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The function of an antibody is intrinsically linked to the epitope it engages. Clonal
clustering methods, based on sequence identity, are commonly used to group
antibodies that will bind to the same epitope. However, such methods neglect the
fact that antibodies with highly diverse sequences can exhibit similar binding site
geometries and engage common epitopes. In a previous study, we described
SPACE1, a method that structurally clustered antibodies in order to predict their
epitopes. This methodology was limited by the inaccuracies and incomplete
coverage of template-based modeling. In addition, it was only benchmarked at
the level of domain-consistency on one virus class. Here, we present SPACE2,
which uses the latest machine learning-based structure prediction technology
combined with a novel clustering protocol, and benchmark it on binding data that
have epitope-level resolution. On six diverse sets of antigen-specific antibodies,
we demonstrate that SPACE2 accurately clusters antibodies that engage common
epitopes and achieves far higher dataset coverage than clonal clustering and
SPACE1. Furthermore, we show that the functionally consistent structural clusters
identified by SPACE2 are even more diverse in sequence, genetic lineage, and
species origin than those found by SPACE1. These results reiterate that structural
data improve our ability to identify antibodies that bind to the same epitope,
adding information to sequence-based methods, especially in datasets of
antibodies from diverse sources. SPACE2 is openly available on GitHub (https://
github.com/oxpig/SPACE2).
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1 Introduction

Antibodies are important components of the adaptive immune system. An antibody
recognizes foreign particles by binding to a specific site—the epitope—on their surface. As
antibody function is tightly linked to the epitope it engages, studying epitopes is essential to
understand immunology. For example, determining epitope specificities of antibody
repertoires can increase our understanding of the immune response to disease (Tsioris
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et al., 2015; Bashford-Rogers et al., 2019) or differences of the
immune system between individuals (Briney et al., 2019).
Furthermore, epitope profiling can be applied in antibody drug
discovery to identify both new binders to a desired target (Reddy
et al., 2010; Zhu et al., 2013; Tsioris et al., 2015) and binders with
improved affinity (Hsiao et al., 2019).

Epitopes can be determined at high resolution by solving the
structure of an antibody in complex with its antigen. However,
structure determination methods are too resource-intensive to be
used to explore large datasets (Nilvebrant and Rockberg, 2018).
Experimental epitope binning methods, such as competition assays
(Abdiche et al., 2009), scale better; however, it remains difficult to
analyze very large datasets as costs grow at O(n2) with the
number of antibodies (n) to be evaluated. Competition assays
also only offer low resolution as they struggle to distinguish
between antibodies that bind to the same site and those that bind
to distinct sites but overlap sterically.

Prior computational clustering of antibodies into functional
groups that engage the same epitope can reduce the number of
experiments that needs to be run or even remove the need for
experimental epitope determination entirely. Most computational
epitope profiling methods group antibodies based on sequence
similarity. Clonotyping, the most widely used method, attempts
to link antibodies that originate from the same progenitor B-cell
(Greiff et al., 2015; López-Santibáñez-Jácome et al., 2019). The exact
definition of a clonotype varies across the literature. Commonly,
antibodies that originate from the same heavy chain V and J genes,
match in CDRH3 length, and exceed a threshold CDRH3 sequence
identity are considered a clonotype. Threshold values between 80%
and 100% have been reported. To introduce additional leniency, the
requirement for matching J genes can be neglected (Greiff et al.,
2015). Clonal clustering is usually highly accurate, and antibodies
within a cluster tend to engage the same epitope.

Clonotyping was originally intended to trace lineages of
antibodies within an individual. Its use in functional clustering
thus makes the assumption that antibodies against a given
epitope must originate from progenitor B cells with shared
genetic origins. However, antibodies from different lineages and
with highly dissimilar sequences can adopt a similar binding site
geometry and engage the same epitope (Scheid et al., 2011; Joyce
et al., 2016; Rijal et al., 2019; Robinson et al., 2021; Wong et al.,
2021). The ability to determine functional convergence is especially
important when comparing the immune response of individuals, as
different individuals exhibit personalized immunoglobulin gene
usages (Briney et al., 2019). As clonotyping is not able to link
antibodies from distinct genetic lineages, it loses power when
analyzing antibodies originating from different sources.

Alternative methods have been developed to try and identify
functionally equivalent antibodies that are not similar in sequence.
Clustering antibodies by sequence similarity across predicted
paratope residues can link antibodies from different clonotypes
(Richardson et al., 2021). However, methods that consider
structural similarity to cluster antibodies are even better suited to
detect less related sequences with functional convergence because
the binding site structure provides more direct evidence of antibody
function than its sequence. Several methods are available that
attempt to functionally link antibodies based on a representation
containing structural information in addition to physicochemical

properties of paratope residues (Ripoll et al., 2021; Wong et al.,
2021).

In a previous study, we described the SPACE1 method
(Robinson et al., 2021), which clusters antibodies based on
structural similarity of homology models. The algorithm
accurately clusters antibodies that bind to the same epitope and
is able to functionally link antibodies with diverse sequences.
However, SPACE1 is limited by the coverage of homology
modeling (in the original study, only 73% of the data could be
modeled to a usable standard) and its inaccuracies. The method was
also only benchmarked at the level of domain consistency on one
virus class. Recent progress in machine learning-based antibody
structure prediction has led to more accurate structural models than
those obtained with homology-based approaches, especially in cases
where no template with high-sequence similarity is available
(Ruffolo et al., 2020; Baek et al., 2021; Jumper et al., 2021;
Abanades et al., 2022a; Ruffolo et al., 2022a; Abanades et al.,
2022b; Ruffolo et al., 2022b; Lin et al., 2022). Higher accuracy
and higher confidence in structural models also allow increased
coverage and have the potential to improve structure-based epitope
profiling.

Here, we present the Structural Profiling of Antibodies to
Cluster by Epitope 2 (SPACE2) algorithm. SPACE2 builds on
recent progress in machine learning-based antibody structure
prediction and uses a novel clustering protocol systematically
optimized and extensively benchmarked on epitope-resolution
binding data. We show that SPACE2 outperforms SPACE1 by
improving data coverage and identifying clusters even more
diverse in sequences, genetic lineages, and species origin. These
results underline that structural data, which can now be rapidly and
easily generated through structure prediction tools, contain
orthogonal functional information to sequence and should be
considered when investigating antibody function.

2 Materials and methods

2.1 Datasets

Six datasets of antigen-specific antibodies were used to analyze
SPACE2 clustering performance.

The training set on which the clustering algorithm, thresholds,
and antibody region were set consisted of 3,051 antibodies against
the SARS-CoV-2 receptor-binding domain (RBD). Antibodies were
annotated with groups of overlapping epitopes originating from
mutation escape profiling (Cao et al., 2023). We refer to this dataset
as the Cao et al. (2023) training set throughout the paper.

CoV-AbDab (Raybould et al., 2021a), a dataset of anti-lysozyme
antibodies, a non-public dataset of antibodies against Ebola viruses
(EVs), and two non-public dataset of antibodies against non-viral
targets (NVA1 and NVA2) were used as additional datasets to
evaluate SPACE2. CoV-AbDab is a database of antibodies against
coronavirus antigens, such as those from SARS-CoV-2, SARS-CoV-
1, and MERS-CoV. A version of CoV-AbDab timestamped
3 October 2022 was used containing 10,719 antibodies with
sequence data. As CoV-AbDab is a collection of antibodies
reported in the literature, it contains the Cao et al. (2023)
training set. When using CoV-AbDab as a test set [denoted as
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CoV-AbDab (test)], the training set was removed, and only the
remaining 7,685 antibodies were included. Epitope data in CoV-
AbDab are reported as in the original publications and range from
the antigen to domain level.

A dataset of anti-lysozyme antibodies was created from all
53 lysozyme-specific antibodies in the structural antibody
database (SAbDab) (Dunbar et al., 2014; Schneider et al., 2022),
for which the antibody–antigen complex structure has been solved.
Antibodies were grouped by their epitope using the Ab-ligity
method (Wong et al., 2021) and annotated as binding to the
same epitope if their Ab-ligity score was greater than a threshold
of 0.1 (as in the original paper). Similarity of epitopes within an
epitope group was confirmed by visual inspection.

The EV set contains 126 antibodies with epitope data ranging
from antigen to domain level. The NVA1 set contains 31 antibodies
with epitope data from competition assays. NVA2 contains
33 antibodies with epitope data from mutation escape profiling.

2.2 SPACE1

The original SPACE1 method clusters antibodies by the
structural similarity of homology models. The algorithm was run
as detailed in Robinson et al. (2021).

Homology models were produced using ABodyBuilder (Leem
et al., 2016). ABodyBuilder uses structures from a database to build
its models. In this study, we used quality-filtered SAbDab (Dunbar
et al., 2014; Schneider et al., 2022) entries timestamped before 6 July
2022. Quality filtering restricts structures to those solved by X-ray
crystallography and excludes structures with a resolution of >2.5 Å
and structures containing residues with a B-factor >80. In a standard
ABodyBuilder run, the method first attempts to model CDR loops
with a template database search method (Choi and Deane, 2010). If
no suitable template is found for CDRs, hybrid homology/ab initio
modeling is performed (Leem et al., 2016). Only models for which
homology templates for all six CDR loops were found are used for
clustering in the SPACE1 method to keep the models as accurate as
possible.

The remaining homology models are clustered by structural
similarity of CDRs. The models are split into groups of antibodies
with identical CDR lengths. Antibodies in each group are then
clustered using a greedy clustering algorithm. The first antibody
in the group is selected as the cluster center, and all antibodies
with a CDR Cα RMSD smaller than a specified threshold after
alignment of framework residues are added to the cluster. After
all antibodies have been compared against the first cluster center,
the algorithm selects the next unclustered antibody as a new
cluster center, and cluster members are chosen as in the previous
step. In addition to the RMSD threshold of 0.75 Å suggested by
Robinson et al. (2021), we also assessed the performance at a
1.25 Å threshold.

2.3 SPACE2

Our novel SPACE2 algorithm clusters antibodies by the
similarity of models obtained from an ML-based structure
prediction tool. The method functions in four main steps.

Initially, a structural model of the antibody Fv is produced using
ABodyBuilder2 (Abanades et al., 2022b). ABodyBuilder2 is a deep-
learning-based tool for antibody structure prediction and was
trained on SAbDab structures timestamped up to 31 July 2021.
The models are then split into groups of identical CDR lengths. The
models in each group are then structurally aligned on the Cα of
residues in framework regions, and a pairwise distance matrix is
computed of the Cα RMSDs of CDR loop residues. The antibodies
are then clustered based on these distances.

2.3.1 Clustering algorithms
Eight different clustering algorithms were explored

(agglomerative clustering, affinity propagation, DBSCAN,
OPTICS-xi, OPTICS-DBSCAN, K-means, Butina clustering, and
greedy clustering). Agglomerative clustering (Murtagh and
Contreras, 2012), affinity propagation (Frey and Dueck, 2007),
DBSCAN (Schubert et al., 2017), OPTICS-xi, OPTICS-DBSCAN
(Ankerst et al., 1999), and K-means (MacQueen, 1967) were
implemented using the scikit-learn (Pedregosa et al., 2011).
Butina clustering (Butina, 1999) was implemented using the
RDKit (Landrum, 2006). A greedy clustering algorithm, grouping
antibodies as the algorithm described in Section 2.2, was
implemented.

Parameters and evaluated ranges for each algorithm are shown
in Table 1. The K-means algorithm requires an additional parameter
(K) that corresponds to the predetermined number of clusters. K was
set to the number of clusters obtained from agglomerative clustering
using the best performing parameters.

2.3.2 SPACE2-HC
A variation of the SPACE2 algorithm was implemented that

clusters antibodies based on the structural similarity of heavy chains
only (SPACE2-HC). The light chains were included for the
modeling step, as ABodyBuilder2 (Abanades et al., 2022b)
requires sequences of both chains as an input. After this step,
light chains were ignored. Antibodies were grouped based on the
length of the heavy chain CDRs, aligned on heavy chain framework
regions, and the Cα RMSD of CDRs H1-3 calculated. Agglomerative
clustering with a “complete” linkage criterion was used as the
clustering algorithm of SPACE2-HC.

2.3.3 SPACE2-Paratope
A second variation of the SPACE2 algorithm was

implemented that clusters antibodies based on the structural
similarity of CDR loops, which are predicted to form part of
the paratope (SPACE2-Paratope). Structural models were
produced using ABodyBuilder2 (Abanades et al., 2022b). The
Paragraph method (Chinery et al., 2023) with a classifier cut-off
of 0.734, as suggested in the original paper, was then used to
predict residues that are part of the paratope based on the models.
All CDRs containing at least one paratope residue were then
labeled as paratope CDRs. Antibodies were divided into groups
containing the same set of paratope CDRs. Antibodies in each
group were further grouped based on the length of the paratope
CDRs, aligned on heavy chain framework regions, and clustered
based on the Cα RMSD of paratope CDRs. Agglomerative
clustering with a “complete” linkage criterion was used as the
clustering algorithm of SPACE2-Paratope.
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2.4 Numbering scheme and region
definitions

IMGT numbering (Lefranc et al., 2003) and North CDR
definitions (North et al., 2011) are used throughout.

2.5 Analysis of structural clusters

2.5.1 Domain/epitope-consistent clusters
Antibody clusters generated for the Cao et al. (2023) training set,

NVA1 set, NVA2 set, and anti-lysozyme set were classified as
“epitope-consistent” or “epitope-inconsistent.” “Epitope-
consistent” clusters of the Cao et al. (2023) training, NVA1, and
NVA2 sets only contain antibodies that bind to the same epitope
group as determined by experimental epitope binning. “Epitope-
consistent” clusters of the lysozyme dataset only contain antibodies
that bind to the same residue-level epitope determined using crystal
structures.

Owing to the lower resolution of epitopes reported in the EV set
and CoV-AbDab, clusters of these datasets were classified as
“domain-consistent” and “domain-inconsistent.” EV set clusters
were labeled as “domain-consistent” if they only contain
antibodies that engage the same antigen domain. CoV-AbDab
clusters that satisfy the following rules, consistent with previous
studies (Robinson et al., 2021), were determined to be “domain-
consistent”:

1. Clusters that only contain antibodies that bind to the same
antigen and domain.

2. Clusters that contain antibodies binding to the same domain and
others that bind to the same antigen without domain-level
resolution.

3. Clusters that only contain antibodies that bind to the same
antigen but do not have domain-level resolution of the
epitope data.

4. Clusters with internally consistent epitope data, e.g., a cluster of
antibodies labeled to bind to the spike (S) protein N-terminal
domain (NTD) and others labeled as S non-RBD binders, as S
NTD is a subdomain of S non-RBD.

2.5.2 Performance metrics
Throughout this study, we used seven metrics to analyze

functional clustering. Two accuracy metrics, the fraction of
epitope-consistent clusters (number of epitope-consistent
multiple-occupancy clusters/number of multiple-occupancy
clusters) and the fraction of clustered antibodies in epitope-
consistent clusters (number of antibodies in epitope-consistent
multiple-occupancy clusters/number of antibodies in multiple-
occupancy clusters), were used. Two coverage metrics, the
number of multiple-occupancy clusters and the number of
antibodies in multiple-occupancy clusters, were used. In order to
examine accuracy and coverage with onemeasure, we also calculated
the number of antibodies in consistent multiple-occupancy clusters.
Two further metrics were used to assess the diversity of antibodies
within clusters: the fraction of functionally consistent clusters
containing antibodies from more than one clonotype and the
mean CDRH3 sequence identity within functionally consistent
clusters.

2.5.3 Random baseline
Random clustering was performed as a baseline. The

distribution of cluster sizes obtained from the evaluated
clustering algorithm with specific parameters was recorded.
Clusters with an identical size distribution were then sampled
randomly from the dataset, and performance metrics were

TABLE 1 Clustering algorithms and parameter ranges/values evaluated during optimization.

Algorithm Parameter Range/values Optimal value

Greedy clustering RMSD threshold 0.5–10 Å 1.25 Å

Agglomerative clustering RMSD threshold 0.5–10 Å 1.25 Å

Linkage criterion Complete, average, and single Complete

Affinity propagation Preferences −5 to 4 Median (RMSD matrix)

DBSCAN RMSD threshold 0.5–5 Å 1 Å

Minimum samples 2 and 5 2

OPTICS-xi RMSD threshold 0.5–5 Å 1.5 Å

Minimum samples 2 2

xi 0.005–0.5 ≤0.01

OPTICS-DBSCAN RMSD threshold 0.5–2 Å 1 Å

Minimum samples 2 2

K-means Initialization Random, K-means++ K-means++

Butina clustering RMSD threshold 0.5–5 Å 1 Å

Reordering True and false False
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calculated. Sampling was repeated 100 times, and the metrics
averaged.

2.5.4 Clonotyping
Clonotyping was performed using an in-house script. Lenient

VH-clonotyping and Fv-clonotyping threshold conditions based on
community standards were used (Greiff et al., 2015; López-
Santibáñez-Jácome et al., 2019). A VH-clonotype was defined as
a match in IGHV genes, length-matched CDRH3, and >80%
CDRH3 sequence similarity. Fv-clonotypes were defined as a
match in VH-clonotype, matching of IG[K/L]V genes, length-
matched CDRL3, and >80% sequence identity of CDRL3.

3 Results

The original SPACE1 algorithm was developed to cluster
antibodies by structural similarity with the aim of better
identifying functional convergence. It grouped antibodies based
on the structural similarity of homology models. This method
was not systematically optimized and only benchmarked on a
single dataset of low-resolution epitope data. Newly available
ML-based structure prediction tools produce more accurate
models and have better coverage than homology modeling. Here,
we introduce SPACE2, which uses a state-of-the-art antibody
structure prediction method and a novel clustering protocol that
has been extensively optimized and then benchmarked on several
datasets of high-resolution epitope data.

SPACE2 clusters antibodies in four main steps. Initially, structural
models are produced using ABodyBuilder2 (Abanades et al., 2022b).
The models are then separated into groups of antibodies with identical
lengths of the six CDRs, followed by the computation of a pairwise
distance matrix of CDR Cα RMSDs. In the final step, a clustering
algorithm divides the antibodies into structural clusters. Although some
loops of different lengths can adopt similar structures, we have decided
to restrict structural comparison to antibodies with identical CDR
lengths for the SPACE2 method as evidence suggests length-
independent structural similarities are infrequent (Nowak et al.,
2016; Wong et al., 2019). Restricting structural comparison to CDRs
of the same length also allows for more rapid computation as RMSDs
do not have to be calculated between all pairs of antibodies within the
set. Optimization of the clustering protocol was performed on a training
set of 3,051 antibodies against the SARS-CoV-2 receptor-binding
domain (RBD) (Cao et al., 2023).

3.1 Evaluating an optimal clustering
algorithm

We tested eight widely used clustering algorithms, greedy
clustering, affinity propagation (Frey and Dueck, 2007), Butina
clustering (Butina, 1999), DBSCAN (Schubert et al., 2017),
OPTICS-DBSCAN, OPTICS-xi (Ankerst et al., 1999),
agglomerative clustering (Murtagh and Contreras, 2012), and
K-means (MacQueen, 1967), for their ability to correctly group
functionally consistent antibodies in the Cao et al. (2023) training
set. To assess the methods, we used the number of antibodies in
epitope-consistent multiple-occupancy clusters as our target

performance metric as it provides a trade-off between clustering
accuracy and dataset coverage. High accuracy or coverage metrics
individually do not necessarily indicate a good epitope profiling
method (Figure 1). High accuracy can be achieved by dividing the
dataset into very small clusters that are highly likely to be epitope/
domain-consistent but do not cover the full diversity of antibodies
able to engage a given epitope. Maximal coverage can be achieved by
putting all antibodies into a single cluster, which does not provide
any useful epitope information.

A parameter scan was carried out to find the optimal setting for
each clustering method. The ranges and optimal values of the
evaluated parameters are shown in Table 1. As expected, lenient
parameters increased dataset coverage, whereas stringent
parameters improve accuracy, and the trade-off was maximized
at intermediate values. The best performing algorithms, as defined
by maximizing the number of antibodies in epitope-consistent
multiple-occupancy clusters, were agglomerative clustering
(optimal parameters: linkage criterion = complete; RMSD
distance threshold = 1.25 Å), OPTICS-xi (optimal parameters: xi
≤ 0.01; RMSD distance threshold = 2 Å), and K-Means (optimal
parameters: initialization method = K-means++), where K was set to
the number of clusters obtained by agglomerative clustering with
optimal parameters (Figure 2). As K-means does not lead to an
improvement over agglomerative clustering, it was disregarded for
further analysis. A visualization of the clustering obtained by the
eight algorithms is shown in Supplementary Figure S1.

Agglomerative clustering andOPTICS-xi clusteringwere compared
in more detail (Supplementary Table S1). Both algorithms achieve a
similar clustering accuracy and dataset coverage. Agglomerative
clustering produces larger clusters with a mean cluster size of
3.0 members and a maximum of 28 than OPTICS-xi clusters with
mean 2.7 and maximum 11. When epitope-consistent clusters are
larger, it suggests that they are better capturing the full diversity of the
antibodies able to engage a given epitope. Therefore, agglomerative
clustering was selected for use in SPACE2.

3.2 Examining the behavior of agglomerative
clustering across different structural
similarity thresholds

The RMSD threshold parameter of agglomerative clustering
determines the leniency of the algorithm as it sets the maximum
distance between any two antibodies in a cluster. Small thresholds
restrict clustering to highly similar structures, whereas larger values
allow clusters to contain more dissimilar antibodies. We evaluated
agglomerative clustering for threshold values between 0.5 and 5 Å to
assess how clustering results are affected.

Four metrics were monitored to assess the accuracy of clustering
and dataset coverage. The fraction of epitope-consistent clusters
(number of epitope-consistent multiple-occupancy clusters/number
of multiple-occupancy clusters) and the fraction of clustered
antibodies in epitope-consistent clusters (number of antibodies in
epitope-consistent multiple-occupancy clusters/number of
antibodies in multiple-occupancy clusters) were used as an
accuracy measure. The number of multiple-occupancy clusters
and the number of antibodies in multiple-occupancy clusters
provide information on dataset coverage.
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Clustering accuracy and data coverage show a strong
dependence on the RMSD threshold (Figure 3). At thresholds
≤0.75 Å, the clustering is highly accurate. More than 80% of
clusters are epitope-consistent, and approximately 80% of
clustered antibodies are in epitope-consistent clusters. Increasing
the threshold leads to a rapid drop in accuracy but improves dataset
coverage. The number of antibodies in multiple-occupancy clusters
starts to plateau at approximately 3 Å. The large changes in accuracy
and data coverage as a function of threshold suggest that the
threshold should be adjusted depending on the aim of the
epitope profiling task. Optimal clustering is achieved at a value of
1.25 Å, as defined by maximizing the number of antibodies in
epitope-consistent multiple-occupancy clusters. However, the
threshold can be set to any value between 0.75 and 3 Å to
increase accuracy or coverage.

In all the analysis to this point, we have reported only on clusters
that are 100% epitope-consistent (i.e., only contain antibodies

against the same epitope). To measure the inconsistency of the
remaining clusters, we analyzed the fraction of clusters in which at
least 70% of the antibodies engage the same epitope. An additional
12% of clusters are >70% epitope-consistent, and these clusters
contain an extra 26% of all antibodies contained in multiple-
occupancy clusters (Supplementary Figure S2). This result
indicates that even those clusters our standard performance
metrics are marking as incorrect may contain large amounts of
useful information.

3.3 Evaluating the optimal region for
clustering

The SPACE2 method calculates structural similarity of
antibodies across all six CDRs. However, not all CDRs are
equally involved in binding and we expect the structure of some

FIGURE 1
Illustration of the evaluation of clustering algorithms. Accuracy and coverage metrics were used to analyze clustering algorithms. Individually, these
metrics do not necessarily indicate a good clustering algorithm, instead a trade-off between accuracy and coverage should be monitored. (A) High
accuracy is achieved by making small clusters. These are likely to be epitope-specific; however, most antibodies are not contained in a cluster. (B) High
coverage is achieved by the formation of large clusters. These contain most of the antibodies in the dataset but do not tend to be epitope-specific.

FIGURE 2
Examination of clustering algorithms. Parameter scans of eight clustering algorithms were performed using the Cao et al. (2023) training set. The
performance of clustering wasmeasured in terms of the number of antibodies in epitope-consistentmultiple-occupancy clusters (y-axis). Themaximum
value of this metric achieved by a specific algorithm across all evaluated parameters when clustering the Cao et al. (2023) training set is shown. The ranges
and optimal values of the evaluated parameter are shown in Table 1. The agglomerative clustering algorithm selected for SPACE2 is highlighted in
blue.
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CDRs to be more important in determining epitope specificity than
the structure of others. Therefore, we investigated how the choice of
CDRs over which RMSDs are calculated impacts clustering. We
assessed two variations of SPACE2 that cluster based on subsets
of CDRs.

In the first variation, the algorithm was adapted to consider
structural similarity of heavy chain CDRs only (SPACE2-HC). This
approach was motivated by sequence-based methods, such as
clonotyping, which often achieve good performance considering
only the heavy-chain sequence. In SPACE2-HC, antibodies were
grouped based on the length of the heavy-chain CDRs, aligned on
heavy-chain framework regions, Cα RMSD of CDRs H1-3
calculated, and clustered with an agglomerative clustering
algorithm with a “complete” linkage criterion. An RMSD
threshold of 1.25 Å was found to optimize SPACE2-HC
(Supplementary Figure S3). SPACE2-HC performed worse than
the standard SPACE2 algorithm as measured by a 33% drop in
the trade-off metric of antibodies in epitope-consistent clusters
(Supplementary Table S2). Although SPACE2-HC slightly
increased dataset coverage, a substantial decrease in accuracy was
observed.

A second variation of SPACE2 was implemented to cluster
antibodies based only on the similarity of CDR loops that
contain paratope residues (SPACE2-Paratope). Paratope residues
were predicted using the Paragraph method (Chinery et al., 2023).
Models were grouped by the combination of CDR loops that contain

paratope residues (paratope CDRs). The models were then grouped
again based on the length of paratope CDRs, aligned on framework
regions, and the Cα RMSD of paratope CDRs was calculated. A
RMSD threshold of 1.5 Å was found to optimize agglomerative
clustering for SPACE2-Paratope (Supplementary Figure S3).
Measured by the trade-off metric, SPACE2-Paratope performed
worse than standard SPACE2 (Supplementary Table S2). A slight
drop in both clustering accuracy and data coverage was observed.

The best clustering results were achieved by clustering based on
the structural similarity of all six CDR loops. Therefore, the standard
SPACE2 method was chosen as the clustering protocol for further
analysis.

3.4 SPACE2 performs well on sets of
antibodies against diverse targets

SPACE2 was tested on five datasets of antigen-specific
antibodies using the clustering algorithm (agglomerative
clustering) and parameter choices (complete linkage criterion,
1.25 Å RMSD threshold) defined on the Cao et al. (2023)
training set. The test sets comprised a dataset of anti-lysozyme
antibodies, a non-public dataset of anti-Ebola virus antibodies, two
non-public datasets of antibodies against non-viral targets
(NVA1 and NVA2), and CoV-AbDab (test), a version of CoV-
AbDab with training set overlap removed (see Materials and

FIGURE 3
Results of agglomerative clustering as a function of RMSD threshold on the Cao et al. (2023) training set. Agglomerative clustering with a “complete”
linkage criterion was performed for threshold values between 0.5 and 5 Å. The values of the five performance metrics are plotted against evaluated
threshold values: (A) fraction of epitope-consistent clusters, (B) fraction of clustered antibodies in epitope-consistent clusters, (C) number of multiple-
occupancy clusters, (D) number of antibodies in multiple-occupancy clusters, and (E) number of antibodies in epitope-consistent multiple-
occupancy clusters. Results of a random clustering baseline (see Materials and Methods) are shown for comparison. Values for the number of multiple-
occupancy clusters and antibodies in multiple-occupancy clusters for the random baseline are matched to agglomerative clustering.
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Methods) (Raybould et al., 2021a). An overview of results from
clustering the test sets is shown in Table 2.

The anti-lysozyme dataset contains antibodies against five
distinct epitopes. SPACE2 clusters antibodies in this set with
high accuracy as 100% of clusters are epitope-consistent.
Good data coverage is observed, and 50 of the 53 antibodies
fall into multiple-occupancy clusters. SPACE2 divides the
dataset into eight clusters (Figure 4). We observe three cases

where antibodies binding to a common epitope are separated
into two clusters. Looking at these cases in more detail shows
that despite engaging the same epitope, the antibody structures
do not overlay perfectly. In each case, we observe antibodies
that bind to the epitope in two different binding poses, and
these are separated into distinct clusters by SPACE2. These
results show that SPACE2 groups antibodies with a high
resolution.

TABLE 2 Performance of SPACE2 on test datasets.

Dataset Anti-lysozyme mAbs CoV-AbDab (test) EV NVA1 NVA2

Antibodies in set 53 7,685 126 31 33

Fraction of antibodies modeled 1.0 1.0 0.87 1.0 1.0

Fraction of consistent clusters 1.0 0.85 0.78 0.83 1.0

Fraction of clustered antibodies in consistent clusters 1.0 0.80 0.74 0.86 1.0

Multiple-occupancy clusters 5 1,267 9 6 5

Antibodies in multiple-occupancy clusters 50 (94%) 4,188 (54%) 19 (15%) 14 (45%) 16 (48%)

Antibodies in consistent multiple-occupancy clusters 50 (94%) 3,353 (44%) 14 (11%) 12 (39%) 16 (48%)

Values of the five performance metrics and the fraction of antibodies successfully modeled using ABodyBuilder2 are shown for each dataset. For the two metrics of number of antibodies in

multiple-occupancy clusters and number of antibodies in epitope-consistent multiple-occupancy clusters, a percentage is shown additionally, indicating the percentage of antibodies in the

dataset. CoV-AbDab (test) denotes the subset of CoV-AbDab that is not contained in the Cao et al. (2023) training set (see Materials andMethods). CoV-AbDab (test) was used for this analysis

to prevent testing on training set antibodies.

FIGURE 4
Anti-lysozyme antibodies. Crystal structures of 53 antibody–lysozyme complexes are shown aligned on the antigen structure (gray). Antibodies are
colored according to the clusters assigned by SPACE2. (A)Overlay showing all 53 antibody–lysozyme complexes. (B–F) Each panel shows all antibodies
that bind to one of the five lysozyme epitopes as defined by Ab-ligity (Wong et al., 2021). Panels (B–D) Each contain two sets of antibodies that do not
overlay perfectly indicating a difference in binding pose. SPACE2 separates antibodies binding to the same epitope in a different binding pose into
distinct clusters as indicated by coloring.
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SPACE2 also achieves a high clustering accuracy on CoVAbDab
(test), the EV set, the NVA1 set, and the NVA2 set; 85%, 78%, 83%,
and 100% of clusters in the four sets are domain/epitope-consistent,
respectively. Domain/epitope-consistent clusters comprise 80%,
74%, 86%, and 100% of all antibodies grouped into multiple-
occupancy clusters in the four sets, respectively.

Data coverage differs for the four datasets (see Materials and
Methods for definition of coverage metrics). Coverage of
CoVAbDab (test), the NVA1 set, and the NVA2 set is high,
with 54%, 45%, and 48% of all antibodies contained within
multiple-occupancy clusters, respectivelwhich balances both
accuracy and cy. In comparison, only 19 of 126 EV set
antibodies are grouped into multiple-occupancy clusters. The
EV set is relatively small and contains antibodies against the
Ebola virus glycoprotein, a large multi-domain protein with
many potential epitopes (Lee et al., 2008). We do not expect
to observe many antibodies engaging the same residue-level
epitope in a small dataset of antibodies against a target with
many epitopes, which is likely why we see low coverage.

Antibodies within the same epitope group in CoV-AbDab, the
EV set, the NVA1 set, and the NVA2 set tend to be split across a
large number of SPACE2 clusters. This is explained by the low
resolution of epitope labels in these datasets and antibodies
annotated with the same epitope label likely bind to a large
number of different residue-level epitopes.

Overall, SPACE2 generalizes well to the test sets. The algorithm
achieves a high clustering accuracy on all five datasets and a good
coverage on CoV-AbDab (test), NVA1, NVA2, and anti-lysozyme
datasets. Coverage of the EV set is comparably low, indicating a
challenge in clustering smaller datasets of epitope-diverse antibodies.

3.5 Advances in structure prediction
improve structure-based computational
epitope profiling

We compared the performance of SPACE2 to SPACE1, our
previous structural epitope profiling method. SPACE1 (Robinson
et al., 2021) groups antibodies based on structural similarity of
homology models produced using ABodyBuilder (Leem et al., 2016)
followed by greedy structural clustering at an RMSD threshold of
0.75 Å.

We, once again, used the number of antibodies in epitope/
domain-consistent multiple-occupancy clusters, which balances
both accuracy and coverage, as our metric for comparing
performance. SPACE2 outperforms SPACE1 using its suggested
threshold (RMSD threshold 0.75 Å) (Supplementary Table S3). As
SPACE2 uses an RMSD threshold of 1.25 Å, we also explored a
range of RMSD values to see whether the difference in the RMSD
threshold is the driver for the difference in performance. We found
that a threshold of 1.25 Å improved SPACE1 clustering
(Supplementary Table S3), but it was still significantly worse than
SPACE2. SPACE1 with a 1.25 Å threshold results in an 18% and 9%
decrease in antibodies in epitope/domain-consistent multiple-
occupancy clusters on the two largest datasets, CoV-AbDab and
the Cao et al. (2023) training set, respectively (Table 3). SPACE2’s
better performance is driven by better coverage while achieving a
similar accuracy.

Modifications of the SPACE2 and SPACE1 methods reveal that
the better performance of SPACE2 arises due to the larger number of
antibodies modeled with ML-based structure prediction compared
to homology modeling and better clustering with the agglomerative
clustering protocol compared to greedy clustering. The higher
quality of models obtained from ML-based structure prediction
does not lead to clear improvements in clustering (Figure 5;
Supplementary Table S4).

3.6 SPACE2 improves coverage compared to
clonotyping

Clonotyping is the most commonly used epitope profiling
method. It clusters antibodies based on sequence similarity. As
clonotyping assumes that antibodies against a given epitope must
originate from progenitor B cells with shared genetic origins, it
cannot detect functional convergence. Thus, the method is limited
when clustering datasets of antibodies from different individuals or
species. Here, we compare SPACE2 to two lenient clonotyping
protocols, VH- and Fv-clonotyping (see Materials and Methods),
on the two largest datasets which contain antibodies from diverse
sources. The Cao et al. (2023) training set consists of antibodies
isolated from 165 human patients (Cao et al., 2023), and CoV-
AbDab contains antibodies from a range of studies (~450) and
several species (Raybould et al., 2021a).

The performance of SPACE2 and the two clonotyping protocols
are shown in Table 3. SPACE2 outperforms both VH- and Fv-
clonotyping in the key metric of antibodies in epitope/domain-
consistent clusters on both datasets. Improvement in this metric is
driven by increased dataset coverage by SPACE2. We observe 33%
and 21% more antibodies in multiple-occupancy clusters for Fv-
clonotyping of CoV-AbDab and the Cao et al. (2023) training set,
respectively. Data coverage by VH-clonotyping is better but still
substantially lower than SPACE2. On the other hand, SPACE2 is less
accurate than both clonotyping protocols. However, the increase in
coverage achieved by SPACE2 exceeds the drop in accuracy.

3.7 SPACE2 identifies functional
convergence signals

We next analyzed the diversity of antibodies within the
SPACE2 clusters of the Cao et al. (2023) training set and CoV-
AbDab to see whether we were identifying functionally similar
antibodies with very different sequences.

The majority of SPACE2 clusters contain antibodies belonging
to several clonotypes, highlighting the ability to link antibodies from
different genetic lineages. Specifically, 55% of epitope-consistent
clusters from the Cao et al. (2023) training set and 81% of domain-
consistent clusters from CoV-AbDab contain antibodies from more
than one VH-clonotype (Table 3).

Moreover, we investigated the sequence similarity of antibodies
within epitope/domain-consistent clusters. Clonotyping is limited to
linking sequence-similar antibodies as the method uses a
CDRH3 sequence identity cutoff to cluster antibodies. Here, we
use a lenient cutoff of 80%. We observed a mean CDRH3 sequence
identity of 86% within epitope-consistent VH-clonotypes of the Cao
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et al. (2023) training set and 88% for domain-consistent VH-
clonotypes of CoV-AbDab. In comparison, SPACE2 clusters tend
to be highly diverse in sequence. Epitope/domain-consistent clusters
have a mean CDRH3 sequence identity of 54% and 66% for CoV-
AbDab and the Cao et al. (2023) training set, respectively (Table 3).
A large number of CoV-AbDab clusters were observed with a mean
sequence identity below 40% (Supplementary Figure S4), and some
clusters even contain pairs of antibodies with no common
CDRH3 residues.

Structural clustering is also able to functionally link antibodies
from different organisms. For CoV-AbDab, SPACE2 produced

26 functionally consistent clusters containing antibodies from
more than one species and was able to group antibodies from
human, mouse, and rhesus macaque origins. In comparison,
optimized SPACE1 was only able to detect 18 domain-consistent
inter-species clusters, and clonotyping is unable to link antibodies
from different species.

3.7.1 SPACE2 informs on functional convergence
of sequence-dissimilar antibodies

We examined in more detail a SPACE2 cluster of the CoV-
AbDab dataset with 12 members (368.07.C.0221, BD55-4342,

TABLE 3 Comparison of SPACE2, SPACE1, and clonotyping.

Dataset CoV-AbDab Training set

Method SPACE2 SPACE1 Clonotyping SPACE2 SPACE1 Clonotyping

VH Fv VH Fv

Fraction of antibodies modeled 1.0 0.71 - - 1.0 0.7 - -

Fraction of consistent clusters 0.87 0.87 0.98 0.99 0.63 0.64 0.84 0.83

Fraction of clustered antibodies in consistent clusters 0.82 0.81 0.97 0.99 0.57 0.58 0.75 0.79

Multiple-occupancy clusters 1,811 1,165 1,191 970 480 314 361 303

Antibodies in multiple-occupancy clusters 6,271 (59%) 4,010 (37%) 4,045 (38%) 2,754 (26%) 1,446 (47%) 935 (31%) 1,060 (35%) 793
(26%)

Antibodies in consistent multiple-occupancy clusters 5,126 (48%) 3,255 (30%) 3,916 (37%) 2,733 (25%) 823 (27%) 538 (18%) 797 (26%) 628
(21%)

Fraction of clusters containing >1 VH-clonotypes 0.81 0.71 0 0 0.55 0.58 0 0

Mean CDRH3 sequence identity 0.54 0.57 0.88 0.88 0.66 0.67 0.86 0.87

The original SPACE1 algorithmwas evaluated at an RMSD threshold of 1.25 Å. Two protocols were used for clonotyping (seeMaterials andMethods). VH-clonotyping is restricted to genes and

sequence of the heavy chain. Fv-clonotyping considers both heavy and light chains. For the two metrics of number of antibodies in multiple-occupancy clusters and number antibodies in

epitope-consistent multiple occupancy clusters, a percentage is shown additionally, indicating the percentage of antibodies in the dataset. The most important performance metric to consider

when comparing different epitope profiling methods is the number of antibodies in epitope/domain-consistent multiple-occupancy clusters as high accuracy or coverage metrics individually

may not indicate good performance. The fraction of epitope/domain-consistent clusters containing more than one VH-clonotype and the mean CDRH3 sequence identity observed within

epitope/domain-consistent clusters are also given. The best result for each metric is highlighted in bold.

FIGURE 5
In-depth comparison of SPACE2 and SPACE1 performance on the Cao et al. (2023) training set. SPACE1 with a 1.25 Å RMSD threshold (green) and
SPACE2 (blue) as well as an adaptation of SPACE1 (light green) using the default agglomerative clustering algorithm of SPACE2 (complete linkage
criterion, 1.25 Å RMSD threshold) and an adaptation of SPACE2 (light blue) using the default greedy clustering algorithm of SPACE1 (1.25 Å RMSD
threshold) were evaluated on the complete data set (all). Additionally, SPACE2 and its adaptation were evaluated on a reduced dataset which only
included the 2,140 antibodies successfully modeled by homology modeling (reduced set).
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BD55-5339, BD55-5550, BD55-5856, BD55-6024, BD55-6223,
BD55-6372, BD55-6596, BD57-074, C018, and EY6A) (Figure 6).
Eleven of the antibodies engage the spike protein RBD, and the final
member is annotated as a spike protein binder with an unknown
domain. Clustering by SPACE2 suggests that these antibodies,
determined to bind to the same domain of the spike protein,
engage the same residue-level epitope.

The 12 antibodies are highly diverse in sequence and genetic
lineage. The cluster shows a mean CDRH3 sequence identity of
33%. The antibodies possess a CDRH3 of length 12, and eight of
these residues differ on average. The most distant pair of
antibodies in the cluster is BD55-6596 and EY6A, which differ
in 11 of 12 CDRH3 residues. The 12 antibodies originate from
seven different IgGH genes and fall into 12 separate VH-
clonotypes.

The improvement of SPACE2 over SPACE1 can be seen when
examining how these antibodies were clustered by SPACE1. Using
SPACE1 with an optimized threshold, only six of these antibodies
(BD55-6024, BD55-6223, BD55-6596, BD57-074, C018, and EY6A)
were grouped together, and even these six were a part of a larger
functionally inconsistent cluster with 44 members. BD55-5339 was
in a separate functionally inconsistent SPACE1 cluster with four
members, and the remaining five antibodies were not placed in
multiple-occupancy clusters.

3.7.2 SPACE2 identifies epitopes targeted by
multiple species

As the CoV-AbDab database contains antibodies from multiple
species (human, mouse, and rhesus macaque), we examined whether
SPACE2 can identify epitopes targeted by multiple species. There
were 26 SPACE2 clusters of the CoV-AbDab database that
contained antibodies from more than one species. We examined

a SPACE2 cluster with seven members (368.02a.C.0049, B13, BD55-
6574, BD57-092, DK15, Fab-160, and SW186) (Figure 7). The
cluster contains six antibodies that engage the spike protein RBD
and one spike-specific antibody without domain-level epitope data.
Five of the antibodies have human genetics and originate from
human patients, phage-display, and transgenic mice. The remaining
antibodies have murine genetics and were raised by immunized
mice. SPACE2 suggests that these genetically human and mouse
antibodies engage the same residue-level epitope which highlights its
ability to detect public epitope targeted by multiple species.

SPACE1 with an optimized threshold was only able to link one
of the two murine antibodies in this cluster to human structures,
while clonotyping is unable to linkmouse and human antibodies due
to different gene usage.

4 Discussion

Accurately identifying the epitope of antibodies is a key step in
understanding immunology and in the design of new biological
drugs. Such data are conventionally determined experimentally
either by solving individual antibody–antigen crystal structures or
by epitope binning methods, such as competition binding assays.
Prior computational clustering of antibodies into functional groups
could reduce the number of experiments that needs to be carried out
or even remove the need for them entirely. Clonal clustering is most
commonly used for this purpose, where antibodies are grouped by
sequence identity and genetic lineage. However, these types of
methods will miss antibodies with low sequence identity that
have functionally converged and target common epitopes (Scheid
et al., 2011; Joyce et al., 2016; Rijal et al., 2019; Robinson et al., 2021;
Wong et al., 2021; Shrock et al., 2023).

FIGURE 6
SPACE2 identifies functional convergence of antibodies. Twelve-membered CoV-AbDab cluster (368.07.C.0221, BD55-4342, BD55-5339, BD55-
5550, BD55-5856, BD55-6024, BD55-6223, BD55-6372, BD55-6596, BD57-074, C018, and EY6A) with a mean CDRH3 sequence identity of 33%. The
crystal structure of EY6A in complex with its antigen is available (PDB 6ZCZ). SPACE2 suggests that the 11 remaining antibodies bind to the same residue-
level epitope. (A) Structural models of the 12 members are overlaid with the crystal structure of EY6A (not shown) in complex with the spike protein
RBD (gray). (B) CDRH3 sequence alignment of all 12 cluster members colored by chemical properties of amino acid residues [produced with Logomaker
(Tareen and Kinney, 2020)] and heavy-chain V and J genes.
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In a previous study, we reported the SPACE1 method (Robinson
et al., 2021), which clusters antibodies by structural similarity of
their homology models. This method showed that structure-based
epitope profiling is better able to detect the full breadth of functional
convergence. However, SPACE1 was limited by the coverage of
template-based modeling and its inaccuracies. The method was also
only benchmarked at the level of domain-consistency of antibodies
against one virus class. Here, we introduce SPACE2, an updated
method which uses the latest machine learning-based antibody
structure prediction technology (Abanades et al., 2022b) and a
novel clustering protocol systematically optimized on epitope-
resolution data.

We show across six datasets that SPACE2 can accurately bin
antibodies that engage the same epitope and achieve high data
coverage. Available crystal structures of antibody–antigen
complexes reveal that SPACE2 tends to group antibodies that
bind to the same residue-level epitope in an identical binding
pose. Epitope resolution of SPACE2 appears to be similar to that
obtained from crystal structures and higher than data from epitope
binning methods which struggle to distinguish between antibodies
that bind to the same site and those that bind to distinct sites but
overlap sterically.

SPACE2 outperforms our previous epitope profiling tool
SPACE1 (Robinson et al., 2021) and clonotyping when
considering the number of antibodies in epitope-consistent
multiple-occupancy clusters. Clonotyping is more accurate than
SPACE2 but has far lower coverage. The lower accuracy of
SPACE2 is explained by the fact that antibodies with similar
CDR structures may engage different epitopes if chemical
properties of the CDR residues are significantly different.

We also highlight how our methodology allows the detection of
functional convergence across populations of antibodies. Across
functionally consistent clusters of our largest dataset, CoV-AbDab
(Raybould et al., 2021a), we detect a mean CDRH3 sequence identity
as low as 54%. Furthermore, we observe 26 functional clusters
containing antibodies from multiple species including human,

mouse, and rhesus macaque antibodies. In comparison, sequence-
based epitope profiling such as clonotyping is severely restricted in
grouping sequence-diverse antibodies and is not able to link
antibodies from different genetic origins and species (Greiff et al.,
2015; López-Santibáñez-Jácome et al., 2019; Raybould et al., 2021b).
Although it is possible to cluster nanobodies with the SPACE2-HC
implementation, we were unable to detect functional convergence to
antibodies when testing on CoV-AbDab. No clusters were detected
containing both antibodies and nanobodies suggesting that the two
formats use different binding site structures to engage common
epitopes.

SPACE2 clusters antibodies based on the length and structural
similarity of all six CDRs. This approachmay constrain the detection
of functional convergence to some extent as it assumes that
antibodies require the same length of all six CDRs to engage the
same epitope. We tried to address this issue by evaluating two
adaptations of SPACE2 that reduce the number of CDRs required to
have the same length. An implementation clustering antibodies
based on heavy-chain structural similarity (SPACE2-HC) caused
a drastic decrease in clustering accuracy. This indicates that light
chain structures are important for determining antibody binding
specificity, which is in line with previous findings on the functional
selection of light chains (Jaffe et al., 2022) and their structural
importance (Guloglu and Deane, 2023). Similarly, combining
SPACE2 with information from paratope prediction (SPACE2-
Paratope) (Chinery et al., 2023) and computing structural
similarity only across CDRs predicted to contain paratope
residues currently led to fewer functionally consistent clusters.
Furthermore, some loops of different lengths can adopt similar
structures (Nowak et al., 2016; Wong et al., 2019). Although
evidence suggests that this is infrequent, future work could focus
on being able to detect functional convergence across different CDR
lengths.

The ability to detect functional convergence of antibodies will
provide valuable insights into the humoral immune response.
SPACE2 is able to provide more complete information on public

FIGURE 7
SPACE2 identifies epitopes targeted by multiple species. Two representatives from a SPACE2 CoV-AbDab cluster comprising murine (SW186) and
human (BD57-092) antibodies are shown. The crystal structure of SW186 is available (PDB 8DT3). SPACE2 suggests that BD57-092 binds to the same
residue-level epitope. (A) Structural models of SW186 (pink) and BD57-092 (cyan) were overlaid with the crystal structure of SW186 (not shown) in
complex with the spike protein RBD (gray). CDR regions of both antibodies are highlighted by lighter coloring. (B)CDRH3 sequence alignment of the
two antibodies colored by chemical properties of amino acid residues [produced with Logomaker (Tareen and Kinney, 2020)].
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epitopes targeted by antibodies originating from different
individuals and species. Although previous studies show several
public epitopes are largely distinct between species (Shrock et al.,
2023), here, we identify a number of inter-species clusters. Structural
clustering of larger datasets of antibodies isolated from various
species will further improve our understanding of differences in
their immune responses.

Although SPACE2 is computationally more expensive than
sequence-based epitope profiling, it is tractable for datasets of 104

antibodies, a typical number of sequences obtained from methods
such as 10× sequencing (Supplementary Figure S5). The rate
limiting step of SPACE2 is currently the prediction of antibody
structures. Improvements in the speed of structure prediction tools
as well as the release of antibody databases containing pre-modeled
structures (Abanades et al., 2022b) will contribute to reducing the
computational cost of structure-based epitope profiling.

Overall, SPACE2 efficiently detects functional convergence of
antibodies with highly diverse sequences, genetic lineage, and
species origins, further illustrating that predicted structures
should be considered when investigating the function of
antibodies. SPACE2 is openly available on GitHub (https://
github.com/oxpig/SPACE2).
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Nomenclature

RBD receptor-binding domain

S protein spike protein

NTD N-terminal domain

GP1 envelop glycoprotein 1

RMSD root mean square deviation

CDR complementarity-determining region
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