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Hepatocellular carcinoma (HCC) is a lethal disease with limited management
strategies and poor prognosis. Metabolism alternations have been frequently
unveiled in HCC, including glutamine metabolic reprogramming. The
components of glutamine metabolism, such as glutamine synthetase,
glutamate dehydrogenase, glutaminase, metabolites, and metabolite
transporters, are validated to be potential biomarkers of HCC. Increased
glutamine consumption is confirmed in HCC, which fuels proliferation by
elevated glutamate dehydrogenase or upstream signals. Glutamine metabolism
also serves as a nitrogen source for amino acid or nucleotide anabolism. In
addition, more glutamine converts to glutathione as an antioxidant in HCC to
protect HCC cells from oxidative stress. Moreover, glutamine metabolic
reprogramming activates the mTORC signaling pathway to support tumor cell
proliferation. Glutamine metabolism targeting therapy includes glutamine
deprivation, related enzyme inhibitors, and transporters inhibitors. Together,
glutamine metabolic reprogramming plays a pivotal role in HCC identification,
proliferation, and progression.
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1 Introduction

Hepatocellular carcinoma is a heterogeneous and lethal disease with increasing incidence
andmortality globally (Wang et al., 2021; Llovet et al., 2022a). More than 80% of HCC occurs
in Eastern Asia and sub-Saharan Africa with limited medical resources (Yang et al., 2019).
Genetic predisposition, risk factors, tumor microenvironment (TME), and underlying
disease promote the malignant hepatocyte transformation, development, and progression
(Yang et al., 2019; Llovet et al., 2021). The management of HCC is according to the tumor
stages with mostly applicated Barcelona Clinic Liver Cancer (BCLC) staging system. Briefly,
curative therapeutics, including liver resection, transplantation, and tumor ablation, are
selected for early-stage patients; Transarterial chemoembolization (TACE) is suitable for
intermediate stages; systemic therapies are candidates for advanced settings, whereas best
supportive care is most appropriate for end-stage of HCC (Llovet et al., 2021). Extended
morphometric and biological criteria applied for surgery and liver transplantation for HCC
are confirmed to promote the overall survival of some selected patients. However, 22%–25%
of patients are recurrent after resection in 10 years, and 50%–70% are recurrent after
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transplantation (Vibert et al., 2020). For patients in advanced stages,
systemic treatment is recommended as the standard of care.
Molecular targeted monotherapy, including sorafenib or
lenvatinib in the first line, and regorafenib, cabozantinib, or
ramucirumab in the second line, has been confirmed to improve
clinical outcomes with limited median overall survival (Llovet et al.,
2018; Faivre et al., 2020). Immune-checkpoint inhibitor (ICI)-anti-
programmed cell-death protein (ligand)-1 (PD-[L]1), is proven to be
effective in the treatment of HCC. However, the ORR is limited to
10%–20% of HCC patients for monotherapy. The combination of
the anti-angiogenic drug bevacizumab and immune-checkpoint
inhibitor atezolizumab has already reshaped to be the standard
first-line treatment regimen (Llovet et al., 2022a), and the expected
survival of HCC with advanced stage could reach up to more than
2 years (Finn et al., 2020; Reig et al., 2022). Other dual therapies
combing ICIs with multi-kinase inhibitors are proven to be
promising in clinical trials. Oncolytic virus immunotherapy,
adoptive T-cell transfer, and anti-immunosuppressive
environment strategies are under exploration with promising
futures (Foerster et al., 2022).

Molecular classifications with molecular signatures, pathological
features, genetic features, typical signaling pathways, epigenetic
features, and immunological features will be helpful in precise
treatment (Rebouissou and Nault, 2020; Llovet et al., 2022b).
Mutation of Wnt/β-catenin is revealed in 35% of HCC patients;
mounting strategies targeting the Wnt/β-catenin cascade have
provided evidence in preclinical trials in recent decades (Xu
et al., 2022). Tumor-associated exosomes are proven to shape the
local and distant microenvironments of HCC initiation and
development. The preclinical application of biomarkers, drug
resistance, and treatment are under exploration (Wang et al.,
2022). Preclinical studies depict that selective inhibiting tumor-
promoting neutrophils, related signaling pathways, and
chemotaxis are effective (Geh et al., 2022). Non-cellular
components, including hypoxia, cytokines secreted by tumor
stroma, and extracellular matrix, also play a pivotal role in
forming the cancer stem cell niche in HCC, which might be
potential clinical applications in the future (Lam and Ma, 2022).

Metabolic reprogramming has been frequently unveiled in
HCC, such as tumor favors Warburg effect rather than oxidative
phosphorylation, unbalanced lipid intake, and fatty acid
mobilization causing high levels of circulating glucose and fatty
acids, which induces alternative source of energy of cancer cells
(Satriano et al., 2019). The elucidation of metabolic characteristics is
promising in understanding or treating HCC.

2 HCC and metabolism

The liver plays a pivotal role in metabolic homeostasis. The
oxygen gradient from periportal hepatocytes towards pericentral
hepatocytes corresponds to a different function in the hepatic
zonation. Periportal hepatocytes (zone 1) have a substantial
oxygen supply from arterioles responsible for gluconeogenesis,
albumin synthesis, amino acid (AA) catabolism, cholesterol
synthesis, and β-oxidation, which need more ATP for energy
supply. Pericentral hepatocytes (zone 3) serve glycolysis,
glutamine synthesis, lipogenesis, and detoxification. The

hepatocytes located between periportal and pericentral
hepatocytes (zone 2) serve for iron metabolism and insulin-like
growth factor (IGF) homeostasis (Li et al., 2021).

Otto Warburg first demonstrated that HCC tissue consumed
glucose and converted it into lactate rather than untaken by
mitochondria for the TCA cycle, even in the existence of
sufficient oxygen, also termed aerobic glycolysis or the Warburg
effect. Aerobic glycolysis in HCC results in more glucose uptake,
faster ATP generation, and lactate production (Liberti and Locasale,
2016; Satriano et al., 2019). In addition, the Warburg effect also
supports anabolic metabolism by providing the pentose phosphate,
hexosamine, and glycerol pathways without preventing
mitochondrial respiration. The decreasing of oxidative
phosphorylation (OXPHOS) renders the reduction of reactive
oxygen species (ROS). Aerobic glycolysis mediates proliferation,
growth, immune evasion, invasion, migration, angiogenesis, and
drug resistance in HCC (Alannan et al., 2020; Feng et al., 2020).

A higher rate of lipogenesis is a hallmark of cancer cells. HCC
has demonstrated that the enhancement of the Warburg effect
attributes to an increase in the level of β-oxidation by
metabolomics studies. Lipid catabolism also provides energy to
promote cancer cell proliferation and produces metabolites for
biosynthesis to meet fast-growing tumors. Lipid metabolism
reprogramming promotes abnormal gene expression and rewires
many oncogeneses and metastasis-related pathways. Targeting lipid
metabolism has the potential anti-tumor activity in preclinical
studies (Alannan et al., 2020). Dysfunction of lipid metabolism,
like nonalcoholic fatty liver disease (NAFLD), is one of the main risk
factors for HCC. Treatment of NAFLD might have anti-tumor
potential (Orabi et al., 2021). HCV protein has been validated to
hijack the patients’ lipid and glucose metabolism by stimulating de
novo lipogenesis, promoting synthesis of phospholipids and
sphingomyelins, inhibiting mitochondria fatty acid oxidation, and
hijacking the very low-density lipoprotein (VLDL) secretion
pathway. HCV promotes hepatocellular carcinogenesis via
crosstalk with metabolic dysfunction; it will boost oxidative
stress, DNA damage, lipo-toxicity, cell death, and senescence in
patients with adipose tissue dysfunction and insulin resistance
(Leslie et al., 2022). Metabolic impairment might be the potential
reason for HCV-related HCC early recurrence even after direct-
acting antivirals (Reig et al., 2016). Cholesterol metabolisms play a
double-edged sword in hepatocellular carcinoma. Cholesterol can
not only induce ectopic fatty acids accumulation, reshape an
immunosuppressive microenvironment, activate hepatic stellate
cells, and influence membrane fluidity or protein function, to
further promote tumorigenesis in HCC but also activate NK cell
proliferation or recruitment, and promote CD44 translocation into
lipid rafts, so that prohibit HCC (Zhou and Sun, 2021).

Other metabolism alternations such as proline metabolism,
cysteine metabolism, nucleotide metabolism, urea cycle,
hexosamine biosynthetic pathway, pentose-phosphate pathway,
et al. are also validated in HCC(17, 26–28). Proline metabolism
has been confirmed to enhance the tumorigenesis in liver cancer as
two enzymes corresponding to proline biosynthesis are upregulated
(pyrroline-5-carboxylate reductase (PYCR1), aldehyde
dehydrogenase 18 family member A1 (ALDH18A1)), and one
proline catabolic enzyme is downregulated (proline
dehydrogenase (PRODH)) (Ding et al., 2021). Cysteine
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metabolism plays a pivotal role in sorafenib responses during HCC
therapy (Byun et al., 2022), maintaining glutathione synthesis to
protect HCC cells from ferroptosis (Hu et al., 2022).

Moreover, the interplays between metabolism and tumor
microenvironment play crucial roles in the cancerous liver. It
could be subclassified into antitumor immunometabolism and
protumor immunometabolism. For instance, increased fatty acid
synthesis and glycolysis in Th17 cells could enhance the production
of IFN-γ, which will function as an antitumor effect; elevation of β-
oxidation in tumor-associated macrophages promotes
M2 macrophage polarization, which exerts as protumor function
(Li et al., 2021). Hypoxia in the HCC also induces the activation of
lactate metabolism, serine synthesis pathway and folate cycle, and
adenosinergic metabolism to support the growth of tumors (Bao and
Wong, 2021).

Glutamine is an indispensable energy fuel and nitrogen source
for tumor initiation, survival, and progression; It functions not only
as an energy resource but also biosynthesis, signaling pathway
regulator, regulating ROS, and maintaining tumor
microenvironment; and increased glutamine consumption is
conserved in different cancers (Yang et al., 2021; Gyamfi et al.,
2022; Ma et al., 2022). Herein, we will conclude the role of glutamine
metabolic reprogramming in HCC.

3 Glutamine and cancer

Glutamine is a nonessential amino acid (NEAA) that can be
synthesized de novo by glutamine synthetase. In contrast, the
increased demand in tumors results in glutamine, a conditionally
essential amino acid. Glutamine also functions as an intracellular
exchange factor or deamidated to glutamate, an elemental carbon
and nitrogen source, especially for glutamine-addicted cancer cells.
Moreover, glutamine metabolism involves substantial biosynthesis,
including anti-ROS glutathione/NADPH and lipids synthesis. In
addition, glutamine is a nitrogen donor for hexosamine, asparagine,
and nucleotide biosynthesis through aminotransferases (Altman
et al., 2016; Yang et al., 2021).

Glutamine is a major substrate of the TCA cycle’s component; it
participates in the biosynthesis of biomolecules, maintaining redox
homeostasis, ATP generation, oxidative metabolism, and signaling
pathway as one of the major nutrients. Moreover, it also provides the
energy for activated or proliferative cells such as cancer cells and
activated lymphocytes (Gyamfi et al., 2022). Glutamine metabolism
also participates in essential biological processes, including
nucleotide/amino acids/extracellular matrix synthesis, protein
glycosylation/epigenetic modification, cellular redox balance, and
autophagy (Fan et al., 2020). The primary process of glutamine
metabolism includes the following steps: cells uptake glutamine by
specific transporters (SLC1A5/ASCT2) and then convert glutamine
to glutamate in mitochondria by glutaminase (GLS); subsequently,
glutamate will convert to α-ketoglutarate (α-KG) as the main
component of Tricarboxylic Acid cycle (TCA) by mitochondrial
glutamate dehydrogenases (GLUD), α-KG mainly incorporates into
TCA cycles to assist the production of NADPH and nucleotide
synthesis. Furthermore, α-KG will be exported to the cytoplasm as a
source of acetyl-CoA, which is the main substrate of fatty acid
synthesis; Or convert to glutathione (GSH) to further stabilize the

redox homeostasis (DeBerardinis et al., 2007; Zhang et al., 2017),
and it also can transfer the amine group to another nonessential
amino acid by transaminases. Besides, it can be subtracted of proline
and glutathione biosynthesis (Yang et al., 2021); the details are
shown in Figure 1.

Glutamine metabolism also plays a crucial role in the interplay
between TME and tumor cells. The competition of glutamine
consumption by immune cells and tumor cells results in the
immune response from tumor-infiltrating T cells as glutamine
deficiency. Moreover, the shortage of glutamine for tumor cells
will induce the proliferation and activation of Treg cells, which
function as an immunosuppressive effect (Cluntun et al., 2017; Fu
et al., 2019; Edwards et al., 2021). However, cancer-associated
fibroblasts (CAFs) rescue the glutamine-deficiency
microenvironment by complementary secreting glutamine (Yang
et al., 2016). Glutamine reprogramming also impacts other immune
cells’ polarization or function (Ma et al., 2022).

Inhibition of glutamine metabolism has been confirmed to be
promising in glutamine-addicted cancer cells, including glutamine
analogs like DON, acivicin, and azaserine, glutamine transporter
inhibitor GPNA and V-9302, GLS1/2 inhibitors (Shen et al., 2021).
GLS1 plays a crucial role in cancer progression by converting
glutamine to glutamate in mitochondria. It enhances tumor
development, invasion, and migration by maintaining redox
homeostasis, cellular energetics, and proliferative signaling
pathway. GLS1 demonstrates higher expression in solid tumors
such as stomach adenocarcinoma, head and neck squamous cell
carcinoma, thymoma, testicular germ cell tumors, hepatocellular
carcinoma, and colon adenocarcinoma, according to the TCGA
database analysis. It is regulated by Myc, Retinoblastoma, and
nuclear transcription factor-κB in cancer cells. GLS1 inhibitors,
including DON, BPTES, 968, CB-839, UPGL00004, and ebselen,
show promising anti-tumor effects for glutamine-dependent cancers
(Yu et al., 2021). bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)
ethyl sulfide (BPTES) and CB-839, GLS inhibitors are confirmed
to have anti-tumor effective; especially CD839 has been proved to
possess the ability of antiproliferative activity in both solid tumors
like pancreatic cancer and breast cancer (Gross et al., 2014; Biancur
et al., 2017). However, drug resistance has been validated in targeting
glutaminolysis. Numerous studies are trying to explore the
treatments to conquer the drug-resistance, including the
combination of GLS1 and GLS2 inhibitors; GLS1 inhibitors
synergize with glutamate release blockage, targeting
glutaminolysis accompanied with other clinical drugs like
chemotherapy/molecular targeted therapy/immune therapy, and
GLS inhibitors combined with other metabolic inhibitors (Shen
et al., 2021; Lemberg et al., 2022). JHU-083 is a pro-drug proven to
inhibit tumor growth and reshape the tumor immune
microenvironment, promoting CD8+T activation and
proliferation and decreasing immunosuppressive myeloid cells
(Oh et al., 2020). Moreover, inhibition of glutaminolysis will
induce the expression of PD-L1 in tumor cells, which indicates
that the combination of anti-glutaminolysis and immune
checkpoint blockade would have a synergistic antitumor effect
(Byun et al., 2020). Glutamine uptake inhibitors(V-9302),
glutamine antimetabolites(L-DON/JHU-083), and glutaminase
inhibitors (CB-839) are confirmed to be effective in reshaping
glutamine metabolism in immune cells and function as anti-
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tumor immune microenvironment (Ma et al., 2022). Glutamine
transporter is upregulated in various tumors, such as SLC7A5, which
is regulated by oncogene c-Myc. C-Myc or KRAS mutation also
upregulated the expression of GLS(33, 50). MYC, SLC1A5,
mTORC1, and glutaminase could be further utilized as a
biomarker to recognize glutamine-addicted cancers (Yuneva
et al., 2007; Wise and Thompson, 2010; Bhutia and Ganapathy,
2016). SLC1A5 is widely upregulated in tumors among 14 glutamine
transporters (Bhutia and Ganapathy, 2016). V-9302, a glutamine
transporter inhibitor targeting SLC1A5/ASCT2, has validated the
effect of attenuating tumor cell proliferation and increasing the
infiltration of CD8+T cells (Schulte et al., 2018; Pallett et al., 2021).

4 The components of glutamine
metabolism as biomarkers of HCC

Forty-one glutamine metabolism (GM) associated genes are
termed as GMScore from The Cancer Genome Atlas (TCGA)
and the International Cancer Genome Consortium (ICGC)
database. High GMScore indicates tumor growth and poor
overall survival. In addition, High GMscore predicts a low
response to immune checkpoint inhibitors (Ying et al., 2021). A
study tries to depict the different gene expressions between poorly
differentiated HCC cell lines and well-differentiated HCC cell lines
from public databases. Metabolic-related gene analysis demonstrates
that poorly differentiated cell lines profoundly rely on glutamine to
fuel the TCA cycle (GLS, SLC1A5, SDHA). However, well-
differentiated cell lines depend on glycolysis and glutaminolysis

(Nwosu et al., 2018). The components of glutamine metabolism,
including metabolic enzymes, metabolites, and metabolite
transporters, demonstrate high sensitivity and specificity in
diagnosis, relapse monitoring, and stage prediction.

4.1 Glutamine synthetase

Glutamine synthetase (GS) is the feature of Wnt/β-catenin
pathway activation, expressed in the pericentral hepatocytes, and
elevated GS indicates cell proliferation in tissues (Cadoret et al.,
2002; Austinat et al., 2008; Bioulac-Sage et al., 2009; Sohn et al., 2018;
Ruiz de Galarreta et al., 2019; Tao et al., 2021; Hamaguchi et al.,
2022). Liver tumors with different β-catenin activation levels
demonstrate distinct tumor phenotypes. Highly activating β-
catenin with CTNNB1 mutation types is associated with
malignant transformation and intense pattern of GS staining;
However, weak mutations display more frequently for
hepatocellular adenoma (HCA) (Rebouissou et al., 2016).
Activated β-catenin in HCC patients predicts better survival and
less sorafenib resistance than inactive ones. The potential
mechanism of the β-catenin effect might be mediated by
autophagy via increasing GS (Sohn et al., 2018).

Glutamine synthetase could distinguish atypical nodules, early
diagnosis, and invasion of HCC. For instance, GS is considered to
have high specificity and sensitivity to the differential diagnosis of HCC
and dysplastic nodules (Coral et al., 2021). Glypican-3, heat shock
protein 70, and GS are utilized to distinguish a <2 cm hepatocellular
lesion without classic radiological characters of HCC with cirrhosis by

FIGURE 1
Glutamine metabolic reprogramming in hepatocellular carcinoma. Left: glutaminemetabolism in the normal liver cell. Right: glutaminemetabolism
in hepatocellular carcinoma; the number of glutamine transporters increases, which results inmore glutamine uptake by the cancer cell, related enzymes
such as GLS1/2, GLUD are elevated to enhance sources for carbon and nitrogen, lipids, and nucleotides; improved glutamine uptake activates
mTOR1 pathway and antioxidative effect.
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immunochemistry (IHC) or designed RNA probes (Tremosini et al.,
2012; Di Tommaso and Roncalli, 2017; Bakheet et al., 2020). GS and
glypican3 staining are sensitive and specific to HCC compared to
metastatic cancer, benign hepatocellular lesions, and cirrhosis. They are
associated with large tumor sizes and poorly differentiated specimens
(Wasfy and Shams Eldeen, 2015). GS positive staining has 43.9%–
100% sensitivity for HCC compared with cirrhotic nodules (Dal Bello
et al., 2010; Long et al., 2011; Shin et al., 2011; Witjes et al., 2013;
Uthamalingam et al., 2018). The sensitivity and specificity of IHC GS
staining for the early stage of HCC are 50% and 90%, respectively (Dal
Bello et al., 2010); the sensitivity and specificity of GS in distinguishing
low-grade HCC from hepatocellular adenoma (HCA) are 80% and
50%, respectively (Lagana et al., 2013). GS has upregulated in
steatohepatitis hepatocellular carcinoma, which is validated by
RNAseq or immunochemistry (Van Treeck et al., 2021). However,
another study shows that GS is expressed in relatively few tumors
induced by DEN or metabolic dysfunction associated with fatty liver
disease (MAFLD) in mice (Kurosaki et al., 2021). HCC with
steatohepatitis has a low incidence of glutamine synthetase
overexpression and nuclear accumulation of β-catenin (Ando et al.,
2015). GS is highly expressed in serum and tumor tissues of HCC
patients and is associated with poor prognosis. Moreover, GS promotes
HCC migration and invasion by EMT (Liu et al., 2020). Peri-tumoral
hyperintensity in the hepatobiliary phase of gadoxetic acid-enhanced
MRI (EOB-MRI) positively associated with high GS and organic anion
transporter polypeptides (OATP)1B3 expression in the peri-tumoral
zone. Peri-tumoral hyperintensity indicates a high potential for
microscopic hepatic venous invasion (Yoneda et al., 2018).

Nevertheless, some studies also show that GS staining in HCC
indicates a better prognosis. Wnt/β-catenin related makers (β-
catenin, GS) positive HCC mark better differentiation, less portal
vein invasion, and intrahepatic metastasis (Tsujikawa et al., 2016). β-
catenin activation by fluorescence in situ hybridization and
glutamine synthetase highly staining by immunohistochemistry
demonstrates the character of well-differentiated HCC (Evason
et al., 2013). GS-positive patients have reduced tumor-specific
mortality and overall mortality (Dal Bello et al., 2010). The
positive of glutamine synthetase indicates better survival for HCC
patients treated with liver transplantation (Ataide et al., 2017). In
mice transgenic the full length of hepatitis B virus X protein, EMT
increases, but glutamine synthetase level decreases (Ahodantin et al.,
2020).

Glutamine synthetase also correlates with the PD-1 expression and
treatment response or is influenced by treatment. For instance, GS
overexpression is significantly associated with low expression of PD-1 in
HCCpatients (Montasser et al., 2021). LowerGS staining predicts better
OS and RFS for patients treated with adjuvant TACE after curative
resection inHCCpatients (Zhang et al., 2015). Glucocorticoid promotes
GS expression by transcriptional and posttranscriptional levels in
hepatoma cell lines (Gaunitz et al., 2002).

4.2 Other glutamine metabolism-related
enzymes

Glutamate dehydrogenase (GLUD) serves as a catalyticase that
drive L-glutamate towards α-KG and ammonia, and α-KG is a
pivotal component of the tricarboxylic acid cycle (TCA cycle).

hGLUD1 is highly expressed in HCC human samples and
HepG2 cells; The proliferation of HepG2 cells is reduced by
silencing hGLUD1, which is mediated by decreasing
mitochondria-mediated apoptosis (Marsico et al., 2021).
Moreover, Preoperative serum GLUD predicts high microvascular
invasion (MVI) and poor overall survival for HCC patients after
liver transplantation (Gong et al., 2021).

Glutamine metabolism-related genes are upregulated in the HCC
cohort from the TCGA database. Among them, glutaminase (GLS)
1 is increasing in HCC and associated with the stemness of HCC cells,
which is also associated with poor prognosis (Jin et al., 2020). Higher
expression of GLS1 is positively correlated with poor differentiation,
more lymphatic metastasis, advanced stage, more elevated serum
AFP, and lower overall survival. GLS1 promotes HCC cell
proliferation and could be inhibited by GLS1 inhibitors. The
mechanism might relate to GLS1 inducing the activation of the
AKT/GSK3β/CyclinD1 pathway (Xi et al., 2019). Conversely, both
protein and mRNA levels of glutaminase (GLS) 2 display negatively
associated with late stage, vascular invasion, tumor relapse, overall
survival, and disease-free survival.Mechanically, GLS2 stabilizes Dicer
by ubiquitination system; Induced Dicer promotes miR-34a
maturation; mature miR-34a will repress snail expression, which is
reported to facilitate HCC cells invasiveness and epithelial-
mesenchymal transition (Kuo et al., 2016).

4.3 Metabolites

A “serum biomarker model” containing tryptophan, glutamine,
and 2-hydroxybutyric acid based on capillary electrophoresis−time-
of-flight mass spectrometry is established to diagnose HCC from
non-HCC, which is confirmed to be an effective biomarker that
compensatory for AFP (Zeng et al., 2014). 1H- nuclear magnetic
resonance (NMR) metabolomics profiling is used to distinguish the
early or late stage of HCC and find that glutamine decreases in the
late stage of HCC with respect to the early stage of HCC (Casadei-
Gardini et al., 2020). A study elucidates the metabolomics of HCC
with different etiology by 1H-NMR and finds that HCC from
NAFLD has high levels of glutamine/glutamate, which is also
validated by increased expression of GS in immunochemistry and
NMR-spectroscopy glutamine quantification. Nevertheless, HCC
with cirrhosis acquires high levels of β-hydroxybutyrate, tyrosine,
phenylalanine, and histidine (Teilhet et al., 2017). Serum-based
metabolomics by 1H-NMR reveals that pyruvate, glutamine, and
α-ketoglutarate are abundant in liver cirrhosis and HCC (Gao et al.,
2009). Plasma phenylalanine and glutamine levels in patients with
liver cirrhosis are associated with HCC occurrence in the next
3 years. Phenylalanine concentration positively correlates with
HCC, and glutamine level is the opposite effectiveness (Liang
et al., 2020). Another serum NMR-based metabolomics
demonstrates that cirrhosis with large HCC has significant
upregulation of glutamate, acetate, and N-acetyl glycoproteins. In
contrast, the metabolic fingerprint for cirrhosis without HCC
displays a high concentration of lipids and glutamine (Nahon
et al., 2012). NAFLD-HCC with no or mild fibrosis
predominantly overexpressed choline derivatives and glutamine
by 1H-Nuclear Magnetic Resonance spectroscopy (Buchard et al.,
2021).
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4.4 Metabolite transporters

Solute Carrier Family 38 A1 (SLC38A1), a crucial glutamine
transporter, is validated to be upregulated in HCC at both mRNA
and protein by the Cancer Genome Atlas (TCGA) cohort and a
Clinical Proteomic Tumor Analysis Consortium (CPTAC) cohort.
Moreover, it is inversely correlated with CD8+ T cell infiltration (Liu
et al., 2021). Solute carrier family 1 member 5 (SLC1A5), also terms as
alanine–serine-cysteine transporter 2 (ASCT2), is a glutamine
transporter. SLC1A5 is highly expressed in HCC and predicts poor
prognosis, confirmed by multiple databases according to
bioinformatics (Zhao et al., 2021). Glucose transporter GLUT1 and
glutamine transporter ASCT2 are upregulated in HCC, and the high
expression of GLUT1 and ASCT2 indicates poor OS and recurrence-
free survival (RFS) (Sun et al., 2016).

5 Glutamine metabolism
reprogramming in HCC

5.1 Glutamine as fuel for HCC proliferation

Increased glutamine uptake and more glutamine converts to the
TCA cycle are confirmed in studies. Glutamate dehydrogenase
(GLUD) serves as a catalyticase that drive L-glutamate towards α-
KG and ammonia, and α-KG is a pivotal component of the TCA cycle.
hGLUD1 is highly expressed in HCC human samples and
HepG2 cells; The proliferation of HepG2 cells is reduced by
silencing hGLUD1, which is mediated by decreasing mitochondria-
mediated apoptosis (Marsico et al., 2021). Discoidin domain receptor
1 (DDR1) is highly expressed in HCC, which promotes glutamine
metabolism as fuel by increasing GLUD1, GLS1, and SLC1A
(glutamate transporter) in HCC (Lin et al., 2020). circGSK3B is
confirmed to promote HCC cell proliferation and metastasis ability
by increasing GLS (Li et al., 2020). SIRT4 localizes in mitochondria
and regulates glutamine or lipidmetabolism. SIRT4 is downregulation
in mRNA and protein levels confirmed by human HCC samples;
knockout or silence of SIRT4 will promote hepatocarcinogenesis in
vivo and in vitro. Mechanically, SIRT4 inhibits the conversion from
glutamine fuel to the TCA cycle. Decreasing glutamine catabolism
results in a deficiency of ATP/ADP, leading to the activation of the
LKB1/AMPKα/mTOR axis (Wang et al., 2019). High-mobility group
box 1 gene (HMGB1) acts as competing endogenous RNAs (ceRNAs)
for the mTORC2 component RICTOR, subsequently promoting the
expression of RICTOR mRNA. The high expression of RICTOR will
induce mTORC2-AKT-C-MYC activation that upregulates GS
expression; on the other hand, GLUD will be enhanced as the
release of inhibition signal from SIRT4 (Wei et al., 2021).

The HGF-MET axis is confirmed to stimulate glycolysis and
glutaminolysis to function as a biogenetic source for HCC cell lines
via inhibiting pyruvate dehydrogenase complex (PDHC) activating
GLS. However, dephosphorylated MET-mediated autophagy
compensates for sustaining biogenesis, leading to the treatment
resistance of HGF-MET axis inhibitors or antibodies. Other
autophagy blockers to HGF-MET axis inhibitors improve the
therapeutic efficiency of HCC in vitro and in vivo (Huang et al.,
2019). High expression of TGF-β in the HCC cell line demonstrates
a mesenchymal-like morphology. Glutamine anaplerosis for the fuel

compensation to the biosynthetic utility of TCA metabolites is
confirmed in TGF-β highly expressed cell line. The mechanism
related to TGF-β in the HCC cell line might be elevated glutamine
transporter solute Carrier Family 7 Member 5 (SLC7A5) and GLS1
(Soukupova et al., 2017). However, in a doxycycline-regulated Myc
transgenic model of HCC, glutamine transporter SLC1A5 is highly
expressed, and GLS1/GLS2 is downregulated in both transcripts and
protein, which indicates increased extracellular glutamine uptake to
anabolic pathway other than fuel source for the TCA cycle (Dolezal
et al., 2017). Chemo-resistance HCC cell lines display cancer stem
cell-like phenotype with rising CSC markers, poorly developed
mitochondrial network, and increasing telomerase activity. The
chemo-resistance character is mediated by drug efflux caused by
high expression of P-gp protein, which is an ATP-consuming
process. However, glucose-dependent OXPHOS and glycolysis are
decreasing, indicating a metabolic quiescent in chemo-resistance cell
lines. An alternative source from the glutamine-OXPHOS pathway
fuels the ATP. Co-treatment of mitochondria-specific antagonist
metformin and glutamine-starving condition attenuates the drug
efflux in chemo-resistance HCC cell lines (Lee et al., 2021). The
details are shown in Figure 1.

5.2 The source of nitrogen

Glutamine metabolism supplies carbon and nitrogen sources for
amino acid or nucleotide anabolism, as shown in Figure 1. Yap
overexpression induces hepatomegaly and promotes carcinogen
dimethylbenzanthracene (DMBA)-induced liver tumor formation
by activating GLUL as a transcriptional factor. Elevated GLUL
enhances glutamine accumulation, which provides sufficient
nitrogen into nucleotide biosynthesis that accelerates liver and
liver tumor proliferation (Cox et al., 2016). However, a study
finds that the serine biosynthesis pathway (SSP) is activated, and
cMyc expression is elevated during glucose or glutamine
deprivation. Potential mechanisms might be related to cMyc-
regulated enzymes like glutathione (GSH) and phosphoserine
phosphatase (PSPH), which promote redox hemostasis for cancer
cells and activate the serine biosynthesis pathway (Sun et al., 2015).

5.3 More glutamine converts to glutathione
as an antioxidant in HCC

Glutathione-glutamine-glutamate metabolism aberration is
involved in the process of hepatic tumorigenesis (Chen et al., 2019).
Glutamine uptake in HCC is not predominantly as carbon or fuel for
the TCA cycle but for increasing the conversion of glutamine into
glutamate, thereby converting more glutamate into glutathione.
Glutathione functions as an antioxidant that prevents oxidative
damage to cancer cells. In an HCC mice model induced by co-
transfection of c-Myc/h-Ras, glutamine synthetase (GS), expressed in
pericentral hepatocytes in a healthy liver, is absent within the tumor in
the c-Myc/h-Ras mice model. Glutamate-cysteine ligase catalytic
subunit (Gclc) increases, and GLUD1 decreases in the c-Myc/h-Ras
mice model, which indicates that more glutamate converts to
glutathione other than α-ketoglutarate (Serra et al., 2022). Metabolic
competition for glutamine is validated to impair hepatocellular
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tumorigenesis. Mitochondrial Pyruvate Carrier (MPC) is located in the
inner membrane of mitochondria and serves as a pyruvate transporter
from the cytoplasm into mitochondria. This crucial metabolic
crossroad links glycolysis and the tricarboxylic acid (TCA) cycle.
MPC is elevated in human HCC samples validated by The Cancer
Genome Database (TCGA). Liver-specific MPC depletion in
N-nitrosodiethylamine (DEN) plus carbon tetrachloride (CCl4)
induced HCC mouse model attenuates HCC tumorigenesis. The
underlying mechanism is correlated with the glutamine competition;
briefly, disrupting MPC causes decreasing pyruvate flux from the
cytosol and, subsequently, glutamine metabolic into α-ketoglutarate
to compensate for reduced pyruvate uptake caused by MPC depletion
in the TCA cycle. Conversely, glutathione synthesis confirmed to
protect cancer cells from reactive oxygen species (ROS) damage, will
be competitive as glutamine consumption for the TCA cycle
(Tompkins et al., 2019), as shown in Figure 1.

GLS1 is highly expressed in HCC patients and cell lines.
Upregulated GLS1 promotes the production of glutamate, the
precursor of GSH, which serves as the main cellular antioxidant.
The reduction of ROS will enhance the translocation of β-catenin,
upregulating the stemness-related genes (KFL4, NANOG, OCT4,
SOX2, CD13, and CD44) in HCC (Li et al., 2019). Oxoglutarate
dehydrogenase-like (OGDHL) is one of the rate-limiting enzymes of
oxoglutarate dehydrogenase complex (OGDHC) in the canonical
TCA cycle. OGDHL is verified to be low expressed in the TCGA
database, Gene Expression Omnibus (GEO) database, and FUDAN
database. The downregulation of OGHDL is associated with HCC
progression, poor prognosis, and recurrence. Mechanically, low
OGDHL reduces the forward TCA cycle for glucose oxidation.
Conversely, reductive carboxylation of α-ketoglutarate (αKG) is
facilitated to promote lipogenesis. Moreover, increasing glutamine
consumption enhances antioxidative function to protect against
oxidative stress in HCC, inhibiting glutamine metabolism could
improve sorafenib resistance (Dai et al., 2020). Glutamine
deprivation promotes a shift of glycolysis towards oxidative
phosphorylation (OXPHOS) in HCC cell lines. The mechanism
underlying this phenomenon is glutamine deprivation inducing
increased NADP1/NADPH ratio and GSH/GSSG ratio that
causes an elevation of cellular reactive oxygen species (ROS);
increased ROS enhances the overexpression of retinoic acid-
related orphan receptor alpha (RORα), and RORα mediates
reprogramming of glucose metabolism towards OXPHOS rather
than glycolysis by attenuating pyruvate dehydrogenase kinase 2
(PDK2) and lactate dehydrogenase A (LDHA) (Byun et al.,
2015). However, a study finds that the serine biosynthesis
pathway (SSP) is activated, and cMyc expression is elevated
during glucose or glutamine deprivation. The potential
mechanism might be related to cMyc-regulated enzymes like
glutathione (GSH) and phosphoserine phosphatase (PSPH),
which promote redox hemostasis for cancer cells and activate the
serine biosynthesis pathway (Sun et al., 2015). Selected sorafenib-
resistant HCC cell lines display higher reductive glutamine
metabolism than parental cell lines. Mechanisms, increased
expression of PPARδ in sorafenib-resistant HCC induces higher
expression of enzymes that catalyze glutamine metabolism and
pentose phosphate pathway, incredibly reductive glutamine
metabolism in the TCA cycle. The redox homeostasis that
protects from oxidative stress will be enhanced by more

glutamate synthesis from glutamine, and more reductive
glutamine metabolism promotes lipid biosynthesis that promotes
HCC proliferation. Moreover, more pentose phosphate pathway
products facilitate HCC proliferation (Kim et al., 2017).

5.4 Glutamine-related metabolites activate
the mTORC signaling pathway

GS and mTORC are highly expressed in the β-Catenin gene
mutated mouse model with HCC or HCA. In clinical samples, cases
with CTNNB1 mutation show intense GS staining, and GS strongly
positive cases display high staining for p-mTOR-S2448. In normal
mice, GS and p-mTOR-S2448 co-staining in pericentral
hepatocytes. The mechanism of β-Catenin mutation-related HCC
is induced by β-Catenin -GS-mTORC1 axis. Briefly, CTNNB1-
mutation induces GS transcription by β-Catenin translocation
and activating transcription factors. The elevated GS will catalyze
more glutamate to glutamine; subsequently, glutamine promotes
p-mTOR activation, promoting the proliferation of HCC (Adebayo
Michael et al., 2019), as shown in Figure 1. Liver receptor homolog 1
(LRH-1) increases in the DEN-induced HCC mouse model. LRH-1
knockout mice display fewer tumors than wild ones. Mechanisms,
LRH-1 enhances noncanonical glutamine metabolism by increasing
GLS2, which catalyzes Gln to Glu, then Glu converts to α-KG by
glutamate pyruvate transaminase 2 (Gpt2). Subsequently, α-KG will
modulate mTORC1, facilitating cell proliferation (Xu et al., 2016).
c-Myc-dependent hepatocarcinogenesis requires mTORC1 pathway
activation to acquire the property of tumorigenesis. Mechanisms,
amplification, or activation of c-Myc as a transcriptional factor leads
to high expression of amino acid transporters SLC1A5/SLC7A6;
increased amino acid transporters are responsible for more amino
acid uptake, especially glutamine. After that, increasing amino acids
results in mTORC1 activation, a typical pathway that induces cell
proliferation (Liu et al., 2017). Nine unique short hairpin RNA
(shRNA) vectors and six unique CRISPR-Cas9 vectors are used to

FIGURE 2
Glutamine-related metabolites regulate other metabolisms or
signaling pathways.
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repress the expression of glutamine transporter (ASCT2), and
L-Type Amino Acid Transporter 1 (LAT1), glutamine or leucine
transportation is restrained. However, the mTORC1 pathway and
cell proliferation are unchanged (Bothwell et al., 2018).

5.5 Glutamine-related metabolites regulate
other metabolisms or signaling pathways

As shown in Figure 2, glutamine and related metabolites not
only activate the mTORC signaling pathway, but also regulate other
metabolisms or signaling pathways. The downstream amino acid of
glutamine metabolism, hydroxyproline, is confirmed to play a
crucial role in promoting a hypoxic response in HCC.
Hydroxyproline is accumulated in HCC according to global
metabolic profiling. A high level of hydroxyproline is correlated
with elevated AFP and poor prognosis. Mechanically,
hydroxyproline blocks hydroxylation of HIF1α and attenuates the
binding of HIF1α to tumor suppressor proteins during hypoxia to
increase the HIF1α expression. Exogenous hydroxyproline could
recover the effect of Myc or ALDH18A1 knockdown, which inhibits
the glutamine–hydroxyproline metabolism or proline metabolic
pathway. Moreover, hydroxyproline inhibition could attenuate
the sorafenib resistance under hypoxia (Tang et al., 2018).
Activated mTORC1 induced by knockout of tumor suppressor
gene tuberous sclerosis complex (TSC) promotes glutaminolysis,
leading to glutamine depletion. Fibroblast growth factor 21 (FGF21)
will be activated by glutamine depletion stress by activating
peroxisome proliferator–activated receptor γ coactivator-1α
(PGC-1α). Elevated FGF21 results in reduced liver triglyceride
content, decreased locomotor activity, and body temperature
(Cornu et al., 2014). Selected sorafenib-resistant HCC cell lines

display higher reductive glutamine metabolism than parental cell
lines. Mechanisms, increased expression of PPARδ in sorafenib-
resistant HCC induces higher expression of enzymes that catalyze
glutamine metabolism and pentose phosphate pathway, incredibly
reductive glutamine metabolism in the TCA cycle. The redox
homeostasis that protects from oxidative stress will be enhanced
by more glutamate synthesis from glutamine, and more reductive
glutamine metabolism promotes lipid biosynthesis that promotes
HCC proliferation. Moreover, more pentose phosphate pathway
products facilitate HCC proliferation (Kim et al., 2017). Uncoupling
protein (UCP) 2 is a type of the mitochondrial carrier family
involved in metabolic disorders. UCP2 promotes glutaminolysis
to decrease glutamine-derived C4 metabolite accumulation in
mitochondria. However, it reduces the oxidation of glucose
(Vozza et al., 2014). Liver-specific miR-122 is validated to play a
critical role in glutamine metabolism. miR-122 is negatively
correlated with the expression of GLS, according to the TCGA
database. The liver-specific knockout of miR-122 promotes
glutaminolysis but inhibits gluconeogenesis in mice by decreasing
targets of GLS and SLC1A5 (Sengupta et al., 2020). Gankyrin is a
seven ankyrin-repeat domains protein. It promotes HCC
tumorigenesis, metastasis, and sorafenib or regrafenib resistance.
Mechanisms, it stabilizes RNA-binding protein HuR, which
subsequently stabilizes β-catenin mRNA and increases its
expression. β-catenin could promote c-myc expression, which
regulates glycolysis and glutaminolysis by transcriptionally
activating crucial enzymes such as GLUT1, ASCT2, HK2, PKM2,
LDHA, and GLS1. Gankyrin displays the characteristics that
facilitate glycolysis and glutaminolysis, which c-myc inhibitors
could abolish in vitro and in vivo. High Gankyrin and high β-
catenin indicate poor prognosis with low overall survival (Liu et al.,
2019).

FIGURE 3
Glutamine metabolism targeting therapy. Glutamine transporters inhibitors, glutamine deprivation, and glutamine metabolism related enzyme
inhibitors are dominant methods that targeting glutamine metabolism.
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6 Glutamine metabolism targeting
therapy

Glutamine metabolism targeting therapy includes glutamine
deprivation, related enzyme inhibitors, and transporters
inhibitors, as shown in Figure 3. Glutamine deprivation impairs
severe metabolism reprogramming in a poorly differentiated cell
line, which results in kinase inhibitors resistance as increased
phosphorylation of extracellular signal-regulated kinase (Nwosu
et al., 2020). Additional glutamine supplement displays dose-
dependent anti-tumor effects in HepG2 and Huh7 cell lines and
increases the sensitivity of histone deacetylase inhibitor vorinostat
in both cell lines (Hassan et al., 2021). 30% of glutamine is
metabolized to produce glutamate in the cytoplasm, which
functions as the substrate of nucleotide synthesis. Inhibition of
glutamate excretion will perturb cell growth in vitro (Nilsson et al.,
2020).

GLS loss or GLS-specific inhibitor bis-2-(5-phenylacetamido-
1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) attenuates tumor
progression and prolonged survival in Myc-driven HCC mouse
model (Xiang et al., 2015). Noncompetitive allosteric
GLS1 inhibitor CB-839 monotherapy displays insufficient anti-
cancer effectiveness in HCC cell lines. Nevertheless, ASCT-2
inhibitor V-9302 could be synergistic with CB-839 to function
as anti-tumor efficacy. Mechanically, the combination of V-9302
and CB-839 disrupts ROS balance by decreasing important
antioxidant-glutathione (GSH). Moreover, reducing glutamine
intake in TCA results in the reduction of NADPH, which serves
as GSH biosynthesis (Jin et al., 2020). Ginsenoside
Rk1 demonstrates anti-tumor effectiveness by downregulating
GLS1, decreasing GSH, and subsequently accumulating ROS
(Lu et al., 2022); and there are two clinical trials that use
Ginsenoside in hepatocellular carcinoma(NCT01717066,
NCT04523467). Dihydroartemisinin (DHA) induces oxidative
stress in cancer cells by increasing intracellular reactive oxygen
species (ROS). Glutaminase (GLS) 1 increases the production of
antioxidants like GSH by generating the precursor glutamate. The
combination of GLS1 inhibitor and DHA has synergistic
antitumor efficacy in HCC by increasing ROS and decreasing
GSH (Wang et al., 2016).

Berberine inhibits the proliferation of HCC cell lines by
suppressing c-myc-induced glutamine transporter SLC1A5,
subsequently decreasing glutamine uptake (Zhang et al., 2019).
Glutamine depletion by bacterial enzyme Crisantaspase and/or
GS inhibitor methionine-L-sulfoximine (MSO) hinders the tumor
growth of human HCC xenografts induced by CTNNB1-mutated
HCC cell lines (Chiu et al., 2014). β-catenin-mutated HCC cell line is
more sensitive to glutaminolysis drug-asparaginase (ASNase)
(Tardito et al., 2011). Tigecycline, an electron transport system
(ETS) inhibiting antibiotic, is effective in both sorafenib-resistant
advanced-stage HCC in vitro and in xenograft in vivo. The
mechanism disrupts the mitochondrial ETS complex biogenesis
and impairs glutamine oxidation (Meßner et al., 2020). Oral
nutritional supplement (ONS) that contains β-hydroxy-β-methyl
butyrate (HMB), L-arginine, and L-glutamine serves as effective
prophylactic supplementation for Hand-foot skin reaction (HFSR)
caused by sorafenib in advanced HCC patients (Naganuma et al.,
2019).

7 Conclusion

Metabolism reprogramming plays a pivotal role in HCC; It’s not
only the outcome of HCC initiation or progression but also the
mainstay of factors causing HCC occurrence or promoting HCC
metastasis. The components of glutamine metabolism are altered in
HCC, indicating biomarkers’ potential roles, including related
metabolism-related enzymes, metabolites, and metabolites’
transporters. The glutamine metabolism reprogramming support
HCC cancer cells as carbon and nitrogen sources; It provides
antioxidant for HCC survival; It activates the mTORC signaling
pathway to support tumor cell proliferation. Targeting glutamine
reprogramming, including glutamine deprivation, related enzyme
inhibitors, and transporters inhibitors, therefore simultaneously limit
energy availability and increase oxidative stress, demonstrate potential
therapy in HCC; However, cancers can evade this metabolic trap by
reprograming their metabolism (Halama and Suhre, 2022), which is
confirmed in ClinicalTrial. Therefore, the effectiveness that rely solely
on of glutamine inhibition is limited; cotreatment with other strategies
might constitute an attractive and promising option for HCC patients.
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