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Background: Due to the poor prognosis and rising occurrence, there is a crucial
need to improve the diagnosis of Primary Central Nervous System Lymphoma
(PCNSL), which is a rare type of non-Hodgkin’s lymphoma. This study utilized
targeted metabolomics of cerebrospinal fluid (CSF) to identify biomarker panels
for the improved diagnosis or differential diagnosis of primary central nervous
system lymphoma (PCNSL).

Methods: In this study, a cohort of 68 individuals, including patients with primary
central nervous system lymphoma (PCNSL), non-malignant disease controls, and
patients with other brain tumors, was recruited. Their cerebrospinal fluid samples
were analyzed using the Ultra-high performance liquid chromatography - tandem
mass spectrometer (UHPLC-MS/MS) technique for targeted metabolomics
analysis. Multivariate statistical analysis and logistic regression modeling were
employed to identify biomarkers for both diagnosis (Dx) and differential diagnosis
(Diff) purposes. The Dx and Diff models were further validated using a separate
cohort of 34 subjects through logistic regression modeling.

Results: A targeted analysis of 45 metabolites was conducted using UHPLC-MS/
MS on cerebrospinal fluid (CSF) samples from a cohort of 68 individuals, including
PCNSL patients, non-malignant disease controls, and patients with other brain
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tumors. Five metabolic features were identified as biomarkers for PCNSL diagnosis,
while nine metabolic features were found to be biomarkers for differential
diagnosis. Logistic regression modeling was employed to validate the Dx and
Diff models using an independent cohort of 34 subjects. The logistic model
demonstrated excellent performance, with an AUC of 0.83 for PCNSL vs. non-
malignant disease controls and 0.86 for PCNSL vs. other brain tumor patients.

Conclusion: Our study has successfully developed two logistic regression models
utilizingmetabolicmarkers in cerebrospinalfluid (CSF) for thediagnosis anddifferential
diagnosis of PCNSL. These models provide valuable insights and hold promise for the
future development of a non-invasive and reliable diagnostic tool for PCNSL.
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1 Introduction

Primary central nervous system lymphoma (PCNSL) is a rare
and highly malignant type of non-Hodgkin’s lymphoma that
predominantly affects the brain, cerebrospinal fluid (CSF),
intraocular structures, and spinal cord (Wang et al., 2014). It
accounts for approximately 2%–3% of all brain tumors (DeWitt
et al., 2017), with an incidence of 0.47/100,000, and has shown an
increasing incidence in recent years, primarily among the elderly and
immunocompromised populations (Villano et al., 2011). The diagnosis
of PCNSL poses challenges due to its varied clinical manifestations,
which depend on the specific region of the central nervous system
involved (Baraniskin and Schroers, 2021). Currently, the diagnostic
process for PCNSL typically involves a combination of imaging
techniques such as magnetic resonance imaging (MRI) and
computed tomography (CT) scan (Ota, 2021), along with biopsy or
other tissue sample analysis. However, MRI findings may not be
specific enough to distinguish PCNSL from other conditions such
as glioma, intramural infection, or non-infectious inflammation
(Bataille et al., 2000). Pathological examination remains the gold
standard for diagnosing PCNSL (Eichler and Batchelor, 2006;
Matsuzono et al., 2021). Biopsy, although considered the gold
standard for diagnosis, carries potential risks of complications such
as bleeding, infection, or neurological damage, especially when the
tumor is located in a sensitive area of the brain. Additionally, biopsies
can yield false negative results due to inadequate tissue sampling or
prior use of hormones (van Westrhenen et al., 2018). In contrast,
obtaining CSF samples is a less traumatic procedure that can provide
valuable insights into the composition of the extracellular fluid within
the central nervous system. Therefore, there is a critical need to develop
an accurate and minimally invasive diagnostic method based on CSF
analysis to improve the detection of PCNSL.

In recent years, metabolomics has gained popularity as a
powerful tool in medicine and life sciences. It can identify and
measure small molecule metabolites in biological samples, helping to
elucidate the underlying pathological mechanisms of diseases by
exploring the relationships between metabolites (Beger, 2013; Deja
et al., 2014; Qi et al., 2021). Amino acids and acylcarnitines are
essential metabolites that provide energy for the body and brain and
their circulating levels serve as indicators of metabolic disorders. In
recent years, metabolomic analysis of amino acids and acylcarnitines
has shown effectiveness in diagnosing cancer. Studies have
demonstrated that specific amino acids and acylcarnitines, such

as valine and leucine, play a role in multiple cancer phenotypes and
act as markers of disease pathology (S et al., 2020). For example, Yao
et al. reported significant differences in levels of several amino acids
and acylcarnitines between individuals with papillary thyroid
carcinoma and healthy controls (Yao et al., 2011). Ni et al.
demonstrated that a PLS-DA model based on glycine, valine,
methionine, citrulline, arginine, and C16-carnitine exhibited a
strong ability to distinguish patients with lung cancer from
healthy controls (Ni et al., 2019). Zhang et al. reported that
leucine, isoleucine, and valine levels were significantly
upregulated in the serum of breast cancer patients compared to
healthy donors (Zhang and Han, 2017). Zhou et al. found that two
long-chain acylcarnitines were significantly higher in cirrhosis and
hepatocellular carcinoma patients compared to healthy controls
(Zhou et al., 2012).

As for the brain tumor, metabolomic profiling of CSF also
reveals a great potential for discoveries of novel biomarkers for
disease screening and diagnosis. Because CSF directly interacts with
the tissue of the central nervous system (CNS) and is readily
accessible with less-invasive procedures, it provides an attractive
source of useful markers for clinical diagnostics. This was supported
by findings from our lab and other groups. Thirty-nine metabolites
have been identified with significant changes in the CSF of the
malignant gliomas relative to the control samples (Locasale et al.,
2012). Wang et al. identified significant changes in glutamine and
butyryl carnitine levels between PCNSL and healthy control samples
(Wang et al., 2020). Using targeted metabolomics, we developed a
logical regression model based on six metabolic markers in CSF that
can effectively predict PCNSL patient prognosis before the HD-
MTX-based chemotherapy treatments (Zhou et al., 2023).

However, the investigation of amino acid and acylcarnitine
levels in the cerebrospinal fluid (CSF) of PCNSL patients using
targeted metabolomics techniques has been limited in existing
studies. To explore the potential association between amino acid
and acylcarnitine levels in CSF and PCNSL, we employed a
comprehensive targeted metabolomic approach. This method
allowed us to quantify 20 amino acids and 25 acylcarnitines,
aiming to identify distinctive metabolic patterns specific to
primary central nervous system lymphoma (PCNSL). Through
the application of this advanced assay, we successfully developed
and validated biomarker panels capable of accurately discerning
PCNSL patients from individuals with non-malignant diseases and
other brain tumor patients.
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2 Materials and methods

2.1 Human CSF sample collection and ethics

CSF samples from both patients and healthy individuals were
obtained from the departments of neurosurgery, neurology,
infection, and hematology at Huashan Hospital of Fudan
University in Shanghai, China. The collection of CSF followed
established protocols, with samples being collected before any
treatment was administered. The procedure involved lumbar
puncture at room temperature, with the initial 10 drops of CSF
being discarded to prevent blood contamination. After collection,
the CSF samples were centrifuged at 3,000 rpm for 10 min to remove
cellular debris. The resulting supernatant was divided into 1 mL
aliquots and stored at −80°C until analysis. The study received
approval from the Ethics Committee of Huashan Hospital of
Fudan University, and all procedures adhered to the principles
outlined in the Declaration of Helsinki and Good Clinical
Practice guidelines. Informed consent was obtained from all
participants prior to their involvement in the study.

2.2 Chemicals and reagents

The Labeled amino acid mix, labeled acylcarnitine mix, and
labeled acylcarnitine mix supplement used in the study were
obtained from Cambridge Isotope Laboratories Inc. (Andover,
MA). LC-MS grade methanol, ammonium formate, water and
formic acid were obtained from Thermo-Fisher Scientific
(FairLawn, NJ). HPLC grade Hexane was obtained from Fisher
Scientific (FairLawn, NJ). The GC grade beta-mercaptoethanol was
purchased from Sigma (Buchs, Sweitzerland).

2.3 CSF sample preparation

To prepare the CSF sample for analysis, a 10 μL aliquot of the
CSF sample was spiked with 10 μL of an internal standard working
solution. The internal standard working solution contained 25 μM
of 13C5,

15N-Proline (CNLM-436), isotope labeled Amino Acid Mix
(NSK-A), Acylcarnitine Mix (NSK-B), and Acylcarnitine Mix
Supplement (NSK-B-G).

The mixture was then subjected to extraction using 90 μL of
extraction buffer (1‰ HCL and 1% beta-mercaptoethanol in
methanol) and 200 μL of hexane. After vigorous vortexing for
60 s, the mixture was centrifuged at 12,000 g for 5 min. The
hydrophilic amino acids and acylcarnitines were extracted into
bottom methanol layer and the lipophilic molecules were
extracted into up hexane layer and discarded. Subsequently,
80.00 μL of the lower layer was transferred into an auto-sampler
vial for further analysis using UHPLC-MS/MS.

2.4 LC−MS analysis

Following the CSF sample preparation, a 2 µL extract was
injected into the Vanquish UHPLC system (Thermo Fisher,
Germering, Germany). Isocratic elution was performed using a

mobile phase A composed of water with 0.5% formic acid and
10 mM ammonium formate, and a mobile phase B consisting of
methanol with 0.1% formic acid and 10 mM ammonium formate.
The elution was carried out with a constant flow rate of 0.1 mL/min,
with 50% mobile phase B. The metabolites were detected using an
Altis mass spectrometer (Thermo Fisher, San Jose, CA,
United States) operating in MRM (Multiple Reaction
Monitoring) mode. The specific MRM transitions for the targeted
amino acids and acylcarnitines can be found in Supplementary
Tables S1, S2. The Q1 and Q3 resolutions were both set at 0.7 Da,
and the cycle time was set to 0.8 s. The spray voltage was optimized
at 3500 V, and the gas flows were adjusted to 20, 5, and 0 Arb for
Sheath Gas, Aux Gas, and Sweep Gas, respectively. The ion transfer
tube was maintained at a temperature of 300°C, and the vaporizer
temperature was set at 200°C.

2.5 Quantitation

The concentration quantitation of individual targeted amino
acdis and acylcarnitines was implemented by multiplying the
internal standard concentration with the peak area ratio between
the analytes and the corresponding internal standard. The
relationship for quantitation is detailed in Supplementary Tables
S3, S4.

2.6 Statistical analysis

Five steps of statistical analysis were followed to determine the
final panels for diagnosis and differentiation of PCNSL from non-
malignant and other brain tumor patients.

Feature generation-Features used for univariant analysis
included two sets, 45 individual amino acids and acylcarnitine
concentrations and 1,642 ratios. Individual concentrations were
quantified based on the above quantification method and ratios
were calculated using all different combinations with either
2 individual analyte’s concentrations. Complete features were
listed in Supplementary Tables S5.

Univariant analysis-Univariate analysis was performed between
PCNSL and non-malignant controls and between PCNSL and other
brain tumor patients. Fold change (medium value) and an AUC
ROC (Area Under the Receiver Operating Characteristic Curve) of
each feature were calculated for following feature selection.

Feature selection-Significant differential features between
groups were selected based on an AUC ROC greater than
0.8 and a |log2 fold change| greater than 0.26. A reverse ablation
analysis using logistic coefficients was performed for significant
differential features to select a minimum feature panel with
highest classification performance (highest AUCROC).

Multivariate modeling-Four multivariate modeling algorithms,
Logistic Regression (LR), Lasso, Elastic Net (EN) and K-Nearest
Neighbors (KNN), were compared to evaluate the performance of
classifying PCNSL patients from other groups.

Validation- In this study, a cohort of 33 PCNSL patients,
33 other brain tumor patients, and 36 non-malignant disease
control participants were divided into training (n = 68) and
validation (n = 34) sets. Model developed from training sets was
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tested in the validation set and classification model AUCROC was
evaluated. Homemade R script was utilized for feature selection and
model fitting processes in this study. We utilized the logistic
regression implementation available in the ‘glm’ package, Elastic
Net (EN) model was implemented using the ‘glmnet’ package and
the KNN model was implemented using the ‘caret’ package.
Specifically, hyperparameter tuning for EN and KNN model was
conducted using the entire dataset. The performance of model
(AUCROC) was calculated using ‘pROC’ package.

3 Results

3.1 Study design

The overall study workflow was depicted in Figure 1. First, CSF
samples were collected and categorized into three groups: PCNSL
patients (PCNSL Group), patients with other brain tumor cancers
(Other Brain Tumor Group), and control patients with non-
malignant diseases (Control Group). Each group’s samples were
randomly divided into discovery and validation sets at a ratio of 2:
1. Second, quantification of 45 amino acids and acylcarnitines was
performed for all CSF samples. To expand the feature space,
concentration ratios of two metabolites were calculated in addition
to using the concentration of a single metabolite as a feature. As the
third step, the metabolic changes between the PCNSL Group and the
Control Group, as well as the Other Brain Tumor Group, were
compared and analyzed in the discovery sets. Finally, the
discovered metabolite biomarkers were independently tested, and
models were constructed using the validation sets.

3.2 Cohort collection and targeted
metabolism in CSF

In this study, a total of 102 individuals were collected, consisting
of 33 PCNSL patients, 36 non-malignant disease controls, and
33 other brain tumor patients. Baseline demographic and clinical
data, including sex, age, CSF nucleated cells, CSF protein, CSF tumor
cells, CSF IL-10, CSF IL-6, and brain parenchyma lesion, were

recorded and summarized in Table 1 and Table 2. The samples
were randomly divided into a discovery group, comprising two-
thirds of the samples, and a validation group, comprising the
remaining one-third. In the diagnosis study (Table 1), the mean
age of PCNSL patients in the discovery group was 59 years ears, with
14 males and 8 females, while the non-malignant disease control
group had a mean age of 47.5 years, with 11 males and 13 females. In
the validation group, the mean age of PCNSL patients was 52 years,
with 7 males and 4 females, while the non-malignant disease control
group had a mean age of 53.5 years, with 4 males and 8 females. In
the differential diagnosis study (Table 2), the mean age of PCNSL
patients in the discovery group was 54.5 years, with 15 males and
7 females, while the other brain tumor patients had a mean age of
57.5 years, with 6 males and 16 females. In the validation group, the
mean age of PCNSL patients was 57 years, with 6 males and
5 females, while the other brain tumor patients had a mean age
of 63 years, with 6 males and 5 females. No significant differences in
age and gender were found between the PCNSL and other brain
tumor groups or between the PCNSL and tumor-free control
groups.

3.3 CSF metabolite biomarker distinguishing
PCNSL from non-malignant cancers

In order to investigate the potential link between CSF levels of
amino acids and acylcarnitines and PCNSL, we conducted a
comprehensive targeted metabolomic analysis using LC-MS/MS.
We quantified a total of 18 amino acids and 26 acylcarnitines in the
CSF samples obtained from PCNSL patients, controls with non-
malignant diseases, and other brain tumor patients. To enhance the
scope of our analysis, we expanded the number of features of interest
by not only considering the direct concentration measurements of
the 45 metabolites, but also incorporating the ratios of any two
metabolite combinations as new features. This resulted in a total of
1,682 features. As depicted in Figure 2A, we identified 25 features
that exhibited an AUC ROC (Area Under the Receiver Operating
Characteristic Curve) greater than 0.8 and a |log2 fold change|
greater than 0.26, indicating significant alterations in metabolite
levels.

FIGURE 1
Study workflow diagram.
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To determine the most effective combination of features for
classification, we conducted a reverse ablation analysis using the
logistic coefficient of each feature. Based on this analysis, we selected
the top 20 features with the highest coefficients and evaluated the
logistic model performance. We found that the minimal feature
panel consisting of the top 5 important features yielded the highest
classification performance in the discovery set. These top 5 features
were C14-Carnitine/Tyrosine, C8-Carnitine/Tyrosine, C14-
Carnitine/C4-Carnitine, C5-Carnitine/Histidine, and C12-
Carnitine/Tyrosine, as illustrated in Figure 2B. To validate the
robustness of these features, we further examined their
performance in the validation set. Remarkably, all 5 features
exhibited significant differences in at least one dataset, as
demonstrated in Figure 2C. These findings highlight the potential
of these features as reliable biomarkers for classification purposes.

We conducted diagnostic model testing using 5 ratios in
4 different models, and the logistic model demonstrated the best
performance for PCNSL diagnosis in the discovery set, as depicted in
Figure 3A. To validate the effectiveness of this model, we further

evaluated its performance on the validation cohort. The model
exhibited favorable results with an AUC ROC of 0.84 (95%CI:
0.67–1.00), high specificity (0.82), and sensitivity (0.83), as shown
in Figure 3B. Among the metabolite ratios included in the model, C8-
Carnitine/Tyrosine and C5-Carnitine/Histidine made the most
significant contributions, collectively accounting for over 60% of
the combined coefficient, as illustrated in Figure 3C. These
findings suggest that the top 5 ratios, particularly C8-Carnitine/
Tyrosine and C5-Carnitine/Histidine, hold promise as potential
CSF biomarkers for the classification and diagnosis of PCNSL.

3.4 CSF metabolite biomarker distinguishing
PCNSL from other brain tumor cancers

The analysis pipeline and criteria for differentially diagnosing
PCNSL from other brain tumor cancers were similar to those used
for diagnosing PCNSL from non-malignant diseases. In our
univariate analysis, as illustrated in Figure 4A, a total of

TABLE 1 Demographics table of PCNSL Dx.

Characteristic Train Test

PCNSL (n = 22) Control (n = 24) PCNSL (n = 11) Control (n = 12)

Age

Median (range) 59 (26–80) 47.5 (19–70) 52 (33–78) 53.5 (19–72)

Sex

Male 14 11 7 4

Female 8 13 4 8

CSF nucleated cells

(0–8) × 109/L 15 18 8 12

>8 × 109/L 7 6 3 0

CSF protein

>0.45 g/L 12 11 9 4

≤0.45 g/L 10 13 2 8

CSF tumor cells

Positive 13 1 8 0

Negative 9 23 3 12

CSF IL-10

Evaluated 15 ND 8 ND

Normal 7 ND 3 ND

CSF IL-6

Evaluated 15 ND 8 ND

Normal 7 ND 3 ND

Brain parenchyma lesion

Yes 21 11 11 5

No 1 13 0 7

*ND: Not Determined (Not Tested).
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56 features were identified that met the criteria of having a |log2 fold
change| > 0.26 and an AUC ROC greater than 0.8 for the differential
diagnosis of PCNSL from other brain tumor cancers. We then
evaluated the performance of different feature panels, containing
a maximum of the top 20 coefficients in the logistic model, and
observed that the panel comprising the top 9 features exhibited the
best performance on the discovery set, as shown in Figure 4B. These
9 features consisted of 2 individual metabolites (C18:1-Carnitine
and C10-Carnitine) and 7 ratios (C6-Carnitine/Valine, C10-
Carnitine/Valine, C6-Carnitine/Tyrosine, C18:2-Carnitine/
Pyroglutamic, C10 Carnitine/Tyrosine, C16:1-Carnitine/
Pyroglutamic, and C14:1OH-Carnitine/Pyroglutamic, as depicted
in Figure 4C.

The four models used in the PCNSL diagnostic analysis were
also applied to evaluate the performance of the nine metabolite
features in the differential diagnosis of PCNSL from other brain
tumor cancers. Consistent with the PCNSL diagnostic analysis, the
logistic model exhibited the best performance on the discovery set,
as shown in Figure 5A. The model’s performance was further
validated on an independent cohort, where it demonstrated

excellent performance with an AUC ROC of 0.86 (95%CI:
0.69–1.00), high specificity (0.82), and sensitivity (0.91), as
depicted in Figure 5B. The logistic coefficient analysis indicated
that C6-Carnitine/Valine was the most important feature in the
model, as illustrated in Figure 5C. These findings suggest that the
nine metabolite features identified in this study have the potential to
serve as CSF biomarkers for distinguishing PCNSL from other brain
tumor cancers.

4 Discussion

Over the past decade, there has been a significant amount of
metabolomics research aimed at identifying reliable biomarkers for
screening and diagnosing PCNSL using nuclear magnetic resonance
and liquid chromatography-mass spectrometry techniques,
resulting in extensive findings. Several types of human cancers,
such as thyroid cancer (Yao et al., 2011), lung cancer (Ni et al., 2019),
breast cancer (Zhang and Han, 2017), colorectal cancer (Farshidfar
et al., 2018), endometrial cancer (Wang et al., 2018), bone sarcomas

TABLE 2 Demographics table of PCNSL Diff.

Characteristic Train Test

PCNSL (n = 22) Control (n = 22) PCNSL (n = 11) Control (n = 11)

Age

Median (range) 54.5 (26–80) 57.5 (34–69) 57 (33–78) 63 (39–78)

Sex

Male 15 13 6 6

Female 7 9 5 5

CSF nucleated cells

(0–8) × 109/L 17 13 6 10

>8 × 109/L 5 9 5 1

CSF protein

>0.45 g/L 13 15 8 7

≤0.45 g/L 9 7 3 4

CSF tumor cells

Positive 14 14 7 6

Negative 8 8 4 5

CSF IL-10

Evaluated 16 0 7 0

Normal 6 22 4 11

CSF IL-6

Evaluated 16 8 7 5

Normal 6 14 4 6

Brain parenchyma lesion

Yes 21 21 11 9

No 1 1 0 2
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(Martin et al., 2020), and glioblastoma (Zhang et al., 2021), are
shown to be accompanied by significant changes in amino acid
catabolism, leading to detectable alterations in the amino acid levels
found in body fluids. Similarly, several studies have reported
changes in the metabolic levels of acylcarnitines in certain types
of cancer, including thyroid cancer (Yao et al., 2011), lung cancer (Ni
et al., 2019), colorectal cancer (Farshidfar et al., 2018), hepatocellular
carcinoma (Zhou et al., 2012) and breast cancer (His et al., 2019) As
for the tumor located in the central nervous system, Wang et al.
utilized untargeted metabolomics to profile the metabolic signatures
of different brain tumors with CSF samples, identifying metabolites

mainly related to amino acid metabolism (Wang et al., 2020). Kim
et al. revealed significant differences in NMR spectra of CSF between
PCNSL and normal groups and developed a prediction model with
6 metabolites to diagnose PCNSL (Kim et al., 2023). In this study, we
employed targeted metabolomic analysis with UHPLC-MS
technique to determine the amino acid and acylcarnitine levels in
patients with PCNSL. Additionally, we utilized logistic algorithm to
select the most important markers, resulting in a DX model with
sensitivity of 83%, specificity of 82%, and AUC of 0.84 and a Diff
model with sensitivity of 91%, specificity of 82%, and AUC of 0.86,
which were established for detecting PCNSL.

FIGURE 2
The selection of 5 specific biomarkers for PCNSL diagnosis. (A) The volcano plot of 45 metabolite and their ratios, and 25 significant changed
components (|log2 fold change| > 0.26, AUC ROC >0.8) for PCNSL diagnosis and (B) Logistic model performance using the top 20 high coefficient
features. (C) The violin plot of 5 validated metabolic biomarkers for PCNSL diagnosis.

FIGURE 3
PCNSL diagnosis panel with 5 validated metabolic biomarkers. Different models are used for (A) PCNSL diagnosis with discovery cohort. ROC curve
for the validationmodel with the best AUC performance in (B) and the coefficient importance of 5 validatedmetabolic biomarkers for PCNSL diagnosis in
(C). LR: Logistic regression; Lasso: Least Absolute Shrinkage and Selection Operator; EN: Elastic Net linear regression; KNN: K-Nearest Neighbors.
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In our study, we identified specific metabolites and metabolite
ratios that have the potential to serve as biomarkers for
distinguishing primary central nervous system lymphoma
(PCNSL) patients from non-malignant disease controls, as well as

for the differential diagnosis of PCNSL from other brain tumor
cancers. For the PCNSL versus non-malignant disease control
comparison, the potential biomarkers included C14 Carnitine/
Tyrosine, C8-Carnitine/Tyrosine, C14-Carnitine/C4-Carnitine,

FIGURE 4
The selection of 9 specific biomarkers for PCNSL differential diagnosis. (A) The volcano plot of 45 metabolite and their ratios, and (B) Logistic model
performance using the top 20 high coefficient features. (C) The violin plot of 9 validated metabolic biomarkers for PCNSL differential diagnosis.

FIGURE 5
PCNSL differential diagnosis panel with 9 validated metabolic biomarkers. Different models are used for (A) PCNSL differential diagnosis with
discovery cohort. ROC curve for the validation model with the best AUC performance in (B) and the coefficient importance of 9 validated metabolic
biomarkers for PCNSL differential diagnosis in (C). LR: Logistic regression; Lasso: Least Absolute Shrinkage and Selection Operator; EN: Elastic Net linear
regression; KNN: K-Nearest Neighbors.
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C5-Carnitine/Histidine, and C12-Carnitine/Tyrosine. For the
differential diagnosis of PCNSL, the potential biomarkers
comprised C10-Carnitine, C18:1-Carnitine, C6-Carnitine/Valine,
C6-Carnitine/Tyrosine, C10 Carnitine/Valine, C10-Carnitine/
Tyrosine, C14:1OH Carnitine/Pyroglutamic acid, C16:1-
Carnitine/Pyroglutamic acid, and C18:2-Carnitine/Pyroglutamic
acid. Detailed information and violin plots of these selected
biomarkers are shown in Figure 2 and Figure 4 of our study.
These findings contribute to the potential development of
metabolite-based diagnostic approaches for PCNSL.

Amino acids, being the essential constituents of proteins,
play vital roles in human metabolism, cell proliferation, gene
expression, and inflammatory response. The proliferation of
tumor cells relies heavily on the availability of amino acids
for nitrogen supply, supporting protein and nucleotide
biosynthesis (Ward and Thompson, 2012). This process can
lead to the accumulation of reactive oxygen species (ROS)
within cancer cells, causing damage to macromolecules and
eventual cell death (Lieu et al., 2020) Changes in amino acid
levels can significantly impact tumor cells and the immune
microenvironment, resulting in altered amino acid profiles in
cancer patients. Notably, glutamine, valine, leucine, isoleucine,
and glycine have demonstrated their significance in cancer growth
and metastasis (Hensley et al., 2013; Green et al., 2016). Valine, a
branched-chain amino acid, participates in metabolism by
generating succinyl-CoA and acetyl-CoA, which are then
oxidized for energy production and fatty acid synthesis (Stine
et al., 2022). Valine intake has been associated with tumor growth,
as demonstrated in a mouse model with transplanted lymphocytic
leukemia (Thandapani et al., 2022). Histidine, an essential acid
that plays a vital role in human, especially in the myelin sheath
and information transmission from the brain, influences tumor
proliferation, invasion, metastasis, and overall prognosis, with its
phosphorylation level playing a significant role (Dong et al.,
2021). Tyrosine, an aromatic amino acid, has been identified as
a potential biomarker for gastroesophageal cancer, with
significantly lower concentrations observed in gastric cancer
cases in both early and late disease stages (Wiggins et al.,
2015). Pyroglutamic acid, an intermediate in glutathione
metabolism, affects glutathione levels and oxidative stress
(Gamarra et al., 2019). Glutathione homeostasis disruption is
associated with tumor initiation and progression, as it plays a
crucial role in cell differentiation, proliferation, apoptosis,
ferroptosis, and immune function. Thus, pyroglutamic acid
may have indirect effects on cancer. For instance, He et al.
reported that serum pyroglutamic acid concentrations
decreased from prostatic hyperplasia to prostate cancer (He
et al., 2022). In addition to the individual amino acid, ratios of
some amino acids also shows differential profiles in cancers. For
instance, increased ratio of serum kynurenine/tryptophan was
found to be correlated with lung cancer progression (Suzuki et al.,
2010)and hepatitis B virus (HBV)-related hepatocellular
carcinoma (Wu et al., 2022). In the same study of HBV-related
hepatocellular carcinoma, branched-chain amino acids (BCAA)/
tyrosine ratio was also shown to be significantly decreased. These
findings suggest a strong correlation between cancer progression
and amino acid profile (Fan et al., 2012) and are in line with our
own research results.

Acylcarnitines, which are acylated derivatives of carnitine, play a
crucial role in mitochondrial and peroxisomal transport for β-
oxidation of fatty acids. Alterations in their levels can indicate
disruptions in fatty acid oxidation, glycolysis, and branched-chain
amino acid metabolism, providing valuable insights into cancer
development and progression (Houten et al., 2020; McCann et al.,
2021). The targeted measurement of acylcarnitines presents novel
opportunities for cancer diagnosis and prognosis. For instance,
Lu et al. employed LC-MS technology to analyze the acylcarnitine
metabolic profile of hepatocellular carcinoma, observing
significant changes in short-chain, medium-chain, and long-
chain acylcarnitine levels within the cancer samples (Lu et al.,
2019). Similar outcomes were reported by Bogusiewicz et al. in
their study profiling acylcarnitines in gliomas (Bogusiewicz et al.,
2021). In the context of breast cancer diagnosis, C12-Carnitine,
C14-Carnitine, and C14:2-Carnitine have been identified
as potential markers (Kozar et al., 2021), while His et al. found
a positive association between plasma concentration of
acylcarnitine (C2-Carnitine) and breast cancer risk (His et al.,
2019). Additionally, Li et al. highlighted the diagnostic potential
of elevated acylcarnitines, specifically C6-Carnitine, in
distinguishing gastric cancer from control samples (Li et al.,
2022). Ni et al. developed an accessible metabolomics-based
early cancer detection method using LC-MS technology and
discovered significantly increased levels of acylcarnitines,
including C3-Carnitine, C4-Carnitine, C5-Carnitine, C14-
Carnitine, and C16-Carnitine, in lung cancer patients compared
to healthy controls. (Ni et al., 2016). Moreover, the ratios between
different acylcarnitines can provide valuable metabolic
information. Yao et al. reported a decreased ratio of palmitoyl-
carnitine to carnitine (C16-Carnitine/C0-Carnitine) in the
papillary thyroid carcinoma group, indicating carnitine
palmitoyl transferase I activity (Yao et al., 2011). In another
study, C5OH-Carnitine/C0-Carnitine, C3-Carnitine/Methionine,
and Valine/Phenylalanine ratios were shown to be significant risk
factors for hepatocellular carcinoma (Zhang et al., 2018). These
findings suggest that the absolute amount or proportion of
acylcarnitines may reflect the metabolic status and progression
of cancer. In our study, we observed decreased ratios of C14-
Carnitine/Tyrosine, C8-Carnitine/Tyrosine, C14-Carnitine/C4-
Carnitine, and C12-Carnitine/Tyrosine, as well as an increased
ratio of C5-Carnitine/Histidine in PCNSL patients compared
to controls. In our differential diagnosis model, we identified
nine features, including two individual metabolites (C18:1-
Carnitine and C10-Carnitine) and seven ratios (C6-Carnitine/
Valine, C10-Carnitine/Valine, C6-Carnitine/Tyrosine, C18:2-
Carnitine/Pyroglutamic, C10-Carnitine/Tyrosine, C16:1-
Carnitine/Pyroglutamic, and C14:1OH-Carnitine/Pyroglutamic),
all of which were elevated in PCNSL compared to other brain
tumor groups. These experimental findings underscore the
significance of these acylcarnitines, amino acids, and their ratios
as significant biomarkers for the diagnosis or differential diagnosis
of PCNSL.

There are several limitations to our study that should be
considered. Firstly, the sample size was relatively small, and
larger studies are needed to confirm and generalize our findings.
Additionally, we did not take into account other potential factors
that could influence amino acid and acylcarnitine metabolism, such
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as the stage of cancer progression. Further research is necessary to
explore these factors and their impact on the observed metabolic
changes.
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