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Introduction: In this study, we demonstrate the feasibility of yeast surface display
(YSD) and nextgeneration sequencing (NGS) in combination with artificial intelligence
and machine learning methods (AI/ML) for the identification of de novo humanized
single domain antibodies (sdAbs) with favorable early developability profiles.

Methods: Thedisplay librarywas derived fromanovel approach, inwhichVHH-based
CDR3 regions obtained from a llama (Lama glama), immunized against NKp46, were
grafted onto a humanized VHH backbone library that was diversified in CDR1 and
CDR2. Following NGS analysis of sequence pools from two rounds of fluorescence-
activated cell sorting we focused on four sequence clusters based on NGS frequency
and enrichment analysis aswell as in silico developability assessment. For each cluster,
long short-term memory (LSTM) based deep generative models were trained and
used for the in silico sampling of new sequences. Sequences were subjected to
sequence- and structure-based in silico developability assessment to select a set of
less than 10 sequences per cluster for production.

Results: As demonstrated by binding kinetics and early developability assessment,
this procedure represents a general strategy for the rapid and efficient design of
potent and automatically humanized sdAb hits from screening selections with
favorable early developability profiles.
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Introduction

VHHs (variable domain of the heavy chain of a heavy chain-only
antibodies), commercially known as nanobodies, are single-domain
antibody (sdAb) fragments derived from camelid heavy chain-only
antibodies (HcAbs). VHHs exhibit small size, high stability, and
exceptional binding specificity, making them valuable tools for
therapeutics, diagnostics, and research applications (Krah et al.,
2016; Könning et al., 2017; Wang et al., 2022; Jin et al., 2023). Owing
to their simple molecular architecture, they offer a plethora of
engineering options with respect to the generation of bi- and
multispecific antibody designs involving different paratope
valences and spatial orientations of individual domains within a
given molecule (Bannas et al., 2017; Chanier and Chames, 2019;
Pekar et al., 2020; Yanakieva et al., 2022; Lipinski et al., 2023a;
Lipinski et al., 2023b). However, VHH domains usually have to be
humanized and further sequence-optimized to be suitable for
therapeutic applications.

A classical cascade for antibody and VHH discovery typically
involves (camelid) immunization and antibody library construction
after immunization followed by antibody selections or panning.
Subsequently, Sanger sequencing of high prevalent clones can be
applied (typically in the range of a couple of hundred clones) that are
then profiled for the desired on-target effect, and functional or
phenotypic assays. The best hits are then nominated for sequence
optimization, usually including humanization (Vincke et al., 2009;
Sulea et al., 2022), replacement of chemically labile and post-
translational modification (PTM) motifs and ideally considering
further developability-related aspects (Lauer et al., 2012; Sormanni
et al., 2015; Raybould et al., 2019; Ahmed et al., 2021; Khetan et al.,
2022; Negron et al., 2022; Evers et al., 2023a; Fernández-Quintero
et al., 2023; Jain et al., 2023; Mieczkowski et al., 2023; Svilenov et al.,
2023). Sometimes, the complexity of these different optimization
parameters might require multiple design cycles and in some cases it
might not be even possible to optimize such hits towards a favorable
overall profile (Rabia et al., 2018). This process of iterative sequence
optimization is generally on the critical path in early biologics drug
discovery projects. Therefore, it is highly desirable to find new
approaches that accelerate the discovery and design of
humanized sequences with a favorable early developability
profile, both in terms of project timelines and to reduce attrition
in the downstream process.

In contrast to the traditional approach of Sanger sequencing,
next-generation sequencing (NGS) of screening pools obtained from
selection campaigns enables a rapid and cost-effective analysis of the
vast sequence spaces of binders (Larman et al., 2012; Mathonet and
Ullman, 2013; Hu et al., 2015; Barreto et al., 2019). Integration of
Sequence-Activity-Relationship (SAR), frequency and enrichment
analyses with in silico developability assessment on NGS data can
furthermore provide a rational approach to identify potent
sequences with improved developability profiles. Moreover,
recent studies have shown the versatility of artificial intelligence/
machine learning (AI/ML) techniques on antibody NGS data to
design new sequences with potentially further improved potency or
developability (Liu et al., 2020; Mason et al., 2021; Saka et al., 2021;
Makowski et al., 2022; Hie et al., 2023; Parkinson et al., 2023). In
these studies, regions of specific antibody candidates were diversified
in combinatorial mutagenesis display libraries, followed by the

generation of ML models from NGS data. Saka et al. (2021), for
example, employed long short-termmemory (LSTM) based on NGS
derived sequences from different panning rounds of a library
diversified in CDR-H1, -H2 and -H3 and FR1 of a kynurenine
binding antibody. The affinities of newly designed sequences were
over 1800-fold higher than for the parental clone. LSTM is a widely
used deep learning architecture in natural language processing that
is also particularly effective in predicting new protein sequences, as it
is capable of modeling long-term dependencies and capturing the
complex relationships between amino acids that determine structure
and function. Such LSTMs have not only been successfully applied
for the design of new antibodies (Saka et al., 2021), but also for
peptides (Müller et al., 2018) and small molecules (Gupta et al., 2018;
Merk et al., 2018; Segler et al., 2018; Z et al., 2022). While the above-
mentioned studies used combinatorial synthetic display libraries in
combination with NGS and AI/ML to optimize existing lead
antibodies, this concept might also be employed to discover new
and potent antibody sequences with favorable developability profiles
from diverse antibody repertoires obtained from animal
immunization.

As part of our integrated VHH hit discovery strategy, we have
recently implemented a semi-immune/semi-synthetic library
approach for the high-throughput de novo identification of
humanized VHHs following camelid immunization (Arras et al.,
2023). For this, VHH-derived CDR3 regions obtained from a llama,
immunized against recombinant human (rh) Natural Cytotoxicity
Receptor NKp46 (Barrow et al., 2019), were grafted onto a
humanized VHH backbone library comprising sequence-
diversified CDR1 and CDR2 regions that were tailored towards
favorable in silico developability properties, by considering human-
likeness and excluding potential sequence liabilities and predicted
immunogenic motifs. NKp46 is an activating receptor on Natural
Killer cells (NK cells) and was successfully harnessed for the
generation of potent NK cell engagers (Gauthier et al., 2019;
Gauthier et al., 2023; Lipinski et al., 2023). Target-specific
humanized VHHs were readily obtained in our previous study by
YSD (Arras et al., 2023). By exploiting this approach, high affinity
VHHs with optimized developability profiles can principally be
generated against any antigen of interest upon camelid
immunization. The process of CDR3 engraftment onto our
generic humanized and sequence-optimized VHH scaffold library
is characterized by its low complexity and duration similar to the
generation of wild-type VHH display libraries following
immunization (Roth et al., 2020); thereby this procedure
significantly accelerates VHH hit discovery by reducing or even
eliminating the need for subsequent sequence optimization. Due to
the setup of our library approach, all resulting VHHs have a fixed
humanized framework sequence, e.g., any differences in antigen
binding and developability properties are driven by sequence
variations in the CDR regions. Providing NGS data from
different rounds of YSD (Valldorf et al., 2022) based FACS
screens from this library therefore represent ideal inputs to train
AI/ML models for the design of new sequences with even further
improved potency and developability.

Goal of the present study was to investigate the feasibility of
our integrated approach of combining i) camelid immunization,
ii) humanized VHH library generation, iii) YSD, iv) FACS
screening, v) NGS analysis, vi) AI/ML based sequence
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sampling and vii) in silico developability assessment to identify
potent and readily sequence optimized VHH hits in a single
procedure. The display library was derived from our humanized
VHH library that was directed against (rh) NKp46 (Arras et al.,
2023). Based on NGS analysis, we selected four diverse
CDR3 sequence clusters in the present study that showed high
frequency or enrichment over two rounds of FACS screening.
These repertoires were used to train LSTM deep generative
models for the automated design of new sequences that were
subsequently filtered based on in silico developability criteria
using our recently described Sequence Assessment Using Multiple
Optimization criteria (SUMO) approach (Evers et al., 2023a). We
finally selected a set of only up to ten sequences per cluster for
synthesis and experimental profiling. As demonstrated in
binding measurements and early developability assays, the
proposed methodology has the capability to generate diverse
and potent VHH hits directly from screening collections upon
camelid immunization that do ideally not require further
humanization and sequence optimization. Furthermore, it
provides sequence activity (SAR) and sequence-property (SPR)
relationships for each of the investigated sequence clusters.
Taken together, as exemplified and demonstrated on a typical
early drug discovery project, this workflow has the potential to
significantly accelerate hit discovery and optimization and reduce
the risk for developability-related attrition.

Results

Previous work: humanized VHH library
construction after camelid immunization,
yeast surface display and cell sorting

As outlined in detail in our previous study (Arras et al., 2023) and
schematically illustrated in Figure 1A, we have recently developed a
semi-immune/semi-synthetic strategy that relies on grafting the PBMC-
amplified CDR3 VHH repertoire of llamas following immunization
onto two internally optimized humanized backbone libraries with a
framework germline sequence derived from human IGHV3-23*1
(Arras et al., 2023). Both libraries were diversified in CDR1 and
CDR2 towards favorable in silico developability properties, i)
considering amino acid distributions observed in naïve and
immunized llamas, eliminating residue combinations ii) that would
result in potential N-glycosylation sites (Asn-X-Ser/Thr) or highly
susceptible chemical liability motifs (Asn-Gly, Asp-Gly, Met,
unpaired Cys) and iii) strong predicted MHC-II binding peptide
motifs, while taking into account iv) diversity with respect to charge,
size and hydrophobicity and v) occurrence in the equivalent positions in
NGS data of human antibody repertoires. To identify novel binders
against (rh) NKp46, we had opted for PBMC-derived total RNA of a
(rh) NKp46 immunized llama for the generation of both CDR3-
engrafted humanized libraries for YSD. As demonstrated in a head-
to-head comparison, sequences from the CDR3-engrafted humanized
library that were selected after two rounds of FACS showed similar
activity against NKp46 compared to CDR3-analogues from immunized
WT llama sequences with improved early developability profiles (Arras
et al., 2023). In that study, 96 clones were selected after FACS by
random picking and Sanger sequencing from each library. For the

present study, we re-analyzed the sequence pools of the CDR3-
engrafted humanized library from the different selection rounds by
NGS (Figure 1B).

Identification of sequence clusters based on
NGS analysis and in silico developability
assessment

The application of NGS in combination with AI/ML
approaches can represent a quick and cost-effective way to
identify potent and developable binders that might not be
picked with the traditional approach of random clone
selection and Sanger sequencing. To exhaustively assess
sequence diversity from our previous display campaign, NGS
data for screening pools obtained from the different FACS rounds
of the CDR3-engrafted humanized library were generated using
the MiSeq system (Figure 1B). Table 1 summarizes the absolute
number of NGS reads that were obtained after the different
rounds of FACS for all sequences and for those
CDR3 sequence clusters that were used for LSTM deep
generative model generation as outlined below.

Sequences were annotated with Geneious Biologics (Antibody
Discovery Software, 2023) using IMGT numbering and clustered
based on 50% CDR3 sequence identity. We assumed that this cutoff
assures that i) within each cluster most VHHs bind in a similar
manner to the same epitope, and ii) at the same time provides
sufficient sequence diversity within each cluster for ML model
generation, SAR analysis and automated multi-parameter
optimization towards improved potency and developability. All
sequence clusters were ranked by either i) their absolute
frequency (total number of reads), i.e., the number of clones
observed after the second round of FACS or ii) their enrichments
(as described in Materials and Methods) observed over FACS round
2 vs. round 0 (Figure 1B; Table 1). The ranking of clusters and
sequences based on their absolute frequency should principally
result in similar selections compared to the random selection and
Sanger sequencing approach that is usually applied in the traditional
screening cascade. Conversely, selection based on enrichment is
potentially able to identify rare clones with superior affinity and
specificity (Rouet et al., 2018; Barreto et al., 2019). In a first feasibility
study, we selected the most occurring CDR1-3 amino acid sequence
from the i) fivemost frequent and ii) fivemost enrichedCDR3 clusters
for production and binding affinity determination against NKp46.
Since two CDR3 clusters occurred in both sets, a total of eight
sequences were produced and tested (Table 2). Remarkably, seven
sequences showed binding affinity in the 1-digit nanomolar range.
Only the representative of the most frequent cluster exhibits a slightly
lower binding affinity (KD = 19.8 nM). These results are in agreement
with previous literature reports that enrichment-based selection based
on NGS data can provide additional potent sequences (Rouet et al.,
2018; Barreto et al., 2019).

As mentioned above, due to our library design strategy, all
sequences are identical in their framework regions that were derived
from a humanized germline sequence. In the next step, we analyzed
the sequence and computed property space within each
CDR3 sequence cluster. To visualize diversity (based on sequence
identity) after each round of FACS enrichment, the respective
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FIGURE 1
The end-to-end process consists of the following steps: (A). Library construction process. VHH-derived CDR3 regions obtained from a llama,
immunized against (rh) NKp46 are grafted onto a generic humanized and sequence-optimized VHH backbone library. (B). Process of binder identification
from Yeast Display Library based on multiple rounds of FACS and next-generation sequencing (NGS) analysis of sequence pools before and after FACS,
followed by sequence clustering, per-cluster frequency and enrichment analyses in combination with in silico developability predictions to identify
most interesting sequence clusters. (C). Per-cluster LSTM deep generative model generation and sampling of new sequences that are subjected to in
silico developability assessment to identify sequences for synthesis and experimental profiling. (D). Selected VHH sequences are produced as one-armed
monovalent SEEDbodies and experimentally characterized for binding against NKp46 and in early developability assays. (Figures partially created with
BioRender.com).

TABLE 1 Summary of NGS data. VHH genes of screening samples were analyzed using MiSeq. Sequences were clustered based on 50% CDR3 sequence identity.
Number of NGS reads are shown for all sequences and for those clusters that were selected for sampling of new sequences, antibody production and experimental
profiling based on enrichment analysis and in silico developability assessment. Sequences obtained from FACS round 2were used for LSTM deep generative model
generation.

clusterID
NGS reads

Enrichment factor round 2 vs. round 0
FACS round 0 FACS round 1 FACS round 2

1 0 942 2,630 3,095

2 1 2,790 2,991 1760

3 36 4,964 4,147 132

4 888 8,573 11,954 16

ALL 887,881 1,138,880 754,669
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sequences pools were projected into a two-dimensional space using
UMAP (Becht et al., 2018) (Supplementary Figure S1). In addition, i)
the per-residue frequency distributions of clones obtained after the
second round of FACS and ii) the per-residue enrichment ratio
through FACS enrichment rounds 1–2 were computed and
analyzed, as shown in Figure 2 and Supplementary Figures
S2–S4. Finally, for each cluster the 100 most frequent unique
sequences obtained from FACS round 2 were subjected to in
silico developability assessment using our previously described
SUMO approach (Evers et al., 2023a). This method automatically
generates structural VHH models from provided sequences,
evaluates their human-likeness, and identifies potential surface-
exposed chemical liabilities and post-translational modification
motifs. Additionally, a small set of computed physico-chemical
descriptors is reported, including the isoelectric point (pI),
AggScore (Sankar et al., 2018) as predictor for hydrophobicity
and aggregation tendency, and the positive patch energy of the
CDRs. Analysis of sequence and predicted property data was used to
assess the sequence spaces within each cluster regarding their
potential to provide i) potent sequences, ii) broad sequence
diversity and SAR information and iii) favorable in silico
developability properties. We were particularly interested in
selecting clusters with considerable sequence diversity to
investigate how LSTM sampling could provide new sequence
combinations to increase diversity and ideally improve affinity
and/or developability properties. Based on these analyses, we
picked four sequence clusters (termed cluster IDs 1–4 in the
following) for LSTM based deep generative model generation and
sampling of new sequences. The original data files used for sequence
and in silico property analysis are provided in Supplementary Tables
S1–S4 and illustrated for CDR cluster 3 in Supplementary Figures
S5, S6.

LSTM model structure, training, sequence
generation and scoring

As illustrated in Figure 1C, the LSTM model training and design
was conducted using a recurrent network structure that has previously
been successfully applied for the design of peptides [details in ref
(Müller et al., 2018)]. LSTM models capture patterns in sequential
data and generate new data instances from the learned distributions.
Like their utility in peptide applications, the amino acid sequences of
VHHs serve as appropriate inputs for these machine learning models.
Since all sequences of the current study have identical framework
regions, only the CDR1-3 sequences were concatenated and used for the
training of LSTMmodels. For each of the four selected CDR3 sequence
clusters, these CDR1-3 sequences (including all redundant sequences)
from the second FACS round (Table 1) as determined by NGS were
used for training. The best models were selected by evaluating the
calculated validation losses on the left-out training datasets using a five-
fold cross-validation approach (Supplementary Figure S7). Based on the
learning distribution of the trained LSTMmodels, new sequences were
sampled. We sampled 10,000 new sequences per cluster. These new
sequences were combined with the original training sequences and
ranked by their calculated negative logarithm of likelihood (NLL), a score
that reflects the observed frequency of individual amino acids along the
sequences of the training data sets (see Methods, Supplementary FigureTA
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S5 and Supplementary Tables S1–S4). The NLL score is not a predictor
for binding affinity per se. However, since it reflects the sequence bias of
amino acid distributions in the training data set sorted for favorable
binding by FACS, it has been shown to represent a pragmatic score for
selecting new sequences with an increased likelihood for high binding
affinity (Saka et al., 2021).

In silico developability assessment to
identify sequences for production and
experimental profiling

Within each cluster, the top-ranked 100 non-redundant
sequences obtained from LSTM sampling and NGS analysis
were subjected to in silico developability assessment (see
Supplementary Tables S1–S4) using our SUMO approach
(Evers et al., 2023a). With the available sequences and their
in silico profiles, the primary goal was to select a set
of ≤10 sequences (for each cluster) for synthesis from which
at least one sequence (per cluster) should be suited for further
project progression after experimental profiling without the
need for further iterative sequence optimization. For the
nomination of these sequences, the following criteria were
taken into account.

1. NLL scores: To assess the NLL’s effectiveness in estimating
binding affinities, we chose binders within each cluster with
highly favorable scores, nominating at least three sequences
from the top 100 scoring sequences. Additionally, we
intentionally selected further sequences beyond the top 100 to
cover a broad range of NLL scores, facilitating subsequent
correlation analyses with experimental binding affinities.

2. In silico developability criteria: To minimize the risk of
aggregation and non-specific binding, we selected sequences
with computed aggregation propensity and positive charged
CDR patch scores below defined cutoff scores. These cutoffs
were set to the computed average scores plus one standard
deviations over a data set of 79 marketed antibodies (see
Table 4 legend). Additionally, as general de-risking approach,
we intentionally picked sequence variants covering a certain pI
range (Supplementary Table S5). The pI of an antibody/VHH can
significantly impact various developability properties, such as
solubility, aggregation during purification, virus inactivation (Jin
et al., 2019), colloidal stability, viscosity in formulation
(Kingsbury et al., 2020; Gupta et al., 2022), or non-specific
binding or clearance (Ahmed et al., 2021; G et al., 2021).
Small sequence modifications have been shown to improve
colloidal stability and viscosity behavior (Kumar et al., 2018;
Evers et al., 2019). Considering that the optimal pI for an

FIGURE 2
Per-residue enrichment and frequency analysis, both illustrated as heat-map for CDR3 sequence cluster 3. The table headers show the CDR1-3
sequence of the most frequent clone observed in the NGS data set after the second round of FACS selection within this cluster. (A). Per-residue
enrichment ratio over YSD-FACS rounds 1–2. Residues with a high enrichment (colored green) are observed with a higher relative frequency after FACS
round 2 compared to round 1. (B). Per-residue frequency distribution observed after FACS round 2.
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TABLE 3 CDR1-3 sequences of VHHs obtained from NGS analysis and AI/ML (LSTM) predictions. Sequences are grouped by their CDR3 cluster ID (50% SEQ-ID cutoff) with the most potent sequence at the top of each group. To
visualize sequence and property relationships, amino acid differences to the most potent sequence within each group are shown in orange boxes. Residues that might theoretically be prone to chemical degradation are
colored red (Asn deamidation, Asp isomerization, Met oxidation). In addition, the predicted NLL score and experimentally measured binding affinities (KD) as well as the kon and koff values are provided. NB: no binding.

ID CDR3
cluster

source KD [nM] kon [1/Ms] koff [1/s] NLL CDR1 CDR2 CDR3

1 1 AI/ML 5.3 3.2E + 05 1.7E − 03 4.9 G R T F S N Y A I S R G G D N T A A V F T P T D T V V F I N K E P Y N Y

2 1 NGS 7.4 3.4E + 05 2.5E − 03 4.8 G F T F S S Y A I S S S G S N T A A V F T P T D T V V F T N K G P Y N Y

3 1 AI/ML 8.1 6.9E + 04 5.6E − 04 6.2 G R T F S S Y A I S R G G D N T A A V F T P T D T V V F I N K E S Y N Y

4 1 NGS 8.6 1.3E + 05 1.1E − 03 2.9 G F T F S S Y A I S S S G S N T A A V F T P T D T V V F T N K E P Y N Y

5 1 NGS 9.4 1.9E + 05 1.8E − 03 2.5 G F T F S S Y A I S S G G D S T A A V F T P T D T V V F T N K E P Y N Y

6 1 AI/ML 11.3 1.8E + 05 2.1E − 03 2.5 G F T F S S Y A I S S S G G S T A A V F T P T D T V V F T N K E P Y N Y

7 1 NGS 11.7 2.3E + 05 2.7E − 03 2.8 G R T F S S Y A I S S S G G S T A A V F T P T D T V V F T N K E P Y N Y

8 1 AI/ML 13.9 1.9E + 05 2.7E − 03 2.7 G F T L S S Y A I S S G G G S T A A V F T P T D T V V F T N K E P Y N Y

9 1 AI/ML 21.9 5.4E + 04 1.2E − 03 20.8 G G T F S I Y A I S R G G S N T A A V F T P T D T V V F I N K E R Y N Y

10 2 AI/ML < 0.1 1.9E + 05 < 1.0E − 07 2.4 G G T F G S Y A I S R S G G S T A A A G G M G S T T V V V S T I P Y K Y

11 2 NGS 0.8 2.3E + 05 2.0E − 04 2.3 G G T F S S Y A I S S S G G S T A A A G G M G S T T V V V S T I P Y K Y

12 2 NGS 1.1 2.5E + 05 2.8E − 04 2.8 G G T F G N Y A I S R G G G S T A A A G G M G S T T V V V S T I P Y K Y

13 2 NGS 1.3 2.0E + 05 2.7E − 04 2.3 G G T F S S Y A I S R S G G S T A A A G G M G S T T V V V S T I P Y K Y

14 2 AI/ML 1.5 3.6E + 05 5.3E − 04 2.6 G G T F S N Y A I S S S G G S T A A A G G M G S T T V V V S T I P Y K Y

15 2 NGS 2.3 1.1E + 05 2.6E − 04 7.1 G R T F G S Y A I S S S G D S T A A A G G I G S S T V V V S P I P Y A Y

16 2 NGS 4.0 1.6E + 05 6.3E − 04 8.4 G R T L S S Y V I S S S G D R T A A A L A P S G T L V V V S P L G Y T Y

17 2 AI/ML 4.4 1.0E + 05 4.5E − 04 2.8 G G T F G N Y A I S R G G G S T A A A G G I G S T T V V V S T I P Y K Y

18 2 AI/ML NB NB NB 17.8 G G T F G N Y A I S R G G G S T A A A G G M G S T T V V V S T I P P K Y

19 2 AI/ML NB NB NB 17.8 G G T F G N Y A I S R G G G S T A A A G G M G S T T E V V S T I P Y K Y

20 3 AI/ML 2.1 1.3E + 05 2.8E − 04 3.6 G G T F S D A A I S R S G D S T A A N P A T S E V L I V R D L G Y A Y

21 3 NGS 2.3 1.4E + 05 3.2E − 04 3.0 G R T F G N Y A I S R S G G S T A A N P A T S T V L I V R D L G Y A Y

22 3 AI/ML 4.9 1.2E + 05 5.8E − 04 3.2 G R T F S S Y A I S S S G G N T A A N P A T S T V L I V R D L G Y A Y

23 3 NGS 7.2 1.0E + 05 7.3E − 04 3.6 G R T F S S Y A I S S G G G N T A A N P A T S T V L I V R D L G Y A Y

24 3 AI/ML 7.3 9.3E + 04 6.9E − 04 3.0 G F T F S S Y A I S S S G G S T A A N P A T S E V L I V R D L G Y A Y

25 3 NGS 7.6 9.6E + 04 7.3E − 04 2.8 G F T F S D Y A I S S S G G S T A A N P A T S T V L I V R D L G Y A Y

26 3 NGS 7.9 7.0E + 04 5.5E − 04 5.5 G F T F G N Y A I S R S G S S T A A N P A T S R V I I V R D L G Y A Y

27 3 NGS 8.0 8.2E + 04 6.6E − 04 7.2 G L T F S S Y A I S G S G D N T A A N P A T S R V I I V R E L G Y A Y

28 3 AI/ML 15.5 5.9E + 04 9.1E − 04 18.7 G F T L S D Y V I S S S G G N T A A N E A T S E V L I V R D L G Y A Y

29 4 NGS 0.8 9.6E + 04 8.0E − 05 5.8 G R T L G N Y A I S W G G S R T A T S L T Y D Q T T V Y V S P L A Y V D
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antibody drug product may vary depending on environmental
factors, such as a solution or formulation pH, often not yet
defined in the early project phase, selecting additional pI variants
of a lead sequence provides potential backups for efficient project
progression and de-risking.

3. Sequence diversity within each CDR3 cluster for SAR generation
and chemical liability site elimination: Our humanizedVHH library
design strategy (Arras et al., 2023) omits N-glycosylation sites (Asn-
X-Ser/Thr) and highly susceptible chemical liability sites (Asn-Gly,
Asp-Gly, Met, Cys) in CDR1 or CDR2 (Table 3). However, such
liabilities may still occur in CDR3, which is directly grafted from
NKp46-immunized llama VHHs. Additionally, other theoretical
chemical liability motifs (e.g., Asn-Ser, Asn-Asn, Asn-Thr; Asp-Ser,
Asp-Asp, Asp-Thr, etc.) may be present in CDR1 or CDR2. These
had not been excluded from library design, since degradation of
these motifs occurs significantly less frequently based on internal
and literature data (Lu et al., 2019) and are therefore assessed case-
by-case, either by post-filtering based on more rigorous in silico
liability assessments or by experimental profiling as exemplified
below. As shown in Table 3, several selected sequences possess
such “less severe” liability motifs. As part of our de-risking strategy,
we intentionally selected sequence variants within each cluster
where residues theoretically prone to chemical degradation (e.g.,
Asn, Asp, Met) are replaced by chemically non-reactive residues
(e.g., sequences 15–17, where a Met residue in CDR3 is replaced
by Ile).

4. Finally, we ensured that for all four clusters, sequences were
selected from both the NGS output and LSTM sampled
sequences to assess, through experimental profiling, the extend
to which LSTM sampling provided additional or improved
“chemical matter”.

Table 3 and Supplementary Table S5 display the CDR1-3
sequences that were ultimately selected, along with their
computed developability properties. For the specific rationale
behind selecting each sequence for synthesis and experimental
profiling, please refer to Supplementary Tables S1–S4. As shown
in Supplementary Table S5 and Figure 3, due to our humanized
VHH library design strategy all selected sequences show a high
human-likeness in the framework region of 91.3%. Furthermore,
due to our selection strategy, no sequence shows pronounced
computed aggregation propensity or positive charged patches in
the CDRs. However, as intended by the selection criteria, the
sequences cover a certain diversity in NLL scores, pI, sequence
diversity and chemical liability motifs.

NGS and AI/ML derived sequences display
high-affinity antigen binding and favorable
early developability properties

As illustrated in Figure 1D, the selected sequences (Table 3) were
utilized to synthesize one-armed, monovalent paratope-Fc fusion
constructs as described previously (Klausz et al., 2022; Lipinski et al.,
2023) to exclude avidity-related interactions that might enhance
apparent binding affinity (Vauquelin and Charlton, 2013). For
this, we utilized the strand-exchanged engineered domain (SEED)
technology for Fc heterodimerization (Davis et al., 2010).TA
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Production was performed in ExpiCHO™ cells at a scale of 5 mL for
experimental profiling. Expression yields were in the double-digit
milligram-per-liter scale for most sequences, indicating adequate
productivities for transient expression (Table 4). Furthermore,
aggregation propensities as determined by analytical size-exclusion
chromatography (SEC) post protein A purification indicated
favorable biophysical properties for most sequences (Table 4).
Binding experiments utilizing bio-layer interferometry (BLI) at
varying (rh) NKp46 concentrations revealed specific antigen
binding of the vast majority of tested VHHs from both
approaches, NGS and AI/ML, respectively (Table 3; Figure 4).
Encouragingly, within each sequence cluster, we obtained multiple
sequences binding in the 1-digit nanomolar or even sub-nanomolar
range to (rh) NKp46 (Table 3). Notably, although the affinity
improvements are not significant, for three of the four sequence
clusters, the most potent binder was obtained from the LSTM-
predicted sequences, suggesting that the deep generative model
approach can propose improved sequences in terms of binding
affinities within the sequence space spanned by the NGS data set.
Analysis of the NLL scores do not show a linear correlation to the
experimentally observed binding affinities. However, within this
specific dataset, high predicted (i.e., unfavorable) NLL scores
qualitatively translated to low or no detectable affinities, suggesting
the use of more stringent NLL cutoff scores in future studies to
eliminate true negatives from the list of candidates to be synthesized.

To experimentally assess early developability properties
(Table 4; Figure 5), we exploited analytical size-exclusion

chromatography (SEC) after protein A purification as a first
filter. Generally, purities above 85% target peak are considered as
adequate attributes for transient antibody expression, while purities
of more than 90% indicate favorable properties. Overall, most
sequences showed a high target purity above 90%. As additional
early developability attribute we also scrutinized one-armed
VHH SEEDbodies using analytical hydrophobic interaction
chromatography (HIC) assuming that a low overall
hydrophobicity would contribute to a good developability profile.
For this, we utilized two marketed therapeutic antibodies as assay
controls, cetuximab and avelumab, with HIC retention times of
5.8 min and 7.2 min, respectively. Overall, HIC retention times of
the vast majority of VHH SEEDbodies were in the lower favorable
range. In this respect most molecules displayed even shorter
retention times compared to cetuximab, indicating a beneficial
(low) relative hydrophobicity of the VHH domains. Only
variants of CDR3 cluster 4 (IDs 30–37) showed retention times
in the range of 6.0–6.7 min that are in between the ones from
cetuximab and avelumab. Notably, although there is no ideal linear
correlation between HIC retention times (Table 4) and computed
aggregation propensities (Supplementary Table S5 and Figure 6),
these in silico scores are (in agreement with their higher retention
times) on average higher for IDs 30–37 (cluster 4) compared to the
other sequences; supporting their usefulness for early in silico
ranking and filtering of sequences. The observed degree of
correlation between predicted and experimental hydrophobicity is
in agreement with a recent systematic study on antibody structures

FIGURE 3
Graphical visualization of in silico properties for VHH domains that were selected for synthesis and experimental profiling. Blue bars indicate
sequences obtained from NGS, red bars indicate sequences obtained from AI/ML (LSTM) sampling.
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TABLE 4 Analytical and early developability data for selected one-armed VHH SEEDbodies and antibody controls, including amount of protein, SEC Purity, mean
Tonset, HIC retention time, AC-SINS and PSR-BLI.

ID source amount of protein
[mg/L]

SEC Purity [%] Mean
Tonset [°C]

HIC tR [min] AC-SINS
[Δλmax (nm)]

PSR/
BLI

1 AI/ML 49.1 92.7 59.1 4.9 -0.705 -0.011

2 NGS 51.8 90.9 59.2 5.0 -0.076 0.036

3 AI/ML 33.7 89.4 58.4 4.9 -1.189 0.004

4 NGS 28.0 96.9 58.1 4.9

5 NGS 23.8 94.5 59.8 5.1 -0.550 0.016

6 AI/ML 25.2 96.5 58.1 5.1

7 NGS 29.4 91.4 58.4 4.9 -0.570 0.030

8 AI/ML 32.2 95.0 59.8 5.3 -0.596 0.037

9 AI/ML 43.5 83.1 59.4 5.0 -0.550 0.005

10 AI/ML 26.5 97.1 59.1 4.8 -0.604 -0.031

11 NGS 23.7 97.3 58.9 4.8 -0.516 -0.012

12 NGS 18.1 100.0 58.0 4.8

13 NGS 22.3 97.1 58.7 4.9 -0.578 0.021

14 AI/ML 25.1 99.2 57.4 4.9

15 NGS 25.1 100.0 59.0 6.4 3.296 -0.011

16 NGS 19.5 98.8 57.4 5.4

17 AI/ML 20.9 100.0 58.8 5.3 -0.497 0.007

18 AI/ML 50.9 98.8 58.7 5.2 -0.343 0.015

19 AI/ML 46.0 96.2 58.6 4.7 -0.548 0.015

20 AI/ML 36.8 99.1 56.3 5.0

21 NGS 25.1 99.2 56.4 5.0

22 AI/ML 37.7 98.3 58.2 5.2 -0.434 0.016

23 NGS 47.4 98.7 58.6 5.2 -0.504 0.035

24 AI/ML 34.9 97.3 58.5 5.1 -0.617 0.017

25 NGS 43.2 97.9 58.3 5.1 -0.511 0.024

26 NGS 30.7 97.4 58.0 5.0 -0.119 0.014

27 NGS 37.7 96.4 58.6 4.9 -0.310 0.039

28 AI/ML 22.3 82.2 58.5 5.0 -0.526 0.049

29 NGS 24.8 99.0 58.9 4.8 -0.395 0.019

30 NGS 37.2 100.0 58.4 6.0 -0.671 -0.020

31 AI/ML 133.2 99.1 58.7 6.4 -0.534 -0.011

32 AI/ML 71.6 100.0 59.0 6.4 -0.605 0.000

33 AI/ML 22.2 100.0 57.8 6.4

34 NGS 33.1 100.0 58.1 6.3 -0.307 0.018

35 NGS 26.2 94.4 57.4 6.3

36 NGS 48.2 97.8 58.6 6.7 -0.631 -0.009

37 NGS 22.2 97.1 58.7 6.5 -0.476 0.030

(Continued on following page)

Frontiers in Molecular Biosciences frontiersin.org10

Arras et al. 10.3389/fmolb.2023.1249247

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1249247


TABLE 4 (Continued) Analytical and early developability data for selected one-armed VHH SEEDbodies and antibody controls, including amount of protein, SEC
Purity, mean Tonset, HIC retention time, AC-SINS and PSR-BLI.

ID source amount of protein
[mg/L]

SEC Purity [%] Mean
Tonset [°C]

HIC tR [min] AC-SINS
[Δλmax (nm)]

PSR/
BLI

Trastuzumab -0.001 0.009

Briakinumab 63.6 25.961 0.115

Avelumab 7.2

Cetuximab 5.8

FIGURE 4
Bio-Layer Interferometry (BLI) curves (in black) and fitting curves (in red) obtained for all sequences.
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(Waibl et al., 2022). Based on that study, prediction accuracy for
HIC retention scales might be further improved by i) exploring
alternative approaches for 3D model generation and by i) using
hydrophobicity scales derived from experimental HIC data.

To further investigate the biophysical properties of the herein
identified VHHs, we checked the thermostability of the molecules by
nanoDSF. The Tonset of a dedicated molecule represents the
temperature where the variable domain of a VHH construct
starts to unfold while applying a temperature gradient and as
such, is an indicator of its thermostability in a certain buffer and
pH environment. The Tonsetswemeasured were in the range between
56°C and 59 °C for all tested molecules, representing an overall
adequate thermostability for further development (Mieczkowski
et al., 2023). As obvious from Figure 5, no significant differences
in Tonset are observed between the sequences obtained from NGS
and LSTM sampling, supporting the claim that LSTM is capable of
correctly modeling long-term dependencies and capturing
relationships between amino acids that determine structure and
function. Additionally, we evaluated available VHH SEEDbodies
(that were selected based on remaining substance availability) in
affinity-capture self-interaction nanoparticle spectroscopy (AC-
SINS) as early experimental predictor for colloidal stability (Liu
et al., 2014). Clinical antibody trastuzumab was used as assay control
indicating favorable biophysical properties with mean Δλmax values
of ~0.2 nm after subtraction of buffer blanks. Final AC-SINS scores
for the tested VHH SEEDbodies were calculated via subtraction of

blank and trastuzumab scores (Table 4). The calculated scores
indicate favorable colloidal stability properties for all tested
SEEDbodies, very similar to trastuzumab and significantly better
compared to briakinumab, which was used as reference with a
known propensity for self-interaction (Jain et al., 2017). As
further early developability assessment, the selected SEEDbodies
were evaluated in the polyspecificity reagent (PSR) assay which
provides insights into the general off-target interactions/specificity
and selectivity of the VHH domains, again using trastuzumab as
indicator for reduced unspecific interactions and briakinumab
reference indicating more pronounced polyspecificity (Table 4).
Compared to these assay controls, no SEEDbody shows
pronounced non-specific binding.

Although we have to keep in mind that the monospecific
IgG1 control antibodies might not be ideal references for
benchmarking our one-armed VHH SEEDbodies, the available
experimental data indicate favorable intrinsic developability
properties for the VHH domains.

To experimentally assess the risk for the formation of chemical
degradation products along the drug development process, which
might potentially affect its efficacy and safety, one potent sequence
from each of the CDR3 clusters was subjected to forced oxidation
and deamidation studies (Nowak et al., 2017) (Table 5; see Materials
and Methods for experimental details and Supplementary Table S6
for detailed experimental results). Within the CDR regions of the
four selected sequences, we could only observe significant

FIGURE 5
Graphical visualization of experimental analytical and early developability data for selected one-armed VHH SEEDbodies and antibody controls,
including amount of protein, SEC Purity, mean Tonset, HIC retention time, AC-SINS and polyspecificity (PSR-BLI). Blue bars indicate sequences obtained
from NGS, red bars indicate sequences obtained from AI/ML (LSTM) sampling.
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deamidation within CDR1 of sequence 1, attributed to the Asn-Tyr
sequence motif. This non-canonical motif is generally known as
non-highly susceptible to deamidation (Lu et al., 2019), but in the
present case this chemical liability is a potential critical quality
attribute (CQA) that would require additional efforts for monitoring
and control in the development process. The SAR data shown in
Table 3 demonstrate that several alternative sequence variants with
similar potency are available, which are devoid of this chemical
liability motif and might be selected as alternative optimized hits.
This example illustrates the benefit that the explicit selection of
sequence variants within specific CDR3 clusters provide valuable
SAR data that do not only point to mutations that finetune binding
affinity, but also to optimize the physico-chemical property profiles
(regarding chemical liabilities, PTMs, electrostatic and hydrophobic
properties).

AI/ML derived sequences fill gaps within the
sequence space spanned by NGS data

The experimental results demonstrate that several optimized hit
sequences were obtained within each cluster, suitable for further
project progression, including experimental characterization in
functional assays, early formulation studies, and/or in vivo
experiments. These sequences were derived from both the NGS
data and the LSTM sampled sequences. To investigate the benefit
of LSTM sampling, we analyzed the number and diversity of
additional unique sequences designed by LSTM in comparison to
the NGS sequences. Our analysis focused on the top-ranked 100 NLL
scorers within each CDR3 cluster, since all tested variants from these
lists showed favorable binding affinities (Supplementary Tables
S1–S4). As illustrated in a UMAP dimension reduction based on
sequence diversity, the LSTM approach generated a considerable
number of new sequence combinations, effectively filling gaps
within the sequence space spanned by the NGS dataset (see
Figure 7 and the underlying sequences in Supplementary Tables
S1–S4), thereby increasing not only the number of potent
sequences but also the likelihood of including variants with lower

risks of chemical degradation or post-translational modification
motifs. For CDR3 cluster 1, 41 of the top 100 sequences were
obtained from LSTM (cluster 2: 23, cluster 3: 45, cluster 4: 19).
The predicted physical properties (pI, hydrophobicity/aggregation
propensity, CDR Positive Patches) of the LSTM sampled sequences
covered a similar range and diversity as those obtained fromNGS (see
Supplementary Figure S8). Moreover, a comparative inspection of
production yield, melting temperatures, and other biophysical
properties (Figure 5) between the LSTM and NGS-derived
sequences that had been synthesized did not reveal any significant
differences. This finding supports the claim that LSTM sampling can
enrich the pool of NGS sequences with additional potent and
developable binders, which increases the overall chance of
discovering optimized hits with favorable developability profiles.

Discussion

In the past, the discovery and optimization of antibodies and
VHHs were predominantly reactive in nature (Evers et al., 2023b):
Traditional screening methods were used to obtain antibody or
VHH sequences, which were subsequently sequence-optimized with
regards to factors such as binding affinity, human-like
characteristics, and chemical stability. Following the identification
of the top-performing optimized hits, developability assessments
were carried out. These assessments, since conducted after sequence
optimization, aimed to identify any suboptimal developability
characteristics, such as aggregation, low solubility, poor
expression, non-specific binding, or unfavorable pharmacokinetic
properties. Consequently, issues arising from these suboptimal
properties were passed on to downstream functions, e.g., Drug
Metabolism and Pharmacokinetics (DMPK), non-clinical safety,
and Chemistry, Manufacturing and Controls (CMC) to adjust
and optimize downstream process development and dosing
regimens, thereby often imposing delays in development,
increased costs and finally a considerable risk for the project to
achieve approval for First in Human and further clinical studies
(Evers et al., 2023b). To mitigate these risks, in this work we propose

FIGURE 6
Comparison of predicted aggregation propensities vs. experimental HIC retention times and Pearson correlation values. Sequences from different
clusters are shown in different colors. (A). Predicted aggregation propensities based on the entire variable VHH regions. (B). Predicted aggregation
propensities based on the CDR regions only.
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an integrated and efficient de novo design strategy comprising
camelid immunization, library generation, YSD, FACS, NGS
analysis, AI/ML methods, in silico developability assessment as
well as synthesis and early experimental characterization of the
selected sequences. In an ideal scenario, these subsequent steps can
be accomplished in less than 4 months without the need for
subsequent time-consuming steps of iterative sequence
optimization. This comprehensive approach was successfully
applied for an early drug discovery project to generate
automatically humanized and sequence optimized VHH binders
against NKp46 with favorable early developability profiles.

The in silico steps described in this study are computationally
inexpensive (<1 week in this study) and can be combined into a fully
automated workflow. Furthermore, our process of
CDR3 engraftment upon camelid immunization onto a generic
humanized and sequence-optimized scaffold library is
characterized by its low complexity and duration (<1 week).
Besides camelid VHH library generation, we have established a
similar CDR grafting approach for the generation of ultralong CDR-
H3 antibodies following the immunization of cattle (Pekar et al.,
2021). Since finally NGS is meanwhile quick and cost-effective, the
herein described combination of experimental and in silico
approaches represent a general strategy for a fast and efficient hit
discovery and optimization upon camelid immunization. An
alternative option that bypasses animal immunization and
thereby can even further accelerate the de novo identification of
developable antibodies or VHHs is the screen of diverse synthetic
libraries that were tailored towards human-likeness and favorable
physico-chemical properties (Teixeira et al., 2021; Khetan et al.,
2022; Evers et al., 2023b). Binders obtained from antibody selections
and NGS analysis of such diverse libraries might further be
optimized towards improved binding and developability applying
AI/ML approaches as described in the present study. As recently
discussed (Gray et al., 2020; Gray et al., 2020; Custers and Steyaert,
2020; Laustsen et al., 2021), both animal immunization and
synthetic library technologies have their own benefits and
drawbacks for antibody discovery. For example, while synthetic
libraries bypass the need of animal immunization, the immune
system of animals has evolved over millions of years to efficiently
produce highly specific antibodies against a diverse range of antigens.
The semi-immune/semi-synthetic procedure presented in this study
combines the advantages of both technologies and is coupled with the
benefits of NGS and AI/ML approaches for rapid and efficient
antibody discovery and optimization (Laustsen et al., 2021).

In this study, we opted for a LSTM, a recurrent neural network
(RNN) architecture, as the basis of sequence prediction models
based on NGS data. The selection of this approach was based on the
fact that it has been successfully applied to diverse modalities (Saka
et al., 2021; Müller et al., 2018; Gupta et al., 2018; Merk et al., 2018;
Segler et al., 2018; Z et al., 2022) and that the code was already
available (Müller et al., 2018). From a scientific perspective, LSTM
models are known for their capability to learn complex patterns and
dependencies within sequences. Therefore, by training on existing
protein sequences from NGS data, the LSTM can capture essential
structural and functional motifs present in the library, potentially
generating new functional sequence combinations not observed in
the NGS dataset. The experimental data from the present study
confirmed that the LSTM sampled sequences did not exhibitTA
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significant disadvantages compared to the NGS-derived sequences
in terms of production yield, melting temperatures, or binding
affinities. Various other ML approaches have also demonstrated
effectiveness for the identification of complex patterns from
sequence input data and were successfully employed for antibody
design based on NGS data (Liu et al., 2020; Mason et al., 2021;
Makowski et al., 2022; Hu et al., 2023; Li et al., 2023; Parkinson et al.,
2023). Furthermore, additional deep generative modelling methods
such as variational auto-encoders (VAEs) and generative adversarial
networks (GANs) may also be explored to optimize sequence spaces
obtained from NGS data (Akbar et al., 2022).

LSTM sampling efficiently filled diversity gaps in the sequence space
beyond what is covered by the NGS training data (Figure 7). However,
since the present LSTM approach uses one-hot amino acid encoding, it
will generate new sequence combinations that only interpolate within
the sequence space covered by the NGS data. Therefore, another aspect
that might be further investigated is the representation of amino acids in
the context of in silico sequence processing.Most approaches utilize one-
hot encoding, which does not capture structural features, inherent
relationships, or the physicochemical similarities between amino
acids. Several alternative encoding schemes, such as amino acid
embeddings, physicochemical descriptors or position-specific scoring
matrices (PSSMs) might be suited to increase the model’s ability to
extrapolate into new sequence spaces.

Another crucial aspect forAI/MLbased prediction and identification
of improved binders is the scoring function used to rank the sequences

based on their assumed binding affinity against the target. In this study,
we utilized NLL that assumes a correlation of binding affinity with the
observed amino acid distribution in the NGS set of sequences obtained
after FACS. Notably, the majority of synthesized VHH constructs
(>80%) exhibited binding affinities in the (sub-)1-digit nanomolar
range. Therefore, based on the limited experimental data from this
study, we consider the NLL ranking as the suited criterion for selecting
sequences with a high likelihood of binding. For a more comprehensive
conclusion, future systematic studies would be required to explore
correlations with other scoring functions for identifying high-affinity
binders. However, such analyses would necessitate a large dataset of
sequences with experimental binding affinity data.

Recent studies have already shown the successful application of AI/
ML techniques on antibody NGS data to design new sequences with
even further improved potency or developability (Liu et al., 2020;
Mason et al., 2021; Saka et al., 2021; Makowski et al., 2022; Hie
et al., 2023; Parkinson et al., 2023). While these studies focused on
optimizing previously identified antibody candidates through sequence
diversification and library generation, the present study represents, to
the best of our knowledge, the first prospective application of AI/ML for
the de novo identification of diverse, potent, and developable VHHs. In
contrast to these previous studies, our approach was applied on a
humanized library that originated from a highly diverse camelid
repertoire upon immunization.

To validate the efficacy of our approach, we conducted
experimental profiling to assess binding affinity and developability

FIGURE 7
Similarity of CDR1-3 sequences within the best 100 scoring sequences (based on their NLL) for each CDR3 sequence cluster (A–D), illustrated using
UMAP dimensionality reduction. Blue dots represent sequences that were obtained fromNGS, red dots represent new sequence combinations that were
automatically designed with LSTM.
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for multiple sequences per cluster and gained valuable SAR and SPR
information directly from the initial set of synthesized variants. This
procedure mirrors the well-established “hit-triaging” approach for
small molecules obtained from high-throughput screens, where
multiple molecules within different chemical series are evaluated to
identify the most promising candidates for further development
(Kitchen and Decornez, 2015). As an advantage, this procedure
can directly point to lead molecules and backups without the need
for additional time-consuming sequence optimization cycles.

The present study represents a first successful application of our
integrated VHH discovery approach on NKp46 as specific target.
Further ongoing and future studies on internal projects will
demonstrate the robustness of this process and certainly point to
aspects that may be further optimized, e.g., regarding the design of a
follow up humanized VHH scaffold library (Arras et al., 2023), in
silico property predictors and further aspects as described above.

Finally, the findings and results of this study should also be
considered in the light of some limitations and inspirations for further
future studies (Jin et al., 2023). In the present study, we applied a
CDR3 sequence identity cutoff of 50% for sequence clustering as a
compromise to find i) sequences within one cluster that all bind in a
similar mode to the same epitope and ii) at the same time provide
sufficient sequence diversity for SAR analysis and automated multi-
parameter sequence optimization. It is generally known that similar
protein sequences have similar folds (Baker and Sali, 2001). However,
if this is also true for CDR3 loops and whether the 50% cutoff is the
most ideal cutoff for this purpose will require additional dedicated
studies (Könning et al., 2017). One might question the general need
for LSTM sampling if the sequences obtained from NGS analysis of
the semi-immune/semi-synthetic strategy are already “good” enough.
The present study demonstrates that i) high affinity binders with
favorable early developability profiles can already be obtained from
data mining of the available NGS data, but in addition ii) that LSTM
sampling is able to fill sequence gaps with additional potent and
developable sequences that have not obtained from the NGS data. The
timeframe for LSTM model generation and sequence sampling
(<1 day in the present study) is negligible in the context of a
standard hit discovery campaign. Therefore, our general
recommendation is to add the LSTM-based designs alongside
NGS-derived sequences. Then, select the best binders from the
combined pool based on their predicted likelihood of binding and
relevant in silico developability parameters, aligned with the specific
target product profile (TPP) of the project. This approach enhances
the overall project success probability (Krah et al., 2016). To ensure
proper assay controls for early experimental developability
assessments, we used four well-characterized monospecific IgG1s
(avelumab, cetuximab, trastuzumab, and briakinumab) as
references. While these control sequences allow assay comparisons
across different studies, they may not serve as ideal benchmarks for
drawing final conclusions about the general developability of our
VHHs, since we fused them to SEED Fc domains that show
considerable sequence differences to IgG1 Fc domains. As a
conclusion, the data presented in this study only indicate favorable
intrinsic developability properties for the VHHs generated here.
Further in-depth studies, including the identification and use of
specific VHH-based controls for benchmarking, will be necessary
to assess how these developability properties extend to differentmulti-
specific architectures (Bannas et al., 2017; Chanier and Chames, 2019;

Pekar et al., 2020; Yanakieva et al., 2022; Lipinski et al., 2023; Wang
et al., 2022) Quality of NGS data is critical for any AI prediction tool,
as it forms the basis for training. In this study, we used NGS data
obtained from different round of FACS. As we learned through the
course of the study, sample preparation, read depth, sequence
complexity and sequencing error rates can significantly impact the
results. The rate of enrichment over FACS round 2 vs. round 0 was
used as an essential parameter for nominating sequence clusters, but
this enrichment was biased due to the low number of reads in round 0,
and the final selection might have varied based on variations in NGS
data generation and analysis. Nevertheless, the reads used for LSTM
sampling after FACS round 2 were sufficiently broad and frequent to
discover potent binders with favorable early developability profiles.

In conclusion, the herein presented workflow comprising a
combination of AI/ML methods, camelid immunization, library
generation, NGS analysis, and in silico developability assessment can
identify potent VHH binders with promising early developability
profiles. This singular procedure mitigates the need for subsequent
sequence optimization, thereby offering the potential to significantly
accelerate hit discovery and optimization and at the same time to reduce
the risk for developability-related attrition in the downstream process.

Materials and Methods

NGS, sequence clustering and ranking

To prepare RNA material for NGS analysis, two defined antisense
primer sequences were used which specifically aligned with nucleotides
in the upper hinge regions of camelid IgG2 and IgG3 antibody isotypes,
facilitating directed cDNA synthesis.Within a subsequent PCR utilizing
index primers for Illumina sequencing, the VHH sequences were
amplified and tagged. For the samples derived from the VHH
diversities embedded in the plasmid vector system, the sequences
processed accordingly, but lacking the cDNA synthesis step. During
theDNAamplification process, theAMPure system (BeckmanCoulter)
was used to purify the VHH amplicons, while for the purification of the
final sequencing library a Pippin Prep (Sage Science) was used. For
sequencing purposes, a MiSeq (Illumina) device with the v3 600 cycle
kit according to the manufacturer’s protocol was employed. Resulting
FASTQ files were uploaded to Geneious Biologics (https://www.
geneious.com/biopharma) for analysis and annotation. Reads were
overlapped, filtered for length, and the VHH sequences were
annotated using the Lama glama reference library. Normalized
counts for each CDR3 were used to identify sequences that were
enriched in the sorted samples relative to the baseline diversity.

Sequences were clustered based on 50% CDR3 sequence
identity. All sequence clusters were assessed and ranked by their
i) NGS counts after the second FACS round and their ii) enrichment
(“Fold Change”) over round 0 to 2. The enrichment factor EF (“Fold
Change”) was calculated according to the following formula:

EF �
Ncluster+1
Ntotal+1( )

S2

Ncluster+1
Ntotal+1( )

S0

Where N represents the number of reads within the specific
cluster and S0, S2 represent the FACS selection round.
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LSTM model structure, training and
sampling

The code from Müller et al. (Müller et al., 2018) (https://github.
com/alexarnimueller/LSTM_peptides) has been used and slightly
adapted to constrain the input training sequence length to the
length of CDR1-CDR2-CDR3 output sequences of the individual
clusters. The adapted code and the sequences used as input for
training and sampling of new sequences are available from https://
github.com/MCompChem/LSTM_CDRs. The input sequences had
been exported from Geneious Biologics as csv file and used as input
sequences without further preprocessing. Sequences are represented
in one-hot encoding scheme, in which a one-hot residue represents a
single amino acid (single letter code). The LSTM architecture was
chosen based on hyperparameters described by Saka et al. (2021). The
chosen network architecture for this study was a two-layer LSTM
recurrent neural network consisting of 64 neurons and a 0.2 dropout
rate and trained for 200 epochs. Remaining parameters were set to
default values as described by Müller et al. were utilized for all other
parameters in the network. Based on five-fold cross validation, the
epoch with the best average performance were chosen for the given
LSTM architecture for each cluster individually. For each cluster,
10,000 sequences were sampled from the selected best epoch model.

Likelihood for sequence ranking

The NLL (negative log-likelihood) is a statistical measure that
describes the likelihood of observing each amino acid at each
position within the set of sequences over a training data set. From a
set of sequences, theNLL is computed for each sequence according to the
following formula:

NLL � −∑
K

k�1
lnp xk( )

where p(xk) represents the generative probability of observing a
residue x at the k-th position of the sequence and K is the sequence
length.

In silico developability assessment

The in silico developability profiles were computed using an
internal pipeline termed “Sequence Assessment Using Multiple
Optimization Parameters (SUMO)” (22). This approach
automatically generates VHH models based on the provided
sequences of the variable regions, identifies the human-likeness
by sequence comparison to the most similar human germline
sequence, determines structure-based surface-exposed chemical
liability motifs (unpaired cysteines, methionines, asparagine
deamidation motifs and aspartate deamidation sites) as well as
sites susceptible to post-translational modification (N-linked
glycosylation). Moreover, a small set of orthogonal computed
physico-chemical descriptors including the isoelectric point (pI)
of the variable domain, Schrodingers AggScore as predictor for
hydrophobicity and aggregation tendency calculated for the
complete variable domain as well as the complementarity-
determining regions (CDRs) only and the calculated positive

patch energy of the CDRs were determined (Sankar et al., 2018).
These scores were complemented with a green to yellow to red color
coding, indicating scores within one standard deviation from the
mean over a benchmarking dataset of multiple biotherapeutics
approved for human application as green, scores above one
standard deviation as yellow and those above two standard
deviations as red (Ahmed et al., 2021). For the AggScore values,
these cutoffs were slightly adjusted based on correlation analyses to
internal experimental HIC data.

Protein expression and analysis

The sdAb variants were integrated into the pTT5 mammalian
expression vector by fusing them at the hinge region of Fc immune
effector-silenced (eff-) SEED AG chains (Thermo Fisher Scientific).
This fusion allowed the generation of one-armed (oa) SEEDbodies,
using a SEED-GA chain without paratope.

The proteins were produced using the ExpiCHO™ Expression
System (Thermo Fisher Scientific) in either 5 or 25 mL scale,
following the standard protocol provided by the manufacturer.
The expression was carried out with a 2:1 ratio of AG to GA
chain. After 7 days of expression, the supernatants containing the
proteins were purified using MabSelect™ antibody purification
chromatography resin (Cytiva) using 20 mM acetic acid followed
by an neutralization (500 mM sodium phosphate buffer, 1.5 M
NaCl, pH 8) to a final formulation pH of 6.8 in PBS. The
purified proteins were then subjected to sterile filtration, and
their concentrations were determined by measuring the
absorbance at 280 nm (A280).

To evaluate themonomer content of the protein samples, analytical
size-exclusion chromatography (SEC) was performed. Each sample
contained 7.5 µg of protein and was run on a TSKgel UP-SW3000
column (2 μm, 4.6 × 300 mm, Tosoh Bioscience) using an Agilent
HPLC 1260 Infinity system. The mobile phase consisted of 50 mM
sodium phosphate and 0.4 M NaClO4 at pH 6.3, with a flow rate of
0.35 mL/min. The signals were recorded at 214 nm.

For assessing the hydrophobicity of the different molecules,
hydrophobic interaction chromatography (HIC) was employed. Each
sample contained 20 µg of protein and was analyzed on a TSKgel Butyl-
NPR column (2.5 µm, 4.6 × 100 mm, Tosoh Bioscience) using an
Agilent HPLC 1260 Infinity system with a flow rate of 0.5 mL/min.
Prior to injection, the samples were mixed with a 50% (v/v) solution of
2M ammonium sulfate. A gradient was applied, running from mobile
phase A (1.2 M ammonium sulfate in PBS) to mobile phase B (50%
methanol in 0.1x PBS) over a period of 15 min at 25°C. Signals were
recorded at 214 nm. The reference molecules, anti-PD-L1 Avelumab
and anti-EGFR Cetuximab, were used for comparison.

To investigate the thermal unfolding properties of the
antibodies, differential scanning fluorimetry (DSF) was performed
using a Prometheus NT. PLEX nanoDSF instrument
(NanoTemper). The samples were measured in duplicate using
nanoDSF Standard Capillary Chips. A temperature gradient
ranging from 20°C to 95°C at a slope of 1°C/min was applied.
Fluorescence signals at 350 nm and 330 nm were recorded. The
unfolding transition midpoints (Tm) and Tonset values were
determined from the melting curves or the first derivative of the
fluorescence ratio 350 nm/330 nm.
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Bio-Layer Interferometry (BLI)

The biophysical properties of the sdAbs were evaluated using an
Octet Red BLI system from Sartorius. The binding experiments were
conducted in KB-buffer (PBS pH 7.4, 0.1% BSA, 0.02% Tween-20)
using Protein G Biosensors. The biosensors were loaded with the one-
armed antibody samples at a concentration of 3 μg/mL for 180 s. The
samples were subjected to a 2-fold serial dilution of (rh) NKp46
(ACRO Biosystems), starting at a concentration of 100 nM using a
measurement window of 300 s for association and dissociation each.

The obtained data was aligned to the association step, and inter-
step correction was applied during the dissociation step. To reduce
noise, Savitzky-Golay filtering was employed. The resulting data
were analyzed using a 1:1 binding model to determine the binding
kinetics and affinity between the binders and (rh) NKp46.

Forced oxidation and deamidation studies

Forced protein oxidation was introduced to the samples (30 μg,
1 mg/mL) by diluting with an equal volume of 0.1% H2O2 (Merck,
107,209) and incubation at room temperature. After 0, 6, and 24 h a
10 µL aliquot was taken and the oxidation reaction was stopped by
buffer exchange to 25 mM NH4HCO3 (Merck, 101131), pH 7 with
Amicon filter devices (Merck, UFC503096), respectively. To force
protein deamidation 30 µg sample was buffer exchanged to 25 mM
NH4HCO3 (Merck, 101131), pH 10 using Amicon filter devices
(Merck, UFC503096). Subsequently, the sample volume was
adjusted to 30 µL and incubated at 37°C. To stop the
deamidation reaction the sample was buffer exchanged to
NH4HCO3, pH 7 as described previously in the oxidation workflow.

Peptide mapping
Proteins were unfolded and reduced by addition of 5 µL 12M Urea

(Merck, 108487) and 1 µL 50mMDTT (Merck, 111474) and subsequent
incubation at 50 °C for 30 min. Reduced samples were then alkylated by
addition of 2.5 µL 55mM iodoacetamide (Merck, 804744) and
incubation at room temperature for 30 min in the dark. Samples were
then mixed with 30 µL 25mM NH4HCO3 and 3 µL trypsin solution
(0.1 mg/mL). After 6 h at 37°C, 0.5 µL 50% FA was added and the
peptides were analyzed by LC-MS. LC-MS analysis was performed using
an Exion HPLC system (Buffer A: 0.1% formic acid in water (Biosolve,
23244101), Buffer B: 0.1% formic acid in acetonitrile (Biosolve,
01934101)) coupled to a Sciex 6,600+ mass spectrometer by a Turbo
V ESI source. 8 μg peptide solution was loaded onto an Aeris 1.7 µm
PEPTIDE XB-C18 150 × 2.1 mm column (Phenomenex, 00B-4506-AN)
and eluted with a linear gradient from 5% to 50% Buffer B within 49min
and 0.25mL/min flow rate. Data were acquired in IDA mode with
positive polarity, in a mass range from 230 to 1,600m/z. Other
instrument settings were as follows: source voltage 5.5 kV,
declustering potential 80 V, accumulation time 0.25 s, source
temperature 450°C, maximum number of candidate ions per cycle 10,
gas1 45 L/h, and gas2 45 L/h. The mass spectrometer was calibrated with
ESI positive calibration solution 5,600. Acquired datawere processedwith
Genedata Expressionist 16.5. Chemical noise subtraction was applied to
the data by clipping all data points below an intensity of 50. Furthermore,
spectra were smoothed, and background subtracted. For peptide
mapping the MS tolerance was 20 ppm and the MS/MS tolerance

0.1 Da. Trypsin was chosen as enzyme with maximum 2 missed
cleavages and minimum 3 amino acid peptide length. Deamidation
(NQ), glutamine to pyroglutamate conversion, c-terminal lysine loss, and
oxidation (MW) were selected as variable modifications.

AC SINS
Molecules were captured onto particles via immobilized capture

antibodies and self-association was judged in PBS buffer at pH 7.4 by
shifts in the plasmon wavelengths (Makowski et al., 2021). Clinical
antibody Trastuzumab was used as control indicating favorable
biophysical properties with mean Δλmax values of ~0.2 nm after
subtraction of buffer blanks. Final AC-SINS scores for molecules were
calculated via subtraction of blank and Trastuzumab scores and the
calculated scores of the molecules in the range of −0.46 and 0.06 indicate
favorable developability properties very similar to Trastuzumab.

PSR-BLI
To assess non-specific antibody interactions to polyspecificity reagent

(PSR), a published cytometric assay (Xu et al., 2013) was adapted for the
application of fast and sensitive Bio-Layer Interferometry (BLI). PSR was
derived from soluble membrane proteins (SMP) of CHO and HEK293-
6E cells as described by Xu et al. (2013). Assays were performed at 25°C
with orbital sensor agitation at 1,000 rpm in 200 µL volume with DPBS.
Pre-hydrated AHC biosensors were loaded with antibody (10 μg/mL) for
300 s. Afterwards biosensors were blocked with 1% BSA for 200 s and a
baseline was established by rinsing in DPBS for 60 s. Association with
20 μg/mL PSR (1:1 mixture of CHO and HEK293-6E SMP) was
performed for 100 s. As reference, association was performed in
DPBS. To calculate the PSR-BLI score, the binding response from the
association step was normalized to the reference measurement by
subtraction, followed by subsequent subtraction with non-loading
control (DPBS).
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