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Chemical shift transfer (CST) is a well-established technique in NMR spectroscopy
that utilizes the chemical shift assignment of one protein (source) to identify
chemical shifts of another (target). Given similarity between source and target
systems (e.g., using homologs), CST allows the chemical shifts of the target system
to be assigned using a limited amount of experimental data. In this study, we
propose a deep-learning based workflow, ARTINA-CST, that automates this
procedure, allowing CST to be carried out within minutes or hours of
computational time and strictly without any human supervision. We
characterize the efficacy of our method using three distinct synthetic and
experimental datasets, demonstrating its effectiveness and robustness even
when substantial differences exist between the source and target proteins.
With its potential applications spanning a wide range of NMR projects,
including drug discovery and protein interaction studies, ARTINA-CST is
anticipated to be a valuable method that facilitates research in the field.
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1 Introduction

Recently, ARTINA (Klukowski et al., 2022), the first workflow that automates the
analysis of protein NMR data for signal identification, resonance assignment (Schmidt
and Güntert, 2012), and structure determination (Güntert et al., 1997; Güntert and
Buchner, 2015) was developed, demonstrating the capability of machine learning to
advance biomolecular NMR. With ARTINA, the entire NMR data analysis process can
be completed on a web server (Klukowski et al., 2023) without human supervision and
within hours after the NMR measurements are completed, replacing weeks or months
of human labor. The procedure requires spectra with an information content that is
sufficient to unambiguously assign chemical shifts without any prior knowledge about
the protein structure. The exact amount of experimental data required for de novo
chemical shift assignment with ARTINA depends on the signals’ resolution and signal-
to-noise ratio. Typically, the requirement for the measurement time on expensive
NMR spectrometers scales to approximately one or two weeks.

Often, one would like to study a system by NMR that is similar to an already assigned
protein (Thompson et al., 2012). Examples of this include homologous proteins
(Redfield and Robertson, 1991; Bartels et al., 1996), proteins studied under different
experimental conditions (e.g., temperature, pH value, ligand concentration) (Jang et al.,
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2012; Banelli et al., 2017; Zieba et al., 2018), or proteins with
bound ligands and in apo form (Orts and Gossert, 2018; Laveglia
et al., 2021; Plata et al., 2023). In such cases, it is desirable to use
knowledge about the known system, in particular its assigned
chemical shifts, as complementary input for the automated
analysis of a related target system with ARTINA. Such
complementary input typically makes it possible to assign
chemical shifts or determine the protein structure using a
smaller set of spectra. In this work we evaluate the accuracy of
ARTINA-CST and develop guidelines to utilize our method for
chemical shift transfer applications.

2 Methods

2.1 Chemical shift transfer

The interface required for chemical shift transfer (CST) is
included within the FLYA algorithm used by ARTINA for
chemical shift assignment (Schmidt and Güntert, 2012). The
function of this algorithm has been described in detail by
Schmidt and Güntert; in brief, a list of expected peaks is
constructed from the protein of interest’s amino acid sequence,
then this list is mapped to a list of measured peaks generated by

FIGURE 1
Graphical abstract of the ARTINA-CST workflow. (A) CST affects automated chemical shift assignment through the selection of peak search spaces
(light red rectangle). Without CST, the search space is estimated based on statistical information extracted from the BMRB database, whereas with CST, it
is determined from a previously assigned source protein (the dark red circle indicates the chemical shifts of the source protein, and the highlighted area is
specified by a user-defined parameter). The resulting area is centered closer to the target peak of interest (dark green oval) and contains less
incorrect peaks (light green ovals). (B) The chemical shifts of the source protein are prepared by sequence alignment to the target protein and subsequent
extraction of search spaces from the chemical shifts of the aligned residues. Measured NMR data is then input to FLYA as a list of peaks extracted
automatically from spectra, yielding the assigned shifts of the target protein.
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manual or automated peak picking. The mapping is improved
iteratively using global and local optimization methods (Bartels
et al., 1997). This procedure is repeated for a series of replicates
and the final output is determined as a majority consensus of these.

In order to initialize the assignment of expected peaks to
measured peaks, the default procedure within FLYA uses
statistics from the Biological Magnetic Resonance Data Bank
(BMRB) (Hoch et al., 2023) to construct an initial “search space”
for each expected peak, from which a measured peak is picked at
random to assign it (Schmidt and Güntert, 2012). For each atom
in a protein, this search space is defined by a statistical
distribution parametrized by the mean and standard deviation
of chemical shifts of the given atom type over all occurrences of
its amino acid type within the BMRB. Due to the scale of the
database and the high number of peaks in protein NMR spectra,
this usually generates a large area containing also many incorrect
possibilities for assignment, the center of which can deviate from
the peak’s true position. By improving the initial search space for
each atom, i.e., reducing its size and shifting its center closer to
the true position, the accuracy of FLYA assignments can
therefore be improved significantly (Bartels et al., 1996;
Aeschbacher et al., 2013). The essence of the CST procedure
relies on this concept, aiming to provide a better estimate of the
peak’s true position and therefore also allowing for a smaller
search space size (Figure 1A).

CST is performed as follows (Figure 1B): Given a source protein
with a known assignment of chemical shifts and a target protein
whose shifts have yet to be assigned, first a mapping of source atoms
to target atoms must be defined. In the trivial case where source and
target protein are identical in sequence, each source atom can simply
be mapped to its copy in the target. However, this need not always be
the case, and transfer of assignment data between different protein
samples could also be highly beneficial in many cases. In this work,
we compared pairs of distinct proteins by first performing a local
pairwise sequence alignment tuned to produce large aligned sub-
sequences between a small number of wide gaps (Supplementary
Table S1). Each identical pair of amino acids in this alignment could
then be used for CST. Aligned pairs of different amino acids and
amino acids aligned to gaps were simply disregarded, falling back to
FLYA’s default setting.

Based on this source-target mapping, new initial search spaces
can be defined for each atom in the target protein, centered around
the corresponding chemical shift in the source. Since this new center
is likely to be more accurate, i.e., closer to the true position of the
atom’s shift than the mean value obtained from BMRB, the search
space’s width can then be reduced (higher precision), further
facilitating its assignment.

The determined search space centers and sizes are then entered
into FLYA as a list of mean values and standard deviations
(“chemical shift statistics”), with the algorithm automatically
applying the default BMRB-based search space for any atom not
included.

When using FLYA as part of the ARTINA pipeline, automated
visual analysis of each spectrum generates the experimental peaks to
be used as input (Klukowski et al., 2022). For this work, execution
was stopped after obtaining an assignment from FLYA. In practice,
however, the output assignments can also be passed to the next
stages of ARTINA, e.g., structure determination.

2.2 NMR data

The dataset established for the training and testing of ARTINA
models (Klukowski et al., 2022) was the source of raw NMR spectral
data in this study. Since CST is most efficient if only a small number
of spectra have to be measured for the target protein, we used a small
subset of NMR spectra types from the ARTINA dataset, consisting
only of the 2D HSQC ([1H, 13C]-HSQC, [1H, 15N]-HSQC) and 3D
NOESY (13C-resolved [1H, 1H] NOESY, 15N-resolved [1H, 1H]
NOESY) spectra. Unless specified otherwise, we used this small
subset of spectra for a representative set of 15 proteins for all
experiments in this work (Supplementary Table S2).

2.3 Test examples for automated chemical
shift transfer

2.3.1 Random perturbation
To evaluate the capabilities of ARTINA-CST, we initially

generated CST test examples from the NMR data specified in
section 2.2. Each test example was composed of the chemical
shift list of the target (typically BMRB deposition) and source
(randomly perturbed BMRB deposition) proteins, complemented
by the set of NMR spectra of the target. The procedure ensured that
each target protein had a corresponding source from which to draw
chemical shift information, while also enabling quantification of the
difference between the source and target shifts. The source chemical
shift lists were created by manually perturbing deposited chemical
shifts with Gaussian additive noise.

The standard deviation σ i of the normal distribution from which
the perturbations were drawn was chosen individually for each atom
i, using the standard deviation of the chemical shift over all
occurrences of the same atom and amino acid type in the
BMRB (σBMRB

i ):

σ i � cσBMRB
i

where c is a scaling constant (c ∈ 0.2, 0.5, 1.0{ }) selected to validate
different experimental settings.

When applying this data for CST, the uncertainty value used to
determine the search space width was set to the larger of either:

• the standard deviation used for perturbation (σ i), or
• a small tolerance of 0.04 ppm for 1H nuclei, and 0.4 ppm for
both 13C and 15N.

To generate test examples, perturbations were applied to a
specific fraction p ∈ 0.2, 0.5, 1.0{ } of the total number of chemical
shifts within each protein, selected at random.

By evaluating all combinations of the parameters p and c
specified above, we conducted a total of nine distinct
experiments. Each entailed a full assignment (backbone and
sidechain) of the 15 benchmark proteins, resulting in a total of
135 assignments reported in the experimental section.

2.3.2 Structure-based perturbation
The subsequent series of experiments incorporated protein

structure information into the source shift list generation
procedure. The routine was designed to replicate an experimental
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setting where chemical shifts change between source and target due
to such factors as point mutations or ligand binding at specific sites.
We employed a random approach like the one outlined in the
previous section. However, the standard deviation of the
perturbation was defined as a function of the distance from the
“perturbation centers” (G)—amino acids selected from the sequence
of the target protein at random. The source chemical shift list
generation procedure was the following:

1. For each perturbation center gj ∈ G and each atom ai in the
protein structure S, calculate the distance (dij) between the
backbone amide nitrogen atoms of the perturbation center gj

and the amino acid containing atom ai.
2. Calculate the decay factor ei for each atom ai, which combines the

impact of all perturbation centers:

ei � ∑G| |

j�1
f dij( )

where

f x( ) � 1 if x≤ x0

0 if x> x0
{

is the step function parametrized by a distance cutoff x0.

3. Normalize each decay factor: e′i � ei /max
k∈S

ek to ensure that e′i is a
scalar value in the range [0, 1].

4. Calculate the standard deviation (σ i) of the additive noise for the i
-th atom: σ i � e′icσ

BMRB
i , where c ∈ 0.2, 0.5, 1.0{ } is a constant

used to validate different experimental settings.
5. Set the uncertainty value used to determine the search space

width for the atom ai to the larger of either:
• the standard deviation used for perturbation (σ i), or
• a small tolerance of 0.03 ppm for 1H nuclei, and 0.4 ppm for
both 13C and 15N.

These steps form an alternative method to define the atom-
specific chemical shift noise distribution N (0, σ2i ), contrasting the
fully randomized setting described in the preceding section. Aside
from this distinction, both experimental settings follow the same
logic. An example rendering of e′i for three perturbation centers is
shown in Figure 2.

In the experiment, we used the 15 benchmark proteins to
generate 900 randomized CST test examples by drawing x0 from
a uniform distribution over the interval 5–25 Å, the number of
perturbation centers from a categorical distribution over the integers
1–10, and positions of perturbation centers by selecting the specified
number of protein residues from the sequence at random.

2.4 Homologous proteins

To evaluate CST with experimental data, we investigated
sequence homology between proteins in the ARTINA dataset
(Klukowski et al., 2022) (Supplementary Table S2) and both
RefDB (Zhang et al., 2003) and BMRB using sequence alignment
parameters specified in Supplementary Table S1. As sequence
alignment scores had no upper bound, they were normalized by
the score of aligning each protein to itself. If the homolog protein
was found in both RefDB and BMRB, preference was given to
RefDB. We refer to the protein from the ARTINA dataset as the
target and from RefDB/BMRB as the source protein.

All pairs with normalized sequence alignment score above 80%
were selected for chemical shift alignment. In this step we
propagated information from the sequence alignment into the
source chemical shift list. This was indispensable as differences
between the source and target sequences, such as insertion or
deletion, require appropriate reindexing of chemical shifts in the
source before applying CST to the target.

Subsequently, each shift in the aligned source list was compared
with the corresponding target shift. An aligned shift was considered
“correct” if it was within a given tolerance from the target position
(0.03 ppm for 1H, 0.4 ppm for 13C/15N). Then, we calculated the
“fraction of correct aligned shifts” for each pair of source/target
homologous proteins, which is defined as the ratio of correct aligned
shifts to total shifts in the aligned list.

In this experiment, we used protein pairs with a fraction of
correct aligned shifts greater than or equal to 50%. Combining
with the requirement of >80% sequence alignment score, we
identified 12 source-target pairs for which experimental spectra
were available in the ARTINA benchmark. These pairs
corresponded to 9 distinct target proteins (Supplementary
Figure S2, Supplementary Table S3).

FIGURE 2
Three-dimensional rendering of decay factors (e′i ) using the
protein PDB 1SE9 as an example. Three perturbation centers are
represented by blue spheres that are overlaid with a light ribbon
representation of the protein backbone in cyan. Decay factor
values are presented for each residue as stick colors on a scale from 0
(white) to 1 (dark red). The resulting assignment accuracy is shown for
each heavy atom as spheres, with assignment errors up to 0.4 ppm in
dark green color. Incorrectly assigned heavy atoms are not present in
this assignment result. For atoms with no visible sphere, automated
assignments were made, however no reference manual shift was
available for error calculation.
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3 Results

3.1 Reference experiments

To investigate the impact of complementary input (chemical
shift list of the source protein) on the accuracy of the chemical shift
assignment of the target protein, we first evaluated the baseline
performance of de novo automated assignments of target proteins,
without any transfer information (Supplementary Figure S1).

Subsequently, we ran the chemical shift transfer in an idealized
setting, where each target protein’s own chemical shift list was
passed as the transfer source. This corresponds to the scenario,
unlikely in practice, in which the chemical shifts do not change
between the source and target proteins, or that the input shift list for
CST is equal to the expected output. It is important to note that
FLYA still uses peak lists prepared for a minimal set of experimental
spectra ([1H, 13C]-HSQC, [1H, 15N]-HSQC, 13C-resolved [1H, 1H]
NOESY, 15N-resolved [1H, 1H] NOESY) to perform chemical shift
transfer. Therefore, it cannot simply copy the input shifts to the
output, and some chemical shifts cannot be assigned due to missing
signals in the input data. However, this experimental setting
represents the best possible initial search space positions for
FLYA, and therefore can be used to estimate an upper bound for
CST accuracy. In this case, the width of each search space was set to
0.04 ppm for 1H nuclei and 0.4 ppm for 13C and 15N nuclei.

As expected, we observed a significant improvement in chemical
shift accuracy by 23.5 percentage points (pp) in the idealized reference
case, as compared to de novo assignment, where no complementary
input was used. The average assignment accuracy of 68.8% for
15 proteins used in the de novo experiment increased to 92.3%
using CST (Supplementary Figure S1). The fact that FLYA was
unable to attain 100% accuracy in these reference experiments was
likely mainly due to the minimal set of spectra used (Supplementary
Table S2).

In both reference experiments (Supplementary Figure S1) the
assignment errors had a tendency to accumulate in side-chains
(90.6% accuracy with CST, 66.3% without), leaving the accuracy of
the backbone assignment above the average (95.3% accuracy with CST,
73.4% without)—a result consistent with previous studies of FLYA
(Schmidt and Güntert, 2012) and ARTINA (Klukowski et al., 2022).

Another notable observation is that the availability of source
chemical shifts affects the variance of the output accuracy. In de novo
experiments, the discrepancy between the most and least accurately
assigned proteins is 34.9 pp, compared to only 13.8 pp in the
idealized CST case.

Overall, the experiments we have conducted, ranging from
scenarios with minimal to maximal information available for
chemical shift transfer, indicate that source protein information
provides useful guidance for the combinatorial optimization that
reduces the ambiguity of the assignment, resulting in fewer errors
and enhancing the overall reliability of protein assignment.

3.2 The impact of random and structure-
based perturbations

To characterize ARTINA-CST under more realistic conditions,
we carried out over 1,000 automated chemical shift transfers with

15 proteins using the test examples described in sections 2.3.1
and 2.3.2.

In the first series of experiments, a variable fraction of atoms was
selected at random for perturbation (20%, 50% and 100%), as
described in section 2.3.1, imitating a variable degree of
discrepancies between known source chemical shifts and the
target protein. Perturbed chemical shifts were used as input for
the ARTINA-CST procedure together with 4 NMR spectra of the
target protein ([1H, 13C]-HSQC, [1H, 15N]-HSQC, 13C-resolved
[1H, 1H] NOESY, 15N-resolved [1H, 1H] NOESY). ARTINA-CST
automatically extracted cross-peak positions from experimental data
and combined them with the corresponding perturbed shift list,
yielding the assignment of the target protein. This result was
compared with de novo ARTINA assignment, which involved the
same procedure, but without the perturbed chemical shift list as
input.

The use of CST turned out to be highly beneficial in all three
experimental settings (20%, 50% and 100% shift perturbation) and
for almost all proteins included in the study. The relative
improvement in assignment accuracy is depicted in Figures
3A–C by the ratio between the accuracy of the chemical shift
assignment with the CST procedure and with the de novo
approach, with a value of 1.0 corresponding to a neutral effect
of CST.

As expected, the value of the ratio depends on the parameters
c and p of the test generation procedure (section 2.3.1). In the
least challenging setting (Figure 3A), the scaling factor (c � 0.2)
largely restricts chemical shift deviations between source and
target chemical shift list. As the chemical shift values in the
source and target shift lists lie in close proximity, even for
perturbed atoms, the CST transfer procedure yields similar
performance regardless of the number of atoms perturbed,
demonstrating a 1.36-fold relative improvement on average as
compared to the de novo runs.

When the scaling coefficient was set to a moderately higher
value (c � 0.5), the effect of the larger of chemical shift
perturbations on the overall CST accuracy was apparent
(Figure 3B), with the relative improvement averaged over all
proteins varying between 1.37 and 1.29 for 0% and 100%
perturbed chemical shifts respectively. Finally, the strongest
perturbation (c � 1.0, Figure 3C) result in a further decrease in
CST accuracy, as compared with previous settings (Figures 3A,
B), but preserving strong positive impact (1.37-fold–1.23-fold
improvement) relative to de novo calculations.

Subsequently, we repeated the above experiment using
structure-based perturbations (section 2.3.2) instead of random
ones. The results for these assignments show a strong
resemblance to those for the fully randomized perturbations
(Figures 3D–F), including correlation between CST accuracy and
c, p parameters of the test example preparation procedure. The
points with 0% perturbations correspond to the idealized case, as
described in section 3.1.

Overall, we identified no major changes in the performance
of the algorithm that depend on the spatial distribution of
the chemical shift perturbation, and in both experimental
settings the number of perturbations and corresponding
variance were the primary factors affecting the accuracy of
the procedure.
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3.3 Case study with the lipoprotein Spr
NlpC/P60 domain

For individual cases, we observed a particularly large
improvement in the assignment obtained with the CST
procedure. For instance, the C-terminal NlpC/P60 domain of
lipoprotein Spr from Escherichia coli [PDB 2K1G (Aramini et al.,
2008)], showed poor performance in de novo chemical shift
assignment (48.3% accuracy), compared to 94.7% obtained in the
idealized case of CST (Figure 3).

Even in the experimental setting with the strongest perturbation
(standard deviation equal to BMRB standard deviation and
perturbations applied to all shifts, which resulted in the large
majority of shifts being moved significantly from their original
positions), the fraction of correct assignments for this protein
was raised by 20.4 pp upon application of the CST procedure. In
all other cases the positive impact of the chemical shift transfer was
even stronger (30.8–49.8 pp improvement, depending on the
experimental setting).

The primary reason for such improvements was the ability of the
CST method to resolve chemical shifts in the proximity of the
dynamic loop of residues 16–32, 79–81, 90–93, 99–101, long
positively charged side chains (37.3% without CST vs. 91.5% with
idealized CST) and aromatics (54.9% vs. 93.7%).

3.4 Chemical shift transfer with homologous
proteins

As described in section 2.4, we used pairs of homologous
proteins identified in RefDB/BMRB and the ARTINA benchmark
of NMR spectra to assess the performance of the chemical shift
transfer in fully experimental setting. In this procedure, the chemical
shift list deposited in RefDB/BMRB was regarded as source, and four
NMR spectra ([1H, 13C]-HSQC, [1H, 15N]-HSQC, 13C-resolved
[1H, 1H] NOESY, 15N-resolved [1H, 1H] NOESY) were used by
ARTINA-CST as input for the transfer procedure to the target
system. In this experiment all cross-peaks in the abovementioned
spectra were identified automatically by deep neural network
models included in the ARTINA visual spectrum analysis layer.
As in the previous experiments, we performed for each target
protein additional de novo assignments to assess the relative
performance of the CST procedure.

The results show an overall mean improvement by CST over de
novo assignment of 7.4% (0.0%–14.4%) in the chemical shift
assignment accuracy of all shifts and 9.7% (1.2%–23.9%) for the
backbone NH groups (Figure 4). Out of 12 homolog pairs, the
impact of CST was positive both for all shifts and NH groups in
11 cases. Only in one case (2JVD) the impact of CST was neutral for
all shifts and positive for NH groups.

FIGURE 3
Improvement of chemical shift assignment with CST using randomly and structure-based perturbed shifts. On the vertical axis, the change in
accuracy is given as the ratio between the chemical shift assignment accuracy with CST and corresponding de novo assignments without information
about the source protein. On the horizontal axis, the fraction of shifts perturbed refers to all shifts where perturbations were applied, regardless of the size
of the perturbation. The trend of each plot is modelled using Gaussian process regression and shown in blue, with a 95% confidence interval shown
in orange. “Scaling coefficient” refers to the constant c used to scale the standard deviation of the applied perturbations (see sections 2.3.1 and 2.3.2).
(A–C) Presents the results of the experiments with random and (D–F) with structure-based perturbations.
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ARTINA-CST has a single parameter, cCST, which corresponds
to the level of shift perturbation one expects to observe when
transferring chemical shift assignments from the source to the
target protein. It plays the same role as the scaling factor c for
the synthetic data preparation in section 2.3.1, indicating the
fraction of BMRB variance in individual shifts we expect to
observe in a particular dataset. In this experiment, cCST was set
to 1.0, indicating lack of a prior assumption about the variance of the

distribution (i.e., we expect the chemical shifts in the target protein
to deviate from the source the same way the individual shifts
deposited in the BMRB database deviate from their mean value).
Despite this conservative assumption, ARTINA-CST still yielded a
substantial improvement in the chemical shift assignment accuracy,
as compared with de novo assignment. Specific tuning of the
expected perturbation parameter is expected to result in further
improvement of the ARTINA-CST performance, as it provides weak
constraints on the initial search-space for individual chemical shifts.

In a second series of experiments, we therefore carried out chemical
shift transfers between the 12 homolog pairs using different values of the
expected perturbations, cCST = 0.10, 0.15, 0.20, 0.25, 0.50, 1.00, as well as
with fixed-size search spaces of 0.09 ppm for 1H and 1.2 ppm for 13C/
15N shifts that are independent of BMRB shift distributions. The results
indicate that decreasing the size of the initial search space proved
effective to increase ARTINA-CST accuracy (Figure 5). For each
automated chemical shift assignment in this experiment, we
calculated the ratio between the accuracies of CST-based and de
novo assignment. With the lack of prior assumptions about the
variance of chemical shifts (cCST � 1.0), ARTINA-CST achieved
10% median improvement over de novo assignment, for which no
information from the homologous protein was used. As the value of the
expected perturbation parameter cCST decreased, the overall
performance of the method increased and saturated at about 26%
for cCST ∈ [0.1, 0.25]. As two reference experiments, we evaluated the
accuracy of chemical shift transfer with fixed tolerances (green box,
Figure 5) and with an idealistic optimal reference, where the
information about target chemical shifts is assumed to be known
(upper bound accuracy) (blue box, Figure 5).

Chemical shift transfer impacts full assignment and amide N/H
assignment in similar way (Figure 5). For cCST = 1.0, the relative
median increase in assignment accuracy is 11%. The quality of the

FIGURE 4
Comparison of the accuracy of the chemical shift assignment
with and without CST. In the experiment 12 pairs of 9 homologous
proteins were used. Each target protein is represented in a distinct
color (for 2LEA, 2LL8 and 2LRH, two source proteins from BMRB
were identified). Circles represent assignment accuracy over all atom
types, whereas crosses signify the accuracy in the same experiments
evaluated for the backbone amide N/H atoms only.

FIGURE 5
Impact of search space size on CST accuracy. The change in accuracy is given as the ratio between the accuracies with and without chemical shift
transfer. The left-hand side represents assignment accuracy over all atom types, whereas the right-hand side signifies the accuracy in the same
experiments only evaluated over all amide N/H atoms. Within each set of experiments, the furthest-right case (blue) represents the “ideal” reference
experiment, using the target protein shift list as source for chemical shift transfer. The neighboring case (green) used a fixed-size search space of
0.09 ppm for 1H and 1.2 ppm for 13C/15N. The other boxes (red) represent a variable initial search space size calculated as a fraction of the BMRB standard
deviation of chemical shifts.
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solution increases with decreasing expected perturbation coefficient,
saturating at 20% for cCST ∈ [0.1, 0.25]. The relative improvement
for amide groups is smaller compared to all shifts, because the
generally higher accuracy of NH shift assignments in de novo
experiments leaves smaller room for improvements (68.0% and
77.2% accuracy for all shifts and NH groups respectively).

4 Discussion

An assigned set of chemical shifts establishes a basis for various
studies in protein NMR spectroscopy. It facilitates structure
elucidation, with chemical shifts being instrumental in
determining hydrogen spatial contacts and providing insight into
the three-dimensional architecture of the macromolecule. Beyond
elucidating static structures, chemical shift assignments offer a
unique window into protein dynamics, allowing for the
monitoring of temporal changes, facilitating the observation of
protein folding processes, conformational alterations, and
molecular interactions. In the field of protein-ligand studies, the
chemical shifts typically exhibit changes upon ligand binding,
thereby pinpointing the site of interaction, as well as details
regarding its molecular mechanism and affinity.

In this study we focused on chemical shift transfer–a technique
that allows to find chemical shift assignment of a target protein of
interest, given a (small) set of experimental spectra and the shift
assignment of a similar source protein (e.g., a homolog). The
technique is particularly suitable for studies of protein interactions,
such as protein-ligand complexes, where information about the
structure in apo form can be utilized to model the structure upon
binding. Other applications include studies of protein mutations,
where a wild-type structure with its assignment can be used as a
source of the transfer for a series of mutants. Finally, chemical shift
transfer finds its applications in studies of proteins under different
physical conditions. In all experimental settings evaluated in this
study, the goal of the chemical shift transfer was to find chemical shifts
of the target protein with a small amount of experimental data,
thereby reducing the measurement time from about 1 to 2 weeks
to 2–3 days ([1H,13C]-HSQC, [1H,15N]-HSQC, and combined
15N,13C-resolved [1H,1H]-NOESY).

In this work we built upon our previous work with ARTINA
(Klukowski et al., 2022) and FLYA (Schmidt and Güntert, 2012) to
establish a fully automated workflow that performs chemical shift
transfer automatically, strictly without any human involvement.
Subsequently, we carried out over 1,000 automated chemical shift
assignments to demonstrate the performance of ARTINA-CST
approach and characterize its properties under different
experimental settings.

We demonstrated the boundary performance of ARTINA-CST
by carrying out automated CST with complete information about
the target system and without any information from the homolog
structure. Subsequently, we characterized the performance of our
method, depending on such factors as the similarity of source and
target protein chemical shifts, the variance of chemical shift
perturbations, or the spatial distribution of chemical shift
deviations. Finally, we demonstrated the performance of our
approach using pairs of homolog proteins extracted from
RefDB/BMRB databases, which have experimental data available

in the ARTINA dataset. In all these experiments, we demonstrated
the benefits of CST for the automated assignment of protein NMR
spectra whenever appropriate data is available. Even in presence of
large differences between the target protein and the source
chemical shifts, CST allows an effective transfer of information
to improve the assignment while requiring only a small set of
spectra for the target protein. This experiment was carried out with
a minimal set of NMR spectra for source-target pairs with at least
80% sequence homology (and correspondingly lower sequence
identity). We expect CST to be possible also at even lower sequence
similarity, where, however, it might be necessary to compensate for
the larger number and size of the chemical shift differences by
measuring one or more additional spectra (for instance, HNCO,
HNCA, HNcoCA, or CBCAcoNH) for the target protein. On the
other hand, we see the main practical applications of automated
CST rather for source-target pairs with highly similar sequences
such as orthologous proteins from different species and mutants in
combination with temperature, pH, salt or other environment
changes, ligand binding, etc.

Future improvements of ARTINA-CST are possible, provided
that more NMR data relevant for chemical shift transfer is collected
and deposited in public repositories. It would allow for the use of
statistical methods or machine learning to characterize chemical
shift perturbation patterns resulting from different types of transfers
(e.g., changes of the physical conditions or ligand binding).

We believe that the method can find future applications in
fundamental studies of proteins with NMR spectroscopy, including
investigations of protein structure, dynamics, and interactions. The
method can be adopted easily by the NMR community and
integrated in research protocols, as CST takes only up to 2 h of
computational time and the whole process can be carried out in the
web browser using our cloud computing platform NMRtist (https://
nmrtist.org). Although this is a technical paper presenting a solution
to a common problem in biomolecular NMR spectroscopy, where
approaches analogous to molecular replacement in X-ray
crystallography are not in common use, it may have a more
general impact on biochemical research by simplifying the use of
NMR in situations where it was so far considered a (too) laborious
method. Additionally, we believe that the results presented here may
serve as guidance for NMR practitioners who use the NMRtist
platform (Klukowski et al., 2023), helping them to assess the
practical benefits of the recently proposed ARTINA method in a
new context.
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