the
standard deviation, for the log-expression levels of each gene g
that are used in the dataset H to the corresponding levels of the
dataset R, equal to μgR and σgR, respectively: LEg = μgR + (LEgʺ −
μgH)·σgR/σgH.

As the auxiliary datasets P and Q, we used the dataset P0
(obtained using the MH platform Affymetrix Human Genome
U133A 2.0 Array) and Q0 (obtained using the NGS platform
GTEx Ilumina HiSeq 2000), respectively. Among other tested P-
andQ-datasets, the datasets P0 andQ0 showed the best results in our
previous studies (Borisov et al., 2022).

2.4 Classification of tissue type using
harmonized gene expression profiles

The following six methods were used for harmonization of gene
expression data.

1) Quantile normalization (QN) (Bolstad et al., 2003), implemented as
the normalize.quantilesmethod from the preprocessCore R package,
available at https://github.com/bmbolstad/preprocessCore;

2) DESeq2 normalization (Love et al., 2014; Maza, 2016; Varet et al.,
2016), implemented as the estimateSizeFactors method from the
DESeq2 R package, available at https://bioconductor.org/packages/
release/bioc/html/DESeq2.html. Although DESeq2 can be used for

FIGURE 1
Study design. (A): Comparison of different cancer and normal tissue datasets of gene expression profiles obtained using different equipment/
toolkits. (B) Analysis of correlation and linear regression coefficients, as well as sign stability for downstreammeasures of gene expression derivatives. (C)
Analysis for retention of biologically relevant differences between various cancer profiles after harmonization.
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TABLE 1 Gene expression sample types and group sizes used for the tissue type classifier comparisons.

Sample type Cancer TCGA Normal TCGA
illumina HiSeq
2000; protocol
by (Tomczak
et al., 2015)

Normal GTEx
illumina HiSeq
2000; protocol
by (The GTEx
Consortium
et al., 2015)

Normal GTEx Normal ANTE
illumina HiSeq
3000; protocol
by (Suntsova
et al., 2019)

Cancer
oncobox
illumina HiSeq
3000; protocol
by (Suntsova
et al., 2019)

Illumina
HiSeq 2000

Affymetrix
human gene
1.1 ST array

Protocol by
(Tomczak
et al., 2015)

Protocol by
(GTEx
Consortium,
2013)

Acute myeloid leukemia/
bone marrow

358 – – – – 20

Adrenocortical
carcinoma/adrenal gland

79 3 190 – 5 4

Normal bladder – 19 11 – 4 –

Breast cancer/normal
breast

1142 114 290 – 5 79

Cervical cancer (all types)/
normal cervix (uterus)

306 38 129 – 8 18

Cholangiocarcinoma 36 5

CNS glioblastoma/normal
CNS: brain

169 5 1671 206 5 47

Normal CNS: other – – 414 54 5 –

Colorectal cancer/normal
colorectal intestine

– 51 507 – 6 107

Normal esophagus – 13 1021 – 7 –

Normal fat (adipose
tissue)

– – 797 33 – –

Normal heart – – 600 62 – –

Hepatocellular
carcinoma/normal liver

374 50 175 – 6 7

Lung cancer (all types)/
normal lung

1046 110 427 – 7 62

Melanoma/normal skin 472 1 1203 65 6 10

Normal ovary – – 133 – 4 –

Pancreatic
adenocarcinoma/normal
pancreas

179 4 248 – 5 17

Normal peripheral blood – – 537 – 6 –

Normal prostate – 52 152 1 6 –

Renal cell carcinoma/
normal kidney

837 129 45 – 6 32

Soft tissue sarcoma, non-
rhabdomyosarcoma/
normal skeletal muscle

263 - 564 86 6 11

– – 137 – 5 –

Stomach
adenocarcinoma/normal
stomach

456 37 262 – 7 29

Thyroid cancer/normal
thyroid gland

513 59 446 69 6 108

(Continued on following page)
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differential gene analysis, it can also be applied for agnostic
normalization of the NGS data, if all profiles are considered as
belonging to one batch.

3) ComBat, or Empirical Bayes, designed for artificial elimination of
the batch effect between two gene expression datasets (Johnson
et al., 2007; Lagani et al., 2016), available with the sva package at
Bioconductor code repository: https://bioconductor.org/
packages/release/bioc/html/sva.html;

4) Shambhala-1, or linear Shambhala (Borisov et al., 2019). The
code for Shambhala-1 (R package HARMONY) is available at
https://github.com/oncobox-admin/harmony;

5) Shambhala-2 (Borisov et al., 2022) with P-based rescaling
(Sh2PBR) of the output data, written as R code that calls a
MATLAB function, available at https://github.com/BorisovNM/
Shambhala2;

6) Shambhala-2 with Q-based rescaling (Sh2QBR) of the output
data;

7) Shambhala-2 with R-based rescaling (Sh2RBR) of the
output data.

To avoid overtraining, we applied the transfer learning approach to
the sample tissue type classifiers. After harmonization of gene
expression profiles, we used one group of samples as the training
dataset, and another group as the validation dataset (Table 1). The
number of classes, i.e., biological sample types, was fifteen for the cancer
type classifier, and varied from 8 to 20 (depending on the selection of
training and validation datasets) for normal tissue classifiers. All the
classifiers used the Euclidean feature space of log-expression of each
gene (for the kNN approach) and of 20 principal components (for the
SVM approach), applying three machine learning methods: (i)

TABLE 1 (Continued) Gene expression sample types and group sizes used for the tissue type classifier comparisons.

Sample type Cancer TCGA Normal TCGA
illumina HiSeq
2000; protocol
by (Tomczak
et al., 2015)

Normal GTEx
illumina HiSeq
2000; protocol
by (The GTEx
Consortium
et al., 2015)

Normal GTEx Normal ANTE
illumina HiSeq
3000; protocol
by (Suntsova
et al., 2019)

Cancer
oncobox
illumina HiSeq
3000; protocol
by (Suntsova
et al., 2019)

Illumina
HiSeq 2000

Affymetrix
human gene
1.1 ST array

Protocol by
(Tomczak
et al., 2015)

Protocol by
(GTEx
Consortium,
2013)

Uterine corpus
endometrial carcinoma

558 – – – – 7

Total number of samples 6,230 685 9,959 576 115 563

FIGURE 2
Shambhala-1/2 approach (Borisov et al., 2019; 2022; Borisov and Buzdin, 2022) to uniformly shaped harmonization of gene expression data. Gene
expression profiles for samples (1, . . . ,N), e.g., obtained using different experimental platforms are taken one by one, separately merged, and quantile-
normalized with an auxiliary calibration dataset P. The resulting dataset Pʹ is then transformed into the format of the reference definitive datasetQ, which
results in dataset Pʺ. The latter contains the finally transformed profile of initial sample i, which is considered harmonized (H). The profiles of all other
samples are harmonized one by one using the same algorithm.
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11 nearest neighbors (11nn); (ii) first nearest neighbor (1nn); (iii) linear
support vector machine (SVM). The SVM calculations were performed
using the e1071R package (Liu and Wang, 2015) with the C++ library
libsvm (Chang and Lin, 2011).

2.5 Clustering quality assessment of
harmonized expression profiles

We used Watermelon Multisection (WM) method to
quantitatively assess the quality of clustering for the expression
profiles under analysis according to (Zolotovskaia M. A. et al., 2020;
Borisov and Buzdin, 2022; Borisov et al., 2022). This method returns
a specific metric for the assessment of an entropy-based quality of
clustering on dendrograms according to known predefined classes.
WM can evaluate performance of hierarchical clustering relative to a
trait of interest, e.g., known tissue type in our case. When moving
from the root of the dendrogram to its distal branches, one can
measure information gain (IG) at each node of the dendrogram. In
WM, the overall process of gradual information gain at each node is
referred to as the observed information gain trajectory. Shortly, the
WM metric is the normalized difference between the observed IG,
theoretically maximal IG that corresponds to the fastest separation
of predefined classes into the distinct branches, and null IG0

trajectory that describes the worst (totally random) distribution
of predefined classes on the dendrogram (Zolotovskaia M. A. et al.,
2020; Borisov et al., 2022). Therefore, 0 < WM < 1, and the higher
value means better class separation on the dendrogram. High-
quality harmonization is expected to result in clustering
according to the tissue type, but not according to the
experimental platform or other technical factors. Thus, the ratio R �
WMS
WMP

of WM-metrics according to biological sample classes (WMS)
and experimental platform classes (WMP) may be used for
evaluating harmonization quality: the higher R means better
harmonization quality (Borisov and Buzdin, 2022; Borisov et al.,
2022).

WM metric calculation code was implemented in R, available at
https://gitlab.com/oncobox/cluster-analysis.

We used the following protocol for WM metric evaluation
(Borisov et al., 2022). For each harmonizing dataset, we
randomly selected five samples for each known combination of
tissue type and experimental profiling platform and then calculated
theWMmetrics for such a selection. Each selection was randomized
and repeated 25 times according to (Borisov et al., 2022).

2.6 Correlation/regression analysis for
median gene expression vectors

For each pair of training and validation datasets, we
calculated the median log-expression levels for each gene and
each sample type. Let us call the median log-expression level
vectors for a certain biological type as v1 and v2, for the training
and validation datasets, respectively. For each of v1 vs. v2 pairs,
we calculated the Spearman correlation and linear regression
coefficient (k). The value k was the geometric mean over the
values k1 and k2. Here k1 and k2, are the linear regression
coefficients with and without the offset item b, in the

regression models: v2 = k1 · v1 + b, and v2 = k2 · v1,
respectively. If k1·k2 < 0, then we set the resulting k value to zero.

2.7 Calculation of cancer-to-normal log-
fold change, pathway activation level, and
anticancer drug efficiency score values

Cancer-to-normal log-fold change (LFC) of gene expression,
pathway activation levels (PALs), and balanced efficiency score of
anticancer targeted drugs (BES) were calculated according to
(Borisov et al., 2020a; Tkachev et al., 2020b). Cancer and normal
tissue samples included in the analysis are listed in Table 2. Note that
BES values are calculated using not only drug target genes, but also
on the basis of PAL values, which calculation in turn requires nearly
8,000 genes that survive the Shambhala harmonization.

2.8 Correlation, regression, and stability
analysis for BES values

Shambhala applicability for BES calculations was tested as
follows. We performed the correlation and linear regression
analysis for two comparisons of BES vectors v1 vs. v2.

1) BES values calculated with normalization of cancer and
corresponding ANTE normal samples (Suntsova et al., 2019)
using QN1 (regarded as vector v1) vs. using different modes of
Shambhala: Sh1, Sh2PBR, Sh2QBR, or Sh2RBR (regarded as
vector v2);

2) BES values calculated with ANTE normal samples (regarded as
vector v1) vs. with GTEx normal samples (GTEx Consortium,
2013) (regarded as vector v2).

For each comparison, we calculated the correlation and linear
regression coefficient (k), similarly to the way that we applied to
median log-expression values between similar biological types in the
training and validation datasets.

Additionally, for these two comparisons, we calculated the
percentage of sign-changed BES values as a function of the width
(w) of a significance threshold around zero. If for the i-th component
(corresponding to the drug i) of the vector v1, v1i < − w/2, and,
simultaneously, v2i > w/2, or vice versa, then the i-th component is
considered sign-changing for the comparison of v1 vs. v2. The resulting
percentage of sign-changed values is the ratio of the number of sign-
changed components and of the total number of components.

Since different modes of Shambhala harmonization could affect
the absolute values of LFC, PAL and BES, we calculated the
percentage of the sign-changed BES values using two modes.

1) For the BES values without correction, marked “as is”;
2) For the BES values divided by the corresponding linear

regression coefficient k, marked as “divided by k.”

1 QN is a standard normalization technique in the Oncobox method for
calculation of drug efficiency scores.
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3 Results

In this study, we tried to characterize the ability of Shambhala
approach to provide tissue specific clustering of the harmonized
gene expression profiles, and at the same time to retain their
characteristic differential gene expression patterns. These points
were assessed after co-harmonization of gene expression profiles
obtained using two different experimental platforms and four library
preparation protocols (Table 1).

3.1 Differential clustering of human normal
and cancer expression profiles

We first investigated the ability of Shambhala to support tissue
specific clustering of harmonized expression profiles in comparison
with the other, non-uniformly shaped harmonization methods. We
took human tissue gene expression datasets from the Gene-Tissue
Expression (GTEx) repository (GTEx Consortium, 2013; The GTEx

Consortium et al., 2015), The Cancer Genome Atlas (TCGA)
database (Tomczak et al., 2015), Atlas of Normal Tissue
Expression (ANTE) collection of expression profiles (Suntsova
et al., 2019), and from the Oncobox experimental collection of
cancer tissue RNA sequencing profiles. The samples were obtained
using the versions of NGS platform Illumina: HiSeq 2000 for the
TCGA and GTEx RNA sequencing data, and HiSeq 3000 for the
ANTE and Oncobox cancer data, and the microarray hybridization
(MH) platform Affymetrix Human Gene 1.1 ST Array for the GTEx
MH data. Taken together, they represented 37 human tissue types
including 15 cancer and 22 normal tissue types. Four different gene
library preparation protocols were used for obtaining these datasets
(Table 1), one common for the ANTE and Oncobox data; one
common for the normal and cancer TCGA data, and specific
protocols for the GTEx RNA sequencing, and MH data (Table 1).

To compare performance, we did harmonization procedure by
using the following alternative methods: (i) Quantile normalization,
QN, a gold standard for normalization of the MH gene expression
data (Bolstad et al., 2003); (ii) DESeq2, a gold standard for

TABLE 2 Number of cancer and normal tissue gene expression profiles used for the functional tests of harmonization methods.

Cancer type Cancer samples Corresponding normal tissue samples

Oncobox RNAseq; protocol by
(Suntsova et al., 2019)

ANTE RNAseq; protocol by
(Suntsova et al., 2019)

GTEx RNAseq protocol by (The GTEx
Consortium et al., 2015)

Adrenocortical carcinoma 4 5 190

Breast cancer 83 5 290

Carcinosarcoma 1 6 111

Cervical cancer (all types) 18 4 18

CNS glioblastoma 47 5 1671

CNS other tumors 28 5 414

Colorectal cancer 107 6 507

Esophageal carcinoma 1 7 1021

Hepatocellular carcinoma 7 6 175

Lung cancer (all types) 56 7 427

Melanoma 9 6 1,203

Ovarian cancer 34 4 133

Pancreatic adenocarcinoma 17 5 248

Prostate adenocarcinoma 2 6 152

Renal cell carcinoma 32 6 45

Skin carcinoma 6 6 1,203

Soft tissue sarcoma, non-
rhabdomyosarcoma

6 6 111

Stomach adenocarcinoma 29 7 262

Thyroid cancer 111 6 446

Uterine corpus endometrial
carcinoma

7 6 111

Total 605 114 8,738
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normalization of the RNAseq gene expression data (Love et al., 2014;
Maza, 2016; Varet et al., 2016); (iii) ComBat, specially developed for
batch effect elimination (Johnson et al., 2007; Lagani et al., 2016);
(iv) Shambhala-1, uniformly shaped harmonization method with
the XPN gene expression transformation module (Borisov et al.,
2019), Sh1; (v) Shambhala-2 (Borisov et al., 2022), uniformly shaped
harmonization method with CuBlock gene expression
transformation module and P-based rescaling (Sh2PBR); (vi)
Shambhala-2 with the Q-based rescaling (Sh2QBR); (vii)
Shambhala-2 with the R-based rescaling (Sh2RBR).

The P-, Q-, and R-rescaling modes for Shambhala-2 differ by
different mean and standard deviation values, which are applied
to set the log-expression levels after the harmonization
procedure. Note that all modes of Shambhala reduced the
number of genes after harmonization to ~8,000 most strongly
expressed “reaper” human genes (Borisov et al., 2019), Table 3.
The genes in the harmonized output are formed by the
intersection of genes in three datasets: the raw (R), and two
auxiliaries (P and Q). The best results, in terms of stressing the
biological origin of the profiles and banning the artifacts
generated by platform/protocol-specific bias, were obtained for
the P-dataset Affymetrix Human Genome U133A 2.0 Array
(dataset P0) with 8,385 genes (Borisov et al., 2022). This MH
platform is often used for routine transcriptomic profiling. Thus,
using this P-dataset acts fairly similarly to the explicit expression
filtering, and increases the signal-to-noise ratio, thereby
highlighting the biological origin of the samples. For the sake
of comparability between different normalization methods, we
made all QN, DESeq2, and ComBat calculations with this set of
highly expressed ~8,000 genes, which help determine the
biological origin of the profile.

We then applied the following machine learning (ML) methods
to build tissue type classifiers for the harmonized profiles: (i)
11 nearest neighbors; (ii) first nearest neighbor; (iii) linear
support vector machine (SVM). We performed 6 ML tests, one
with cancer samples, and five with normal samples. In such tests,
training and validation groups of samples were taken from different
initial datasets (Table 3).

For each transfer learning test, and each sample type in the
classifier, we calculated the accuracy, i.e., percentage of correct tissue
type predictions in the validation dataset.

Supplementary Material S1 (Supplementary Figures S1–S6)
demonstrates accuracy trends for predicting tissue types.
Importantly, uniform output Shambhala method showed
comparable performance with the gold standard flexible output
methods QN and DESeq2, for both local (kNN-based) and global
(SVM-based) classifiers (Figures 3A, C, D; Figure 4). Note that QN,
DESeq2, and ComBat methods were also applied to the
~8,000 genes, which survived Shambhala harmonization. Note
also that the ComBat method designed for the batch affect
removal, artificially makes two or more datasets under analysis to
look similar, but mixes up the profiles with the different biological
origin obtained using the same platform, which results in poor ML
performance (Figures 3B, 4).

In addition, bigger number of samples in the validation dataset
generally corresponded to greater prediction accuracy, although this
trend is rather vague (Supplementary Material S1). From the
Supplementary Figures S3A–C it looks like a number of samples

higher than approximately 30 is required for all three classifiers
tested to get a high accuracy, with a few exceptions. The reason for
this phenomenon that can be seen in Supplementary Figure S1 is
unknown to the authors, since the validation dataset is not used for
ML model construction, and the number of cases in the validation
dataset theoretically should not affect the expected accuracy of
prediction. Interestingly, correlation of the prediction accuracy
with the number of samples in the training dataset was even
lower (data not shown).

Furthermore, Shambhala harmonization helped to restore
distant order in the correct grouping of biologically similar
samples (Table 4; Supplementary Material S2; Supplementary
Figures S1, S2 to Supplementary Figures S2–S5). We assessed
elimination of the platform/protocol-specific bias after
harmonization using statistical method Watermelon Multisection
(WM) (Zolotovskaia M. A. et al., 2020; Borisov and Buzdin, 2022;
Borisov et al., 2022). WM enables tracking the entropy loss/
information gain at each node of the clustering dendrogram
when moving in the direction from the root to the distal
branches, thus giving WM metric for a given dendrogram. It can
assess the quality of sample clustering according to known
predefined groups (in our case, tissue types). The higher is WM
metric, the better is the clustering according to known tissue types,
and vice versa.

We, therefore, calculated WMmetrics for the harmonized tissue
samples in two major settings:WMP for the classes corresponding to
experimental platforms/protocols (e.g., TCGA-RNAseq, Oncobox-
RNAseq, etc.), and WMS for the classes corresponding to tissue
types. Thus, the ratio R � WMS

WMP
may serve as the measure for

harmonization quality. The higher is R, the better is clustering
according to tissue type in relation to platform-specific bias, and
vice versa.

In our analysis, the WM metric showed that the ComBat
method had the best performance for platform bias elimination
for most ML trials with cancer and normal human tissues, except
for merging GTEx and TCGA normal RNAseq profiles, and
merging GTEx and ANTE normal RNAseq profiles (Table 4;
Supplementary Figures S2–S6 to Supplementary Figures S2–S10
in Supplementary Material S2). However, this elimination of the
batch effect is only apparent, and does not result in proper
clustering of the same sample types. The high values of R for
WM metrics are provided by low values of WMP, rather than the
high values of WMS, and profile clustering after ComBat is not
done according to the tissue type (Supplementary Figures S2–S6
to Supplementary Figures S2–S10). Thus, according to our
findings, ComBat method did not demonstrate an overall
superior output as it blurs the similarity between the profiles
of the same biological type, even when obtained using one
experimental platform.

In addition, Sh2PBR harmonization mode also showed the
optimal performance in the correlation-regression analysis of
profiles for the same tissue samples. Having averaged the log-
expression levels for each gene over all samples of certain type in
the training and validation datasets, we arrived at the expression
level vectors v1 and v2, respectively, for each tissue type. The
distribution of Spearman correlation and linear regression
coefficients between the corresponding v1 and v2 vectors are
shown on Figure 4 and Supplementary Material S3.
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An ideal method for cross-platform harmonization should result
in as similar as possible transcriptomic profiles for the same samples
or the same tissue types, even when obtained using different
platforms or protocols. Consequently, the correlation and linear
regression coefficients between the v1 and v2 vectors should be as
close as possible to 1 (note that the linear regression coefficients may

be also lower or greater than 1). We found that Sh2PBR method
results in the correlation and linear regression coefficients very close
to 1, thus being the method of choice for harmonization of human
normal transcriptomic profiles (Figure 4 and Supplementary
Material S3).

In brief, we may summarize that.

TABLE 3 Overview of tissue type transfer learning classifiers.

Test ID Training dataset Validation dataset Number of tissue types Number of genes after Shambhala harmonization

1 TCGA cancer Oncobox cancer 15 8,214

2 GTEx normal, RNAseq TCGA normal 15 8,174

3 GTEx normal, RNAseq ANTE normal 20 8,174

4 TCGA normal GTEx normal, RNAseq 15 8,174

5 TCGA normal ANTE normal 10 8,174

6 GTEx normal, RNAseq GTEx normal, MH 8 7,862

FIGURE 3
Total tissue type prediction accuracies calculated for local (kNN) and global (SVM) ML methods for different training and validation datasets. (A)QN,
Sh2PBR, (B) ComBat, (C) DESeq2. Sh2QBR, (D) Sh1, Sh2RBR.
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- In transfer learning tests, when theMLmodels were trained on
gene expression profiles obtained using one experimental
platform and validated on profiles obtained using another
platform, the Shambhala modes showed performance better
or comparable to QN and DESeq2, and better than ComBat;

- In terms of correlation/linear regression coefficients, the
Sh2PBR mode showed the results maximally close to 1;

- The ComBat method, which is designed to eliminate the batch
effect intentionally, showed the least performance in the tests
with one cancer and four normal tissue datasets.

3.2 Correlation, regression, and sign-change
analysis of cancer drug balanced efficiency
score (BES) after application of different
methods of harmonization

The universal harmonization of gene expression data is of
interest not only for proper classification of biosamples. It has

also important clinical implications. For example, bioinformatic
platform Oncobox is designed for personalized prediction of
cancer drug activities using cancer and normal gene expression
profiles (Poddubskaya et al., 2019; Borisov et al., 2020a; Tkachev
et al., 2020b; Zolotovskaia et al., 2022). It evaluates differential gene
expression (reflected by log-fold change (LFC) values) and identifies
altered molecular pathways (reflected by pathway activation levels,
PALs) which may serve as the molecular targets for cancer drugs,
thus giving balanced efficiency score (BES) for every drug under
analysis. Other possible gene expression-based methods of drug
efficiency scoring should be also mentioned in this context (Lazar
et al., 2015; Solomon et al., 2022). However, finding proper tumor-
matching normal tissues is frequently challenging and cannot
accommodate for statistically correct differential gene analysis. It
is, therefore, important to compare experimental cancer expression
with the normal tissue datasets, e.g., published as the part of GTEx,
TCGA, and ANTE projects. Such a comparison may require data
harmonization, provided that different equipment, reagents and
protocols could be employed for obtaining different datasets.

FIGURE 4
Median (over all possible tissue types) Spearman correlation and linear regression coefficients between identical tissue types from training and
validation datasets. (A) QN, Sh2PBR, (B) ComBat, (C) DESeq2. Sh2QBR, (D) Sh1, Sh2RBR.
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The Shambhala harmonization has filtered away
approximately 60% of protein-coding genes with the lowest
expression (Table 3, Supplementary Material S4). However,
among all 167 drugs in the Oncobox database, 129 (77%)
retained all target genes after harmonization (Table 5). The
enrichment analysis of Gene Ontology terms for the survived
vs. filtered out genes (Figure 5) shows that the majority of
survived genes govern important physiological process,
including cell cycle, whereas the majority of rejected genes are
related to sensory/olfactory mechanism, and only a minor part of
neglected genes deal with the mitosis and cancer. Note also that
important genes distinguishing between cancer subtypes, e.g., for
breast cancer, like ERBB2 (HER2), ESR1 (ER), and two forms of
membrane component of PR, PGRMC1 and PGRMC2, survived
shambhalization.

Thus, we assessed the influence of Shambhala harmonization
on the BES values for these 129 targeted cancer drugs, for totally
605 experimental RNA sequencing samples of 20 cancer types
(Table 2). We then analyzed performance of four Shambhala

modifications (Sh1, Sh2PBR, Sh2QBR, and Sh2RBR) in a series
of tests for correlation, regression, and sign-change assessments.

(i) first, comparison of BES values (v1), which were obtained using
QN for Oncobox cancer and ANTE normal gene expression
profiles, which is a routinely used protocol for BES calculation
in clinical use (Tkachev et al., 2020b), vs. those (v2) which were
obtained after Shambhala harmonization of cancer and normal
profiles (Figure 6, Supplementary Figures S1–S6)

(ii) second, comparison of BES values (v1), which were obtained
using ANTE normal gene expression profiles (Suntsova et al.,
2019), vs. those (v2) obtained with the corresponding GTEx
(GTEx Consortium, 2013) normal profiles (Figure 7,
Supplementary Figures S2–S6).

We found that the BES values for QN and all modes of
Shambhala harmonization were strongly correlated in all cancer
types under analysis (Figure 6, Supplementary Figures S1–S6). It can
be expected that ideal data harmonization will keep stable the

TABLE 4 Median R values for WM-based quality metrics of different harmonization experiments.

Merged datasets QN DESeq2 ComBat Sh1 Sh2PBR Sh2QBR Sh2RBR

TCGA cancer, Oncobox cancer 0.60 0.50 1.45 0.65 0.63 0.57 0.55

GTEx RNAseq normal, TCGA normal 0.88 0.84 1.42 1.17 1.50 1.26 0.93

GTEx RNAseq normal, ANTE normal 0.79 0.68 0.50 0.98 1.24 0.79 0.72

TCGA normal, ANTE normal 0.85 0.77 2.19 1.00 1.31 0.84 0.83

GTEx RNAseq normal, GTEx MH normal 0.82 0.77 6.29 0.92 1.24 1.01 0.75

TABLE 5Genes survived after Shambhala harmonizationwhich are included in themolecular pathway and drug target databases (Zolotovskaia et al., 2022) used in
this study.

Database Number
of genes

Number of
survived
genes

Percentage of
survived genes

Number of
pathways

Number of pathways
with >75% of genes
survived, or number of
drugs with all targets
survived

Percentage of pathways
with >75% of genes
survived, or percentage
of drugs with all targets
survived

Balanced
(Zolotovskaia et al.,
2022) TCGA 826 1.4

5,484 4,212 77 328 328 100

Biocarta
(Nishimura, 2001)
1.123

1,082 964 89 337 337 100

Metabolism
(Zolotovskaia et al.,
2022) 1.123

1,038 796 77 319 319 100

NCI (Schaefer et al.,
2009)1.123

2,214 1,894 86 775 775 100

Qiagen
(Zolotovskaia et al.,
2022) 1.123

2,493 2,039 82 380 380 100

Reactome (Croft
et al., 2014) 1.123

6,105 4,471 73 945 2 0.21

Drug targets
(Tkachev et al.,
2020b) 4.2

163 146 90 167 129 77
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cancer-to-normal LFC, and subsequent PAL and BES magnitudes,
compared to the gold standard normalization methods such as QN
or DESeq2. In other words, this should set the linear regression
coefficient k close to 1 for the QN vs. Shambhala comparison.
However, although this ideal figure was more or less true for the
Sh1mode, the best mode in terms of correlation coefficient, Sh2PBR,
at the same time exhibited the worst (i.e., the maximally distant from
1) values for the regression coefficient k, with k < 1 (Figure 6B,
Supplementary Figures S1–S6). In contrast, other versions of
Shambhala-2 (Sh2QBR and Sh2PBR) had k > 1 (Figure 6B,
Supplementary Figures S1–S6). We have developed and tested
the SH2QBR and Sh2RBR modes as the alternatives to the
previous mode Sh2PBR (Borisov et al., 2022), since the latter
tended to artificially decrease the absolute values of LFC, PAL,
and BES metrics.

The values of regression coefficients, k, between BES values with
QN and different Shambhala modes, varied significantly: from
0.17 till 1.32 (Figure 6, Supplementary Figures S1–S6). Likewise,
the magnitudes of BES varied accordingly. This variation in
magnitude lead us to check whether it can affects the sign of
BES. The BES value predicts the ability of a drug to inhibit
abnormally activated molecular pathways in individual cancer.
The positive/negative sign for BES is crucially important, as it
indicates the potential beneficial/harmful effect of a certain drug
for a certain cancer treatment. We found here that the use of
Shambhala harmonization instead of QN has relatively minor
effect on the sign of the BES values (Figure 8A, Supplementary
Figures S3–S6 in Supplementary Material S6). When the width of
sign-changing significance threshold (w) around zero is one median
value for all BES values in all cases and drugs (from–w/2 to + w/2),

FIGURE 5
Gene Ontology terms enrichment analysis (Yu et al., 2012) for the genes that survived Shambhala harmonization (A), or that were removed by
filtering (B).

Frontiers in Molecular Biosciences frontiersin.org13

Borisov et al. 10.3389/fmolb.2023.1237129

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1237129


then less than 10% of BES values change their sign. Changing sign of
BES is meaningful because it indicates whether a drug is potentially
helpful against a particular tumor (BES positive), or not (BES
negative or zero).

We considered the BES value as sign-changing for the drug i
during comparison of two values, v1i vs. v2i, and a predefined
significance threshold width w, if v1i < –w/2, and, simultaneously,
v2i > w/2, or vice versa. With the growth of the significance
threshold, the percentage of sign-changing BES values rapidly
decreases. The strongest decrease was observed for the QN vs.
Sh2PBR comparison (Figure 8A, Supplementary Figures S3–S6 in
Supplementary Material S6).

The division of the Shambhala BES values by the regression
coefficient k increased the percentage of sign-changing events for the
Sh2PBR mode. However, even after this division the Sh2PBR mode
showed the best results in terms of BES sign stability: compare the
options “as is”, i.e., without correction, and “divided by k” in Figure 10A,
Supplementary Figures S3–S6 in Supplementary Material S6.
Interestingly, using Shambhala harmonization instead of QN

increased correlation between the BES values calculated for Oncobox
cancers vs. ANTE and GTEx norms (Figure 7, Supplementary Figures
S2–S6).Moreover, using the GTEx instead of the ANTE normal samples
did not change much the BES magnitude, and all regression coefficients
(k) were close to 1 for the ANTE vs. GTEx normal reference comparison
(Figure 7, Supplementary Figures S2–S6).

The proper selection of the P-dataset considerably increases
the biologically relevant properties of the harmonized data. In
our previous study (Borisov et al., 2022), we tried eight different
P-datasets obtained using different MH and NGS profiling
methods, and the Affymetrix Human Genome U133A
2.0 Array-based P-dataset apparently showed the best ability
for distinguishing the biological nature of samples after
harmonization. The relatively good performance of QN in our
experiments may be due to the nature of testing gene set
including ~8,000 genes with the greatest expression level,
which were included in the P-dataset.

In the Oncobox cancer dataset, the same equipment and
protocol were used for RNA sequencing as in the ANTE

FIGURE 6
Spearman correlation and linear regression coefficients between BES values for QN vs. Shambhala comparison of 20 cancer types and 129 targeted
cancer drugs. (A) QN, Sh2PBR, (B) ComBat, (C) DESeq2. Sh2QBR, (D) Sh1, Sh2RBR.
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collection of normal samples; instead, different protocol but the
same equipment was used for sequencing in GTEx project. Thus,
technically ANTE norms better correspond to the Oncobox

cancers than GTEx norms for the same tissues. However, the
number of Oncobox ANTE normal samples is limited, whereas
GTEx tissue samples are much more numerous. Figure 7,

FIGURE 7
Spearman correlation and linear regression coefficients between the corresponding BES values for the same cancer drugs calculated with ANTE vs.
GTEx normal references for 20 cancer types and 129 targeted cancer drugs. (A) QN, (B) Sh1, (C) Sh2PBR, (D) Sh2QBR, (E) Sh2RBR.
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FIGURE 8
Percentage of BES values, which change their sign when using Shambhala harmonization instead of QN (A), and when using GTEx instead of the
ANTE normal references (B), as a function of width (w) for the sign-changing significance threshold in all 605 experimental Oncobox samples of
20 cancer types, and 129 anti-cancer target drugs. Mode “as is” is given for BES values without correction. Mode “divided by k” is given for BES values
divided by the corresponding linear regression coefficients (see Figure 3 for (A); Figure 4 for (B)). The width (w) was measured in terms of median
absolute values of BES for all cancer cases.

FIGURE 9
Percentage of LFC (A), PAL (B), and BES (C) values, which change their sign when using GTEx instead of the ANTE normal references, as a function of
width (w) for the sign-changing significance threshold in 74 breast cancer samples with known cancer subtype (hormone-dependent, HERS-positive, and
triple negative, Supplementary Material S7). The width (w) was measured in terms of median absolute values of LFC, PAL, or BES for breast cancer cases.
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Supplementary Figures S2–S6 show that both correlation and
linear regression coefficients between the BES values with
Oncobox ANTE and GTEx norms are close to 1 for all
Shambhala modes, which perform better than QN. Note also
the poor correlation values for cervical cancer for the substitution
of Oncobox ANTE normal samples with the GTEx samples
(Figure 7). This poor correlation may be caused by unusually
small number of normal samples (only 4 samples for the
Oncobox ANTE collection, and only 18 samples for the GTEx
collection), when the sample heterogeneity may play a
crucial role.

Likewise, the use of Shambhala harmonization decreased up
to five times the percentage of sign-changing events for BES
values calculated using the GTEx instead of the ANTE normal
reference samples (Figure 8B, Supplementary Figures S4–S6 in

Supplementary Material S6). Again, the Sh2PBR modification
showed the best performance (Figure 8B). Note that division of
BES values by linear regression coefficient k did not affect much
the percentage of sign-changing values (Figure 8B,
Supplementary Figures S4–S6 in Supplementary Material S6).
Note also that the Sh2PBR mode provides the best sign stability
over other Shambhala modes and over the standard Oncobox
normalization protocol QN at the level of distinct gene LFC and
PAL for different pathways (Figure 9, Supplementary Material
S7, on the example of breast cancer samples).

We, therefore, conclude that our tests with the case-to-control
LFC, PAL, and BES metrics showed that the Sh2PBR mode had the
best performance in terms of close to 1 correlation and regression
coefficients, and the minimal percentage of sign-changing LFC/
PAL/BES values.

FIGURE 10
Principle component analysis for the 285 genes located on X chromosome, which survived Shambhala harmonization. Red and blue dots
correspond to female andmale cancer patients, respectively. Dark dots represent themedian values. (A)QN, (B)DESeq2, (C) Sh1, (D) Sh2PBR, (E) Sh2QBR,
(F) Sh2RBR.
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3.3 Retention of biological properties after
uniformly shaped harmonization

Besides many statistical performance indicators such as
correlation and regression coefficients, sign stability rates, and
ML accuracy, it is also important whether the harmonization
retains general biological characteristics of biosamples. Otherwise
harmonization output will have little sense even when the statistical
metrics look acceptable. One such simple test for retention of
biological significance can be done with the sex-specific gene
expression. Out of 848 X-chromosome genes, 285 survived
Shambhala harmonization, and none survived among the
47 Y-chromosome genes (Supplementary Material S8). Using
expression of these survivor X-inked genes as the biomarkers, we
performed a principal component analysis assay to check for the
presence of distinct clusters formed by the male and female patient
biosamples from the Oncobox database (for 202 male and
357 female patients). It can be seen from Figure 10 that all
Shambhala modes retained sex specific gene expression pattern
comparable to QN, and better than for DESeq2.

We also considered the differential gene patterns between
different breast cancer molecular subtypes. Although we expect no
essential batch effect in the Oncobox data, the overall expression
pattern seems tangled. In terms of clustering dendrograms, the
hormone-dependent (ESR1 and PGR-positive subtypes), HER2-
positive, and triple negative cancer samples are mixed together for
all normalization/harmonization methods (Supplementary
Material S9). The standard pipelines for differential gene
expression analysis (Kuznetsova et al., 2021) seem
inappropriate since Shambhala affects the absolute values of
LFC. However, Shambhala showed strong ability to retain ROC
AUC2 metrics between these tumor subtypes. Here we obtained

FIGURE 11
UpSet intersection diagrams (Conway et al., 2017) of marker genes (AUC > 0.80) for the comparison of breast cancer (BC) expression profiles of
different molecular subtypes. (A) HER2-positive vs. hormone-dependent BC. (B) triple negative vs. HER2-positive BC. Along the x-axis of the UpSet
diagrams, all observed intersections of the analyzed sets are represented. The intersections are marked with turquoise dots, with the rows of the dot
matrix corresponding to different sets, and columns showing the intersection combinations. UpSet diagrams were proposed as more informative
alternative to traditional Venn diagrams for the analysis of more than four intersecting datasets (Lex et al., 2014).

2 The ROC (receiver–operator curve) is a widely-used graphical plot that
illustrates the diagnostic ability of a binary classifier system as its
discrimination threshold is varied. The ROC is created by plotting the
true positive rate (TPR) against the false positive rate (FPR) at various
threshold settings. The area under the ROC curve, called ROC AUC, or
simply AUC, is routinely employed for assessment of any classifier’s quality.

Frontiers in Molecular Biosciences frontiersin.org18

Borisov et al. 10.3389/fmolb.2023.1237129

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1237129


pools of marker genes by calculating AUC (with the threshold of
AUC > 0.8) for two pairwise comparisons: (i) HER2-positive vs.
hormone-dependent BC; (ii), Triple negative vs. HER2-positive
BC. For triple negative vs. HER2-positive, and for HER2-positive
vs. hormone-dependent breast cancer, the Sh2QBR and Sh2RBR
methods introduced numerous artifacts with the marker genes
that were absent for QN. Interestingly, DESeq2 also introduced
many genes with AUC > 0.8 for HER2-positive vs. hormone-
dependent comparison that were absent for QN, Sh2PBR, and Sh1
(Figure 11, Supplementary Material S10). Table 6 and
Supplementary Material S11 show the most frequently
prescribed (by the Oncobox drug scoring system) drugs, and
most up-and downregulated genes (with gene description) and
pathways for three BC subtypes and different harmonization
methods.

Thus, our tests with the expression of the X-chromosome genes
in male and female cancer patients, and with marker genes for the
hormone-dependent vs. HER2-positive vs. triple-negative breast
cancers confirmed the best performance of the Sh1 and Sh2PBR
modes over other methods tested.

4 Discussion

Dozens of methods for cross-platform normalization have been
developed for the analysis of both microarray hybridization and
RNA sequencing gene expression data, yet none of them is currently
recognized as an overall gold standard (Borisov and Buzdin, 2022).
The majority of these methods return output data in a flexible
format (Piccolo et al., 2013; Thompson et al., 2016; Franks et al.,
2018; Maleknia et al., 2020; Zhang et al., 2020; Tang et al., 2021;
Huang et al., 2022) which requires recalculation of all expression
samples every time upon the addition of new gene expression
profiles. In search for the universal output format, we developed
a novel approach termed Shambhala for uniformly shaped cross-
platform harmonization of gene expression data (Borisov et al.,
2019; Borisov et al., 2022; Borisov and Buzdin, 2022). The key
feature of Shambhala is the one-by-one conversion of each

individual profile into the universal shape of the reference
definitive dataset independently from the other profiles. This not
only creates the basis for unlimited number of further updates of the
gene expression bank(s), but also makes it possible to combine
together any number of expression datasets. Shambhala allows
adding new samples to previous normalized/harmonized data set
without the need for renormalizing them, with no currently known
limitations for the number of merged datasets and number of
samples in such datasets.

In our opinion, the current versions of Shambhala have the
following major limitations: limited repertoire of normalized human
genes (~8,000, or ~40% of all protein-coding genes) and higher
calculation costs per individual profile due to the algorithm
complexity. However, Shambhala has the following advantage
over other normalization methods: its output is returned in a
universal format comparable with all other “shambhalized”
human profiles obtained using any experimental platform or
protocol. This requires no recalculation of the whole dataset
upon the addition of new sample(s). In the current version of
Shambhala, the maximum amplification of signal-to-noise ratio
was prioritized whereas it resulted in a reduced spectrum of
genes in the harmonized output. Thus, we added reliability
expression filters (Borisov et al., 2019) and the selection of the
most highly expressed genes during intersection with the auxiliary
datasets (Borisov et al., 2022). The resulting reduced gene set,
however, includes 73%–89% of genes participating in molecular
pathways, depending on the pathway database (Nishimura, 2001;
Schaefer et al., 2009; Croft et al., 2014; Zolotovskaia et al., 2022) and
~90% of molecular targets of targeted cancer therapeutics (Table 5)
which makes such an analysis meaningful for cancer research.
However, developing the next versions of Shambhala enabling
the high-quality transformation of a greater proportion (ideally
all) of human genes, and also non-human genes for other model
objects will be a matter of our further studies.

Our previous analysis (Borisov et al., 2022) has demonstrated
the strong capacity of the cubic transformation-based Shambhala
method (Shambhala-2) to eliminate the platform bias from the
clustering dendrograms of gene expression profiles, which assured

TABLE 6 Most frequently prescribed drugs, according to Oncobox drug scoring system for 74 breast cancer samples and different harmonization methods.

Subtype Drug QN DESeq2 Sh1 Sh2PBR Sh2QBR Sh2RBR

Hormone-
dependent

1st Toremifene Toremifene Pertuzumab Toremifene Perifosine Erdafitinib

2nd Pertuzumab Pertuzumab Trastuzumab Erdafitinib Toremifene Perifosine

3rd Trastuzumab Trastuzumab Erdafitinib Pertuzumab Erdafitinib Toremifene

HER2 positive 1st Pertuzumab Pertuzumab Duvelisib Pertuzumab Duvelisib Duvelisib

2nd Trastuzumab Trastuzumab Pertuzumab Trastuzumab Pertuzumab Pertuzumab

3rd Flavopiridol
(Alvocidib)

Flavopiridol
(Alvocidib)

Trastuzumab Flavopiridol
(Alvocidib)

Trastuzumab Trastuzumab

Triple negative 1st Flavopiridol
(Alvocidib)

Flavopiridol
(Alvocidib)

Duvelisib Aflibercept Duvelisib Duvelisib

2nd Duvelisib Ethinylestradiol Flavopiridol
(Alvocidib)

Flavopiridol
(Alvocidib)

Perifosine Ethinylestradiol

3rd Binimetinib
(MEK162)

Bosutinib Binimetinib
(MEK162)

Bevacizumab Ethinylestradiol Perifosine
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grouping of the samples according to their biological origin. Here we
further assessed the performance of four modifications of
Shambhala by applying twelve criteria that characterize the
retention of biological functional properties and differential gene
expression patterns in thousands of samples from various human
tissue types.

Ideally, harmonization of gene expression should provide.

- Clustering of samples according to their biological features,
and not according to technical factors like platform/protocol
used;

- Close to 1 correlation coefficients for gene expression values in
comparison with the initial datasets;

- Close to 1 linear regression coefficients for relative gene
expression values and their derivatives like pathway
activation levels (PAL) and drug efficiency scores (BES) in
comparison with the initial datasets;

- Stability of sign for logarithmic relative gene expression values
like fold-change and their derivatives like drug efficiency score
in comparison with the initial datasets.

- Conservation or “common sense” biological properties, such
as expression levels of sex-related genes, or marker genes
between disease subtypes.

In addition, taking into account Big Data analytic approaches,
another desirable feature is data suitability for various ML methods,
e.g., local and global. An ideal harmonization of gene expression
data has to generate similar molecular profiles for the samples of
similar biological origin, even when obtained using different
equipment and protocols. This means that the ML process
trained on the harmonized data obtained using one platform and
validated on the harmonized data obtained using another platform
should show high overall accuracy. Likewise, the profiles of similar
biological origin but obtained using different equipment/protocols,
should be strongly correlated.

We compared performance of four available versions of Shambhala
with the gold standard flexible output methods QN and
DESeq2 according to twelve analytic criteria reflecting the above
considerations (Table 7). For most criteria the Sh2PBR mode was
either better (criteria #3, 4, 5, 8, 11, and 12) or at least comparable

TABLE 7 Twelve performance criteria for versions of Shambhala method with universal gene expression harmonization output in comparison with the flexible
output methods QN, DESeq2, and ComBat.

Criteria Sh1 Sh2PBR Sh2QBR Sh2RBR

1 Prediction accuracy for local ML
methods (kNN)

Similar to QN and DESeq2,
Better than Combat ~ 0.87

Similar to QN and DESeq2. Better
than Combat ~ 0.87

Similar to QN and DESeq2.
Better than Combat ~ 0.87

Similar to QN and
DESeq2 Better than Combat
~ 0.87

2 Prediction accuracy for global ML
methods (SVM)

Similar to QN and DESeq2.
Better than Combat ~ 0.75

Similar to QN and DESeq2. Better
than Combat ~ 0.75

Similar to QN and DESeq2.
Better than Combat ~ 0.75

Similar to QN and DESeq2.
Better than Combat 0.75

3 Quality of hierarchical clustering by
biological features

Slightly higher than for QN
and DESeq2. Comparable
performance to ComBat

Significantly higher than for QN
and DESeq2. Comparable
performance to ComBat

Similar to QN and DESeq2.
Comparable performance to
ComBat

Similar to QN and DESeq2.
Comparable performance to
ComBat

4 Correlation of gene expression
profiles before/after harmonization

Comparable to QN, DESeq2,
and ComBat ~0.85

Significantly higher than for QN,
DESeq2, and ComBat ~1

Comparable to QN,
DESeq2, and ComBat ~0.85

Lower than for QN,
DESeq2, and ComBat ~0.80

5 Linear regression coefficient for
gene expression profiles before/after
harmonization

Similar to QN and
DESeq2 ~0.92

Better than for QN and DESeq2
~ 1

Lower than for QN and
DESeq2 ~0.87

Lower than for QN and
DESeq2 ~0.85

6 Correlation of BES values after QN
(gold standard) and Shambhala

Similar for all versions of
Shambhala ~0.75

Similar for all versions of
Shambhala ~0.75

Similar for all versions of
Shambhala ~0.75

Similar for all versions of
Shambhala ~0.75

7 Linear regression coefficient for BES
values after QN and Shambhala

~1 ~0.25 ~1.25 ~1.25

8 Retention of positive/negative sign
of BES after QN (gold standard) and
Shambhala

Drops from 15% to 0% for the
width of significance
threshold from 0 to 10

The best retention rate, drops
from 12% to 0% for the width of
significance threshold from 0 to 10

Drops from 15% to 0 for the
width of significance
threshold from 0 to 10

Drops from 15% to 0 for the
width of significance
threshold from 0 to 10

9 Correlation of BES values using
ANTE and GTEx normal reference
sets

Higher than for QN by
approximately 20%

Higher than for QN by
approximately 20%

Higher than for QN by
approximately 20%

Higher than for QN by
approximately 20%

10 Linear regression coefficient of BES
values for ANTE and GTEx normal
reference

~1.15 ~0.85 ~0.85 ~0.85

11 Retention of positive/negative sign
of BES after harmonization and
using ANTE or GTEx normal
reference

About 40% higher than QN More than 2 times higher than
QN, about two times higher than
any other version of Shambhala

About 40% higher than QN About 40% higher than QN

12 Retention of biological properties Similar to QN, better than
DESeq2

Similar to QN, better than DESeq2 Worse than QN and
DESeq2: introduced many
artifact marker genes

Worse than QN and
DESeq2: introduced many
artifact marker genes
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(#1, 2, and 6) than any other method under consideration. Only for the
criterion #7, themethod Sh2PBR showed unusually low linear regression
coefficient k ~ 0.20÷0.25, which indicates that Sh2PBR causes four-to-
five-fold decrease of case-to-control log-fold changes in gene expression
levels (Figure 6B). However, this proportional variation of case-to-control
log-fold changes does not perturb the correlation coefficients, order, and
expression ranks of the individual genes and molecular pathways, and
also of the predicted drug efficiency scores (Supplementary Figures
S1–S6). Moreover, after the Sh2PRB harmonization, the percentage of
sign-changed BES values remained lower than all other harmonization
methods by approximately 20% (Figures 8A,B).

In Table 8 we summarized the recommendations for the use of
different normalization/harmonization methods. Overall, our
correlation, regression, and sign-change analysis has demonstrated
the best results of the Sh2PBR version of Shambhala. We, therefore,
suggest that Sh2PBR can be considered as the method of choice for
harmonization of various types of human gene expression data.
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TABLE 8 Recommendations for applications of gene expression normalization/harmonization methods.

Reference Method Mathematical principle Algorithmic
complexity

Advantages Shortcomings

Bolstad et al.
(2003)

Quantile
normalization (QN)

Ranking the expression levels of
different genes within each profile
and setting the expression level of
each gene to the mean value (over
all profiles) for the respective rank

Relatively simple Gold standard method for intra-
platform normalization of the
MH data

Avoiding being used for cross-
platform harmonization of the
MH data; requiring recalculation
of all gene expression-based values
after addition of new samples

Love et al.
(2014)

Differential Gene
Expression in
Sequencing 2
(DESeq2)

Transform based on the negative
binomial distribution

Moderately
complex

Gold standard for intra-platform
normalization of RNAseq data

Requiring recalculation of all gene
expression-based values after
addition of new samples

Borisov et al.
(2019)

Shambhala-1 (linear
Shambhala)

Uniformly shaped harmonization
based on the XPN (Shabalin et al.,
2008) method

Complex Working for harmonization of
unlimited number of datasets of
any size, for both MH and
RNAseq data or their
combinations; not requiring
recalculation of gene expression-
based values after addition of
new samples

Resource-demanding. Reduces the
number of protein-coding genes
in the harmonized output down to
~8000 items

Borisov et al.
(2022)

Shambhala-2 (cubic
Shambhala)

Uniformly shaped harmonization
based on the CuBlock (Junet et al.,
2021) method

Complex Working for harmonization of
the unlimited number of
datasets of any size, for both MH
and RNAseq data or their
combinations; not requiring
recalculation of gene expression-
based values after addition of
new samples

Resource-demanding. Reduces the
number of protein-coding genes
in the harmonized output down to
~8000 items
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