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Introduction: Variants in 5′ and 3′ untranslated regions (UTR) contribute to rare
disease. While predictive algorithms to assist in classifying pathogenicity can
potentially be highly valuable, the utility of these tools is often unclear, as it
depends on carefully selected training and validation conditions. To address this,
we developed a high confidence set of pathogenic (P) and likely pathogenic (LP)
variants and assessed deep learning (DL) models for predicting their molecular
effects.

Methods: 3′ and 5′UTR variants documented as P or LP (P/LP) were obtained from
ClinVar and refined by reviewing the annotated variant effect and reassessing
evidence of pathogenicity following published guidelines. Prediction scores from
sequence-based DL models were compared between three groups: P/LP variants
acting though the mechanism for which the model was designed (model-
matched), those operating through other mechanisms (model-mismatched),
and putative benign variants. PhyloP was used to compare conservation scores
between P/LP and putative benign variants.

Results: 295 3′ and 188 5′UTR variants were obtained fromClinVar, of which 26 3′
and 68 5′ UTR variants were classified as P/LP. Predictions by DL models achieved
statistically significant differences when comparing modelmatched P/LP variants
to both putative benign variants and modelmismatched P/LP variants, as well as
when comparing all P/LP variants to putative benign variants. PhyloP conservation
scores were significantly higher among P/LP compared to putative benign variants
for both the 3′ and 5′ UTR.

Discussion: In conclusion, we present a high-confidence set of P/LP 3′ and 5′UTR
variants spanning a range of mechanisms and supported by detailed pathogenicity
andmolecular mechanism evidence curation. Predictions from DLmodels further
substantiate these classifications. These datasets will support further development
and validation of DL algorithms designed to predict the functional impact of
variants that may be implicated in rare disease.
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1 Introduction

As the diagnostic utility of whole genome sequencing (WGS)
in rare disease populations is increasingly documented
(Stavropoulos et al., 2016; Clark et al., 2018), there is a
growing appreciation for the direct implication of non-coding
variation in heritable disease (French and Edwards, 2020).
Clinically relevant variants have been identified in a range of
functional elements residing in non-coding regions, including 5′
and 3′ untranslated regions (UTRs) (Chatterjee and Pal, 2009;
Steri et al., 2018). These regions flank the coding sequence, and
play an important role in mRNA stability, translation, and other
mechanisms of post-transcriptional regulation. In addition, the
5′UTR overlaps the promoter region, and the corresponding
DNA sequence can play a role in transcriptional regulation.
Variation within the 3′ and 5′ UTR can result in functional
consequences mediated through a variety of molecular
mechanisms including, but not limited to, modification of
RNA secondary structure, modulation of reading frame
recognition by the translation machinery, and altered
interaction with microRNAs (miRNAs) and RNA-binding
proteins (RBPs).

As a direct result of the existence of clinically meaningful
variation in UTRs, there is a need for accurate classification of
pathogenicity for variants in these regions. Recent work has been
conducted to develop recommendations for adapting existing
variant classification guidelines to variants in non-coding
contexts (Ellingford et al., 2022). Predictive algorithms have
also been developed to assist in these efforts (Wells et al., 2019;
Moyon et al., 2022; Petrazzini et al., 2022). However, the
accuracy and consequent utility of such tools depends upon
the quality of the data used for training and validation.
Databases such as ClinVar (Landrum et al., 2018) and The
Human Gene Mutation Database (HGMD) (Stenson et al.,
2003) are frequently used as a source of training datasets.
While valuable resources, conflicting classifications between
submitters are common (Rehm et al., 2015) and frequent
misclassifications have been documented (Shah et al., 2018;
Xiang et al., 2020).

Given existing evidence of misclassification and known
challenges of non-coding variant classification, we used
ClinVar as a starting point for systematic curation and
classification to develop a high-confidence set of pathogenic
and likely pathogenic (P/LP) variants in the 3′ and 5′UTR. Focus
was placed on gathering mechanistic information, resulting in a
collection of P/LP variants representing a range of proposed
functional mechanisms. The census of P/LP variants presented
in this work is further substantiated by findings from the
application of deep learning (DL) models. These models
demonstrated a distinction in prediction scores for variants
acting through specific mechanisms relevant to the model, as
compared to both P/LP variants acting through other
mechanisms and putative benign variants. The resulting high-
confidence set of curated variants will serve to support the
continued development and accurate validation of DL
algorithms designed to predict the functional impact of
variants in the 3′ and 5′ UTR which may be implicated in
rare disease.

2 Materials and methods

2.1 Variant identification and filtering

The tab delimited summary text file from the September
2022 release of ClinVar for GRCh38 was downloaded from the
National Center for Biotechnology Information (NCBI) FTP site
(last accessed 20 Oct 2022) (Landrum et al., 2018). Variants were
further filtered to include only those with classifications of
pathogenic, likely pathogenic, or with conflicting classifications of
pathogenic and likely pathogenic across multiple submitters in
ClinVar. Variants were annotated with allele frequencies from
gnomAD v3.0 (Chen et al., 2022). Any variant with an allele
frequency greater than 0.05 (5%) for any subpopulation was
discarded, given this is sufficient evidence to warrant a benign
classification (Richards et al., 2015). Variants were then filtered
to include only those annotated in the transcript defined by
ClinVar’s preferred name as 3′ or 5′ UTR exonic variants,
defined as those located entirely within the coordinates of the
respective UTR of the transcript, which must be coding. The
transcript features were defined by NCBI RefSeq v109
annotations for Homo sapiens (O’Leary et al., 2016).

2.2 Curation of evidence related to variant
effect and pathogenicity

The first step of the curation process consisted of confirming the
variant’s 3/5′ UTR effect by considering the gene’s principal
transcript as defined by APPRIS (Rodriguez et al., 2022). We
excluded variants outside of the 3/5′ UTR of the most recent
version of the APPRIS-defined principal transcript. In instances
where a variant had a non-UTR effect on an overlapping protein-
coding gene or non-coding RNA, the literature was consulted to
determine whether pathogenicity was conferred through the UTR
impact. If evidence suggested that pathogenicity wasmediated by the
non-UTR effect, or was insufficient to reach such a conclusion, the
variant was excluded. Variants were also excluded in instances
where they had a non-UTR impact on a Matched Annotation
from the NCBI and EMBL-EBI (MANE) Select or Plus Clinical
transcript for the same gene (Morales et al., 2022), regardless of
having a UTR impact on the APPRIS-defined principal transcript.
We also excluded variants with a non-UTR impact on an APPRIS-
defined alternative or minor transcript when evidence implicating
the variant as pathogenic was in the context of this transcript or
there was insufficient evidence to discern the specific transcript
mediating pathogenicity. Somatic variants, repeat expansions and
structural variants with impacts extending beyond the UTR
(i.e., large copy number variants (CNVs) impacting multiple gene
regions or multiple genes) were excluded.

Synthesis of relevant evidence pertaining to each variant
involved first consulting comments and reviewing citations
provided directly in ClinVar. For each variant, an ancillary
search was conducted to identify additional relevant literature.
Data relevant to informing classifications of pathogenicity were
extracted and documented. The information extracted depended
on the nature of the study. For example, extracted details relevant to
functional studies included the type of assay, results and overall
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conclusion. For case reports, the number of cases, their respective
genotypes (e.g., homozygous, compound heterozygous) and
phenotypic characteristics were recorded. Information related to
proposed or validated mechanisms by which variants mediate their
effects in the 3′ or 5′ UTR was captured, when available.

2.3 Classification of pathogenicity

Curated evidence informed classifications of pathogenicity
based on guidelines published by the American College of
Medical Genetics and Genomics (ACMG) and the Association
for Molecular Pathology (AMP) (Richards et al., 2015). In
keeping with recent recommendations for classifying non-coding
variants (Ellingford et al., 2022), the following additional
considerations were made: PS1 (strong criterion 1) was applied
to variants impacting the same base as another variant previously
established as pathogenic (e.g., a different change at the same base
within a miRNA binding site). PM5 (moderate criterion 5) was
applied for variants with the same predicted effect as a previously
established pathogenic variant, but not at the same specific base/
residue (e.g., a variant at a different site within a miRNA binding site
in which another variant at a different base had been previously
established as pathogenic).

2.4 Exploration of properties of genes
implicated by curated variants

To investigate whether genes in which variants classified as P/LP
in this study are implicated in any shared families or common
pathways, we performed functional enrichment analysis using the g:
GOSt tool from g:Profiler (Raudvere et al., 2019; https://biit.cs.ut.ee/
gprofiler/gost; version e109_eg56_p17_1d3191d). Genes with at
least one 3′ or 5′ UTR variant classified as P/LP in this study
were used as the query gene set. The background was defined as any
gene with at least one variant, that was not a somatic or CNV,
classified as P/LP in ClinVar. The Benjamini–Hochberg false
discovery rate (FDR) method was used for multiple test
correction, with the significance threshold set to 0.05. The
following data sources were used in the analysis: Gene Ontology
(GO) molecular function, GO cellular component, GO biological
process, and Reactome.

To examine the extent to which genes in which curated variants
exist are known to be implicated in disease, we annotated the set of
genes with at least one curated 3′ or 5′ UTR variant with genetic
phenotypes documented in Online Mendelian Inheritance in Man®
(OMIM; https://www.omim.org/, last accessed Apr. 18, 2023). To
achieve a comprehensive scope, annotations included all values
documented in the Disorders column including monogenic
disorders, “non-diseases” (i.e., indicated by brackets),
susceptibility to multifactorial disorders (i.e., indicated by braces),
and provisional associations (i.e., indicated by a question mark).
Each gene was also annotated with the number of variants classified
as P/LP in ClinVar, as well as the loss-of-function (LoF) observed/
expected upper bound fraction (LOEUF) from gnomAD v2.0
(Karczewski et al., 2020; last accessed 08 Aug 2023). This metric
gives an impression of the extent to which genes are intolerant

to LoF variants, with lower values indicating stronger intolerance.
For each of these properties, a two-sided Mann-Whitney Wilcoxon
test was applied to compare values between three groups: genes in
which at least one 3′ or 5′ UTR variant was classified as P/LP in this
study, those in which at least one VUS and no P/LP variants were
identified in this study, and the background set of genes defined for
the functional enrichment analysis.

2.5 Analysis of variant effects using deep
learning models and conservation scores

To create the benchmark datasets for DL models, variants
classified as P/LP were supplemented with putative benign
variants obtained from gnomAD v3.0 (Chen et al., 2022). The
datasets were created separately for the 5′ and 3′ UTR. For each
transcript with a variant classified as P/LP in the corresponding
UTR, the genomic coordinates of all exons within the respective
UTR were used to construct an SQL query to extract variants within
these regions from ‘bigquery-public-data.gnomAD.v3_genomes__
chr*` tables on BigQuery. Variants were further filtered to have a
total allele frequency greater than 0.01 (1%), a threshold more
inclusive than that used for initial filtering of P/LP variants (0.05;
see Section 2.1), to allow for a greater likelihood of including a
matched putative benign variant in the same UTR for the majority of
P/LP variants, resulting in a more robust benchmark. Three models
were applied to the resulting datasets: FramePoolCombined
(Karollus et al., 2021), Saluki (Agarwal and Kelley, 2022), and
Enformer (Avsec et al., 2021). Datasets were also annotated with
PhyloP conservation scores (Pollard et al., 2010).

2.5.1 FramePoolCombined predictions
The hg38 reference FASTA was downloaded from UCSC (http://

hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz; last
accessed 11 Jan 2023). A GTF file of the hg38 NCBI RefSeq table
was downloaded from UCSC (http://hgdownload.soe.ucsc.edu/
goldenPath/hg38/bigZips/genes/hg38.ncbiRefSeq.gtf.gz; last accessed
15 Feb 2023). A BED file of all 5′ UTR features was created from
this GTF. Predictions for 5′ UTR variants were made using the Kipoi
interface provided for the FramePoolCombined model (Avsec et al.,
2019; Karollus et al., 2021). Each variant was predicted one at a time in its
ownVCF to yield individual variant effects, as the default behavior of the
model through Kipoi is to integrate all variants in the VCF into the
sequence for prediction. The predicted mean ribosome load (MRL) fold
change was used as the variant effect prediction. Variants were stratified
into three groups for analysis: “P/LP (open reading frame (ORF)
mechanism)” if they were classified as P/LP and operated through a
proposed mechanism of impacting ORF recognition by the translation
machinery which included impact on an existing regulatory upstream
ORF (uORF) or introduction of a novel upstream start codon (“model-
matched”), “P/LP (Other)” for P/LP variants operating through a
different or undetermined mechanism (“model-mismatched”), and
“putative benign”. A Mann-Whitney Wilcoxon test was used to
compare variant effect prediction scores between groups.

2.5.2 Saluki predictions
For each 3′ UTR variant, the 6D track for the Saluki model,

consisting of the one-hot encoded DNA sequence of the transcript,
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the coding frame, and the splice site positions was constructed for
the reference and alternative sequence (Agarwal and Kelley, 2022).
Predictions using all 50 cross-fold validation models provided by the
authors were made for each of the reference and alternative
sequences for the variant, and the average of the predictions
from all models was used as the resulting score. The variant
effect prediction was taken as the difference between the
alternative and reference sequence scores. Variants were stratified
into three groups for analysis: “P/LP (mRNA stability)” if they were
classified as P/LP and proposed to impact the polyadenylation signal
or mRNA stability (“model-matched”); “P/LP (Other)” for other
P/LP variants operating through a different or undetermined
mechanism (“model-mismatched”), and “putative benign”. The
scores of the variants in each group were compared using the
Mann-Whitney Wilcoxon test.

2.5.3 Enformer predictions
Enformer was loaded via tfhub.dev (https://tfhub.dev/

deepmind/enformer/1; last accessed 16 Feb 2023). For each 5′
UTR variant, two sequences encompassing Enformer’s full
context length were constructed: one centered at the reference
allele and one centered at the alternative allele. For each
sequence, predictions for the forward and reverse strand were
made by Enformer, and the average was taken. The output was
subset to the center window and two windows on either side (for a
total of five windows) and only the CAGE tracks. The score for each
sequence was calculated by summing over the five windows, adding
a pseudocount of one, applying a log2 transformation, and finally
computing the mean. The variant effect prediction was taken as the
difference between the alternative and reference sequence scores.
Variants were stratified into three groups: “P/LP (Transcription)” if
they were classified as P/LP and operated at the level of transcription
(“model-matched”); “P/LP (Other)” for all P/LP variants operating
through a different or undetermined mechanism (“model-
mismatched”), and “putative benign”. The scores of the variants
in each group were compared using the Mann-Whitney
Wilcoxon test.

2.5.4 PhyloP conservation score annotations
The BigWig file of PhyloP conservation scores (hg38 100way,

vertebrate alignments) was downloaded from UCSC (https://
hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/; last
accessed 22 Feb 2023; Pollard et al., 2010). All 3′ and 5′ UTR
variants were annotated based on the score at the corresponding
position in the genome. If a variant’s reference sequence spanned
multiple nucleotides, the maximum score across the interval was
taken.

3 Results

3.1 Filtering and selection of 3′ and 5′ UTR
variants from ClinVar

Variants documented in ClinVar were filtered based on
classification (P/LP), gnomAD allele frequency (≤5%), and
location within an exon of the 3′ or 5′ UTR (see Section 2.1
for details). This filtering process yielded 295 and 188 ClinVar

variants from the 3′ and 5′ UTR. Of 295 ClinVar 3′ UTR
variants, there were 85 single nucleotide variants (SNV),
28 indels (≤50 nucleotides), seven structural variants (SV;
>50 nucleotides), two deletion-insertions, one CNV, and
172 tandem repeat expansions. Among the 188 ClinVar 5′
UTR variants, there were 147 SNVs, 35 indels, three deletion-
insertions, one CNV, and two tandem repeat expansions.
Variants were assigned a confidence score as a means of
initial assessment based on whether they were annotated to
reside in regions outside of the 3′ or 5′ UTR on any other
transcript (either an alternative transcript of the same gene or a
transcript of a different gene). Higher scores reflect higher
confidence that the variant’s effect is mediated through its
impact on the 3′ or 5′ UTR of the ClinVar preferred
transcript (Table 1). A score of two was assigned to 263
(89.2%) and 117 (62.2%) variants in the 3′ and 5′ UTR,
respectively (Figure 1). All variants proceeded to curation
irrespective of initial confidence score.

Of the initial 295 3′ UTR variants 59 (20.0%) proceeded to the
classification phase. This included 39 SNVs, 17 indels, and three SVs
contained entirely within the 3′UTR (deletion sizes ranging between
92 and 473 bp). The remainder (236 variants; 80.0%) were further
filtered out for a variety of reasons, the most frequent of which being
omission of repeat expansions (see Section 2.2 for details;
Figure 1A). All repeat expansions existed in DMPK, a gene
associated with myotonic dystrophy 1 in which “normal alleles”
consist of 5–34 CTG repeats within the 3′ UTR, typically
asymptomatic “premutation alleles” between 35 and 49, and fully
penetrant alleles over 50 CTG repeats (Prior, 2009). Among the
172 DMPK repeat expansions in our dataset,
154 comprised >50 CTG repeats, while the remaining
18 involved between 31 and 50 repeats.

Of the initial 188 5′ UTR variants, 105 (55.9%) proceeded to
classification. This included 93 SNVs, 10 indels, and two
deletion-insertions. Among variants excluded, the most
frequent reasons were transcript-related considerations
(Figure 1B). One such consideration leading to variant
exclusion was where, despite impacting a UTR of the
APPRIS-defined principal transcript, variants had a non-UTR
impact on an alternative transcript defined as either “Select” or
“Plus Clinical” (i.e., transcripts not defined as “Select”, but in
which known pathogenic variants have been reported) by MANE
(Morales et al., 2022). Discordances of this nature were
identified for seven 3′ UTR and 15 5′ UTR variants (Figures
1A, B). Three variants in KRAS serve as examples of the former,
residing in the 3′ UTR of the APPRIS-defined principal
transcript (NM_033360), but having missense impacts on the
MANE Select transcript (NM_004985). In vitro functional
evidence for one such variant (NM_004985:c.468C>G; NM_
033360.4:c.*22C>G) as it resides on NM_004985 and induces
a missense impact supports profound activation of the MAPK
pathway (Gremer et al., 2011). In the absence of any such
functional support for the variant as it resides in the 3′ UTR,
its pathogenicity is more reasonably attributed to the missense
impact. A collection of variants in MOCS2 serve as examples of
the latter, where despite residing in the 5′ UTR of the MANE
Select and APPRIS principal transcript (NM_004531), non-UTR
impacts exist on the transcript defined as MANE Plus Clinical
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(NM_176806). In these types of cases, and where there is no
evidence providing mechanistic validation of any functional
consequence of the variant in the context of a UTR of the
APPRIS principal transcript, it remains challenging to
ascertain whether any pathogenic impact is mediated by an
effect on the UTR. These variants were therefore omitted
from our dataset to limit our collection of variants to strictly
those for which we are confident pathogenicity is mediated
through an impact specifically on the UTR.

Of the 59 3′ UTR and 105 5′ UTR variants proceeding to
classification, the majority were classified as pathogenic in ClinVar
(3′ UTR: 39 (66.1%); 5′ UTR: 72 (68.6%)), with the remainder
classified as either likely pathogenic or a combination of pathogenic
and likely pathogenic across multiple submitters (Figure 2A).
Thirty-five and 54 unique genes were represented among the 3′
and 5′ UTR variants that proceeded to classification, respectively.
The distribution of variants among genes is illustrated in
Supplementary Figure S1. Variants proceeding to the
classification phase were classified according to guidelines
published by the ACMG and AMP (Richards et al., 2015), with
additional considerations made for variants in non-coding regions
(Ellingford et al., 2022) (see Section 2.3 for details). All variants,
classifications of pathogenicity, and supporting evidence are

documented in Supplementary Tables S1, S2 for the 3′ UTR and
5′ UTR, respectively.

3.2 3′ UTR variant curation links pathogenic
variants to a host of regulatory mechanisms

Of the 59 3′ UTR variants proceeding to classification, six were
classified as pathogenic (10.2%), 20 likely pathogenic (33.9%) and 33
VUS (55.9%) (Figure 2B). 3′UTR variants classified as pathogenic or
likely pathogenic are provided in Table 2. There was a statistically
significant difference in the number of ClinVar submissions for 3′
UTR variants classified in this study as P/LP compared to VUS,
where the variants in the final P/LP group tended to have a greater
number of submissions (two-sided Mann-Whitney Wilcoxon test,
p = 0.0057; Supplementary Figure S2). There was no clear influence
of the year of the most recent ClinVar submission on whether
variants were assigned a final classification of P/LP or VUS
(Supplementary Figure S3). Twenty-two of the 3′UTR variants
classified as P/LP were supported by published functional
evidence. All six variants classified as pathogenic in this work
were also consistently classified as such by ClinVar submitters.
Among the 20 variants classified as likely pathogenic in this

TABLE 1 Initial confidence score assignment of variants based on ClinVar annotations.

Criteria
Confidence score

0 1 2

3′ (or 5′) UTR exonic variant based on ClinVar preferred transcript ✓ ✓ ✓

Not in a coding sequence exon in another transcript or a splicing varianta in another transcript - ✓ ✓

Not an intronic variant in another transcript or a 5′ UTR (or 3′ UTR) variant in another transcript - - ✓

UTR, untranslated region.
aDefined as an intronic variant within 8 bp of the intron/exon boundary.

FIGURE 1
Flow of variants through identification and initial curation phases determining eligibility for classification. (A) 3′ UTR variants. (B) 5′ UTR variants.
Variants were extracted from ClinVar, assigned an initial confidence level and filtered based on several factors before proceeding to classification. UTR,
untranslated region; VUS, variant of uncertain significance. aCopy number variants include large insertions and deletions. Identified CNVs all exceeded
1,500 bp in length.
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work, 12 were pathogenic in ClinVar, four likely pathogenic, and
four had conflicting classifications of pathogenic and likely
pathogenic across multiple submitters.

A validated or proposed mechanism was reported for
22 variants, including disruption or introduction of a miRNA
binding site (n = 7), impact on polyadenylation signal (n = 10),
impact on mRNA stability (n = 3), introduction of a de novo splice
site (n = 1), and change in secondary hairpin structure of the
encoded mRNA (n = 1).

3.3 5′ UTR variant curation identifies variants
spanning multiple pathogenic mechanisms

Of the 105 5′ UTR variants proceeding to classification, 17
(16.2%) were classified as pathogenic, 51 (48.6%) likely pathogenic,
and 37 VUS (35.2%; Figure 2B). 5′ UTR variants classified in this
study as P/LP tended to have a greater number of ClinVar
submissions compared to those classified as VUS (two-sided
Mann-Whitney Wilcoxon test, p = 0.0069; Supplementary Figure
S2). Final classification of 5′ UTR variants as P/LP versus VUS was
not clearly influenced by the date of the most recent ClinVar
submission (Supplementary Figure S3). Fifty-five (80.9%) of the
68 variants classified as P/LP were supported by functional evidence.
Of the 17 variants classified as pathogenic in this work, 12 were
classified as pathogenic in ClinVar and three had a combination of
pathogenic and likely pathogenic classifications across multiple
submitters. Two pathogenic variants were classified as likely
pathogenic in ClinVar, despite evidence cited in the respective
submissions fulfilling sufficient criteria to warrant a pathogenic
classification (Richards et al., 2015). Across the 51 variants
classified as likely pathogenic in this work, 38 were documented
as pathogenic in ClinVar, six likely pathogenic, and seven

pathogenic and likely pathogenic across multiple submitters
(Table 3).

A proposed or validated mechanism was also available for
55 variants classified as P/LP (Table 3). The described
mechanisms operated both at the level of transcription (i.e., in
cases where the 5′ UTR overlaps the functional promoter) and
translation. Translational mechanisms included impacts on an
existing regulatory upstream open reading frame (uORF; n = 10),
introduction of a novel upstream start codon (n = 13), and altered
interaction between mRNA and RNA-binding proteins (n = 12).
Mechanisms operating at the level of transcription included altered
promoter activity (e.g., enhancing or repressing transcription factor
interactions; n = 14), altered promoter methylation (n = 2) and
splicing impacts (n = 4).

3.4 Genes harboring variants classified as
P/LP in this study are involved in established
gene-phenotype pairings and enriched for
pathways relevant to hematological
disorders

Genes with at least one curated variant in our dataset had a higher
average number of variants classified as P/LP inClinVar (Supplementary
Figure S4A). For both the 3′ and 5′UTR, there was a significantly higher
number of variants classified as P/LP in ClinVar among genes in which
we identified at least one P/LP 3′ or 5′ UTR variant compared to a
background set of genes in ClinVar with at least one P/LP variant overall
(3′ UTR: p-value = 0.015; 5′ UTR: p-value ≤0.001). There was also a
statistically significant difference in ClinVar P/LP counts for genes in
which we identified at least one VUS and no P/LP variants compared to
the background gene set (3′ UTR; p-value ≤0.001; 5′ UTR:
p-value ≤0.001). Intolerance to LoF variation, as estimated by

FIGURE 2
Number of 3′ and 5′UTR variants by classification of clinical significance. (A) Total number of variants that proceeded to curation, stratified by clinical
significance as reported by ClinVar submitters. (B) Total number of variants that proceeded to curation, stratified by clinical significance as classified in this
study. LP, likely pathogenic; P, pathogenic; UTR, untranslated region; VUS, variant of uncertain significance.
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LOEUF scores (Karczewski et al., 2020), was not statistically significantly
different between any of the three groups examined (i.e., genes with at
least one P/LP variant in our dataset, genes with VUS only in our dataset,
background gene set; Supplementary Figure S4B).

To examine the extent to which genes in which curated variants
exist are known to be implicated in disease, we annotated all genes

with at least one curated 3′ or 5′ UTR variant with genetic
phenotypes documented in OMIM (Supplementary Table S5). All
of the 49 unique genes involving variants classified in this study as
P/LP had associated genetic phenotypes documented in OMIM. Of
these, only four were not associated with well-established
monogenic disorders and instead involved either susceptibility to

TABLE 2 Pathogenic and likely pathogenic 39 UTR variants by proposed or validated mechanism (n = 26).

Varianta Gene Classification(s) (ClinVar) Classification (present study)

Altered miRNA binding (n = 7)

NM_000518.4:c.*32A>C HBB P LP

NM_001845.5:c.*35C>A COL4A1 P LP

NM_001845.5:c.*32G>T COL4A1 P P

NM_001845.5:c.*32G>A COL4A1 P P

NM_001845.5:c.*31G>T COL4A1 P LP

NM_001281503.1:c.*689G>A SLITRK1 P P

NM_006044.3:c.*282A>T HDAC6 P LP

Impact on polyadenylation signal (n = 10)

NM_014017.3:c.*23C>A LAMTOR2 P LP

NM_000518.4:c.*110_*114del HBB P LP

NM_000518.4:c.*113A>G HBB P/LP LP

NM_000518.4:c.*110T>C HBB P P

NM_000518.4:c.*110T>A HBB P LP

NM_000518.4:c.*93_*105del HBB P LP

NM_000517.4:c.*92A>G HBA2 P LP

NM_000517.4:c.*94A>G HBA2 P P

NM_003491.3:c.*43A>G NAA10 LP LP

NM_003491.3:c.*39A>G NAA10 P/LP LP

Impact on mRNA stability (n = 3)

NM_000207.2:c.*59A>G INS P LP

NM_003073.4:c.*82C>T SMARCB1 P/LP LP

NM_001017980.3:c.*13_*104del VMA21 P LP

Altered splicing (n = 1)

NM_000132.3:c.*56G>T F8 LP LP

Impact on secondary structure (n = 1)

NM_206926.1:c.*1107T>C SELENON LP LP

Undetermined mechanism (n = 4)

NM_000210.3:c.*94_*96del ITGA6 LP LP

NM_000518.4:c.*6C>G HBB P P

NM_001017980.3:c.*6A>G VMA21 P LP

NM_000444.5:c.*231A>G PHEX P/LP LP

aVariant HGVS, nomenclature is provided for the APPRIS-defined principal transcript.

LP, likely pathogenic; P, pathogenic; P/LP, P and LP, classifications across multiple submitters; uORF, upstream open reading frame; UTR, untranslated region.
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TABLE 3 Pathogenic and likely pathogenic 59 UTR variants by proposed or validated mechanism (n = 68).

Varianta Gene Classifications(s) (ClinVar) Classification (present study)

Translation: Impact on existing regulatory uORF (n = 10)

NM_000460.3:c.-31G>T THPO P LP

NM_000460.3:c.-47del THPO P LP

NM_005144.4:c.-218A>G HR P LP

NM_005144.4:c.-249C>G HR P LP

NM_005144.4:c.-315C>T HR P LP

NM_005144.4:c.-320T>C HR P P

NM_005144.4:c.-320T>A HR LP LP

NM_000280.4:c.-118_-117del PAX6 P/LP P

NM_000280.4:c.-122dup PAX6 LP P

NM_004064.4:c.-454_-451del CDKN1B P LP

Translation: introduction of novel upstream start codon (n = 13)

NM_006516.2:c.-107G>A SLC2A1 LP P

NM_001204.7:c.-947_-946delinsAT BMPR2 P LP

NM_000939.3:c.-11C>A POMC P LP

NM_000313.3:c.-39C>T PROS1 P LP

NM_054027.5:c.-11C>T ANKH P LP

NM_001131005.2:c.-8C>T MEF2C P LP

NM_001131005.2:c.-26C>T MEF2C P LP

NM_001131005.2:c.-66A>T MEF2C P LP

NM_001114753.2:c.-127C>T ENG P/LP LP

NM_012203.2:c.-4_-3delinsAT GRHPR P LP

NM_001025295.2:c.-14C>T IFITM5 P P

NM_000518.4:c.-29G>A HBB P LP

NM_006767.3:c.-38T>A LZTR1 P/LP LP

Translation: altered mRNA-protein interaction (n = 12)

NM_002032.2:c.-164A>T FTH1 P LP

NM_000146.3:c.-168G>A FTL P P

NM_000146.3:c.-168G>C FTL P P

NM_000146.3:c.-168G>T FTL P P

NM_000146.3:c.-167C>T FTL P P

NM_000146.3:c.-164C>A FTL P LP

NM_000146.3:c.-164C>T FTL P P

NM_000146.3:c.-161C>G FTL P LP

NM_000146.3:c.-161C>T FTL P P

NM_000146.3:c.-160A>G FTL P LP

NM_000146.3:c.-157G>A FTL P P

NM_000146.3:c.-149G>C FTL P LP

(Continued on following page)
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TABLE 3 (Continued) Pathogenic and likely pathogenic 59 UTR variants by proposed or validated mechanism (n = 68).

Varianta Gene Classifications(s) (ClinVar) Classification (present study)

Transcription: altered promoter activity (n = 14)

NM_003051.3:c.-202G>A SLC16A1 P LP

NM_005105.4:c.-21G>A RBM8A P/LP P

NM_000551.3:c.-75_-55del VHL LP LP

NM_000037.3:c.-73_-72del ANK1 P LP

NM_000375.2:c.-203T>C UROS P LP

NM_014915.2:c.-127A>T ANKRD26 P/LP P

NM_014915.2:c.-127A>G ANKRD26 P LP

NM_014915.2:c.-127A>C ANKRD26 LP LP

NM_014915.2:c.-128G>A ANKRD26 P P

NM_000518.4:c.-18C>G HBB P LP

NM_001814.5:c.-55C>A CTSC P LP

NM_017671.4:c.-20A>G FERMT1 P LP

NM_000026.3:c.-49T>C ADSL LP LP

NM_000133.3:c.-17A>G F9 P LP

Transcription: altered promoter methylation (n = 2)

NM_007294.3:c.-107A>T BRCA1 P LP

NM_000249.3:c.-27C>A MLH1 P/LP LP

Transcription: splicing (n = 4)

NM_021067.4:c.-60A>G GINS1 P LP

NM_021067.4:c.-48C>G GINS1 P P

NM_000451.3:c.-19G>A SHOX P/LP LP

NM_000166.5:c.-17G>A GJB1 P/LP LP

Undetermined mechanism (n = 13)

NM_005105.4:c.-19G>A RBM8A P LP

NM_022787.3:c.-69C>T NMNAT1 P LP

NM_173546.2:c.-158C>T KLHDC8B P P

NM_133433.4:c.-321_-320delinsA NIPBL P LP

NM_014915.2:c.-126T>G ANKRD26 P LP

NM_014915.2:c.-126T>C ANKRD26 P/LP LP

NM_014915.2:c.-128G>T ANKRD26 LP LP

NM_014915.2:c.-128G>C ANKRD26 LP LP

NM_014915.2:c.-134G>A ANKRD26 P/LP LP

NM_000518.4:c.-50A>C HBB P LP

NM_000133.3:c.-22T>C F9 P LP

NM_001551.3:c.-57_-55delinsAA IGBP1 P LP

NM_000166.5:c.-103C>T GJB1 P LP

aVariant HGVS, nomenclature is provided for the APPRIS-defined principal transcript.

LP, likely pathogenic; P, pathogenic; P/LP, P and LP, classifications across multiple submitters; uORF, upstream open reading frame; UTR, untranslated region.
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a multifactorial disorder or had provisional associations. Functional
enrichment analysis was used to investigate shared functions and
common pathways between genes harboring at least one variant
classified as P/LP in this study (Supplementary Table S6). Top
enriched GO cellular components included ferritin complex (GO:
0070288; genes in analyzed set: FTH1, FTL; Benjamini–Hochberg
adjusted (adj.) p-value = 0.010), germ cell nucleus (GO:0043073;
SMARCB1, SLC2A1, MLH1, BRCA1; adj. p-value = 0.010),
intracellular ferritin complex (GO:0008043; FTH1, FTL; adj.
p-value = 0.010), and blood microparticle (GO:0072562; HBB,
HBA2, SLC2A1, PROS1, ENG; adj. p-value = 0.014). Several
Reactome pathways enriched among genes involving variants
classified as P/LP in this study were related to hemoglobin and
coagulation including “defective factor IX causes thrombophilia”
(REAC:R-HSA-9672383; F8, F9; adj. p-value = 0.021), “intrinsic
Pathway of Fibrin Clot Formation” (REAC:R-HSA-140837; F8,
PROS1, F9; adj. p-value = 0.039), and “heme signaling” (REAC:
R-HSA-9707616; HBB, HBA2, MEF2C; adj. p-value = 0.042). There
was no statistically significant enrichment across GO molecular
functions or GO biological processes.

3.5 Deep learning models capture the
impact of curated pathogenic UTR variants

To further validate the curated set of P/LP 3′ and 5′ UTR
variants, we investigated whether DL models trained for select
UTR mechanisms could successfully capture the effects of the
curated set of UTR variants in Tables 2, 3. These models and
their respective mechanisms are as follows: transcriptional
effects in the 5′ UTR (Enformer; Avsec et al., 2021),
impacting ORF recognition by the translation machinery
(FramePoolCombined; Karollus et al., 2021), and mRNA
stability in the 3′ UTR (Saluki; Agarwal and Kelley, 2022).
For each of the 5′ and 3′ UTR, a dataset was constructed by
selecting putative benign variants observed in gnomAD v3.0 that
were in the corresponding UTR for any transcripts with a P/LP
variant and had a total allele frequency above 1% (see Section 2.4
for details; Supplementary Tables S3, S4). Though we tried to
have at least one benign variant in the same UTR for every
transcript, this was not always possible. This resulted in 68 P/LP
variants and 24 putative benign variants in the 5′UTR, and 26 P/
LP and 67 putative benign variants in the 3′ UTR datasets.

Variant effect predictions were made by each model for the
relevant UTR dataset. There was a significant difference
(p-values ≤0.05 two-sided Mann-Whitney Wilcoxon test)
between the absolute value of scores between all P/LP variants in
their respective UTR combined and putative benign variants with all
three DL models (Supplementary Figure S5). A further delineation
in scores was obtained when stratifying by mechanism, with model-
matched P/LP variants having significantly higher scores when
compared to model-mismatched P/LP variants
(FramePoolCombined p-value ≤0.001; Saluki p-value ≤0.005;
Enformer p-value ≤0.005), in addition to putative benign variants
(Figures 3A–C). This finding highlights that the additional
consideration of variant mechanisms is informative. Furthermore,
considering the absolute value of model prediction scores was
superior to considering the original predictions in differentiating

model-matched, model-mismatched, and putative benign variants,
particularly for Enformer (Supplementary Figure S6). We anticipate
that this may be due to variant pathogenicity being conferred
through diverse mechanisms, including both expression increase
and decrease. As such, the magnitude rather than the directionality
of expression change, is more informative for stratifying pathogenic
variants that operate through transcription as predicted by
Enformer.

The UTR datasets were then used as benchmarks to evaluate
the performance of DL models on the binary classification task
of differentiating between putative benign variants and model-
matched P/LP variants. All models achieved greater than
random performance, with area under the curve (AUC)
values for the receiver operator curve (ROC) ranging from
0.66 to 0.84 (Supplementary Figure S7). The performance was
further improved when using the absolute values for all models’
scores, again suggesting that the magnitude of effect has greater
predictive power for pathogenicity when applied to the select
mechanisms for which DL models are trained to predict
(Supplementary Figure S8).

The availability of curated mechanistic data for this analysis
provided valuable information for validating DL model
predictions. For example, for P/LP variants that impact the
ORF, variants introducing a novel upstream ORF (orange
points; Supplementary Figure S6A) tended to have lower
MRL predictions from FramePoolCombined, likely due to the
majority of novel uORFs resulting in out-of-frame translation
(Supplementary Table S2). In contrast, the two variants (NM_
005144.5(HR):c.-218A>G, NM_000460.4(THPO):c.-47del) with
the highest MRL predictions result in less inhibitory activity
from an uORF, and greater translation of the main physiological
ORF due to the disruption of an uORF, respectively. Further,
there were nine P/LP variants in ANKRD26, of which eight were
predicted by Enformer to result in increased expression
(Supplementary Figure S6C; Supplementary Table S4).
Though there was insufficient evidence to propose a definitive
mechanism for all variants, curated evidence supported a
mechanism in which variants likely result in loss of inhibitory
regulatory action by RUNX1 and FLI1 (Supplementary Table
S2). This mechanism aligns with what would be expected of
thrombocytopenia-associated ANKRD26 variants, which have
been documented to operate through a gain-of-function
mechanism (Pippucci et al., 2011).

Lastly, to supplement the support provided by the models, we
also turned to conservation-based methods which have been used to
identify potential regulatory regions in the non-coding genome
before the recent advances of DL models. Each variant in the
constructed datasets had its position annotated with PhyloP
conservation scores (Pollard et al., 2010). There was a significant
difference in scores between all P/LP variants and the putative
benign variants within each of the UTR regions (Figure 3D),
with PhyloP ≥1.6 offering the best separation between all P/LP
and putative benign variants, when combining variants in both
UTRs. To gain insight into the conservation of certain non-coding
regulation mechanisms, we looked at the conservation scores
stratified by mechanism. For variants in the 5′ UTR, variants
that impacted translation tended to occur at nucleotide positions
that were more conserved (Supplementary Figure S9A, top panel).
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Variants that alter mRNA-protein interactions had the highest
median PhyloP score, although this may be biased by the fact
that all variants, except for one, are in FTL and occur in an iron

response element (IRE), which is a conserved stem-loop (Addess
et al., 1997). Variants that create novel upstream start codons were
less conserved than those that impact existing uORFs, which is in

FIGURE 3
Variant effect scores (absolute values) from DL models for model-matched and model-mismatched variants and PhyloP conservation scores. (A)
Distribution of the absolute values of scores for 5′ UTR variants as predicted by FramePoolCombined. (B)Distribution of the absolute values of scores for
3′ UTR variants as predicted by Saluki. (C) Distribution of the absolute values of scores for 5′ UTR variants as predicted by Enformer. (D) Distribution of
PhyloP conservation scores for variants in the 5′ and 3′UTR, stratified by pathogenicity. The boxplots have a center line for themedian, the box limits
are at the 25th and 75th percentiles, and the whiskers extend to 1.5x the 25th and 75th percentile values. Variants in the P/LP group have been colored
based on their curated mechanism. M.W.W, Mann-Whitney Wilcoxon 2-sided test.
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line with existing findings that start and stop codons in existing
uORFs tend to be highly conserved (Whiffin et al., 2020; Lee et al.,
2021). Variants that affect transcription through altered promoter
activity were located at sites that ranged between both high
divergence and conservation, despite the importance of
transcription factor binding motifs. For variants in the 3′ UTR,
the ability to draw conclusions was limited by small sample size for
most mechanisms. However, the mechanisms with the largest
sample sizes, altered miRNA binding and polyadenylation
signaling, both had median PhyloP scores greater than 1.5
(Supplementary Figure S9B, top panel), consistent with these
mechanisms relying on binding motifs and consensus sequences.
For both 3′ and 5’ UTR, the B/LB variants have median PhyloP
scores around zero. Contrastingly, the model-matched and model-
mismatched P/LP variants have median PhyloP scores that are
greater than zero (Supplementary Figure S9A, bottom panel;
Supplementary Figure S9B, bottom panel).

4 Discussion

In this study, we aim to present a curated census of variants in
the 3′ and 5′ UTR, with a focus on the mechanisms through which
they confer pathogenicity. We curated a dataset of 26 and 68 variants
classified as pathogenic or likely pathogenic in the 3′ and 5′ UTR,
using a systematic approach and detailed evidence curation. Our
analysis uncovered a considerable proportion of variants with
interpretations of P/LP in ClinVar that lacked sufficient evidence
to warrant such classifications. Reclassification of these variants
highlights the need to exercise caution in utilizing public repositories
without consideration of the level of evidence provided when
evaluating variant pathogenicity. This finding is aligned with the
ClinGen Sequence Variant Interpretation Working Group’s
recommendation to omit “reputable source criteria” (i.e., PP5
(supporting criterion 5), BP6 (supporting benign criterion 6))
from clinical variant classification practices, citing the strong
preference for primary data over expert opinion (Biesecker and
Harrison, 2018).

Beyond the variant sets themselves, our work provides insights
into key challenges and considerations when classifying variants in
non-coding regions. In their recommendations for adapting
ACMG/AMP guidelines to non-coding variants, Ellingford et al.
emphasize several important considerations, including classification
in the context of the most clinically relevant transcript. Multiple
methods have been developed to define biologically relevant
transcripts, including the MANE collaboration’s approach, based
on evidence including evolutionary conservation and expression
level (Morales et al., 2022), and APPRIS, which defines principality
based on cross-species conservation and information related to
protein structure and function (Rodriguez et al., 2022). While we
classified variants in the context of the APPRIS-defined principal,
recent work by Pozo and colleagues reported a high level of
concordance between MANE and APPRIS approaches, with
agreement documented in over 94% of genes evaluated (Pozo et
al., 2022). In our experience, MANE Select and APPRIS principal
transcripts were concordant in most cases. We identified a few
instances (3′ UTR: n = 7 variants; 5′ UTR: n = 15 variants) where,
despite residing in the UTR of the APPRIS-defined principal

transcript, variants had a non-UTR impact on a transcript
defined as either ‘Select’ or ‘Plus Clinical’ (i.e., transcripts not
defined as ‘Select’, but in which known pathogenic variants have
been reported) by MANE (Morales et al., 2022). These findings
highlight the importance of defining and classifying variants in the
context of the most biologically relevant transcript, as classifications
in alternative transcripts may yield different conclusions with
respect to pathogenicity.

There was an increasing number of variants in our curated set
over time when considering the year of the most recent ClinVar
submission for variants proceeding to curation in this study
(Supplementary Figure S3A). This finding aligns with the
increasing availability and implementation of WGS in recent
years and consequent shift in focus towards the clinical relevance
of variants in non-coding regions (Stavropoulos et al., 2016; Lionel
et al., 2018; Kim et al., 2023). However, there was no clear trend in
the time at which variants were most recently evaluated and whether
they retained their P/LP status following curation and
reclassification in this study (Supplementary Figure S3B).
Classifications of both P/LP and VUS were assigned to variants
with submissions as recent as 2022, highlighting persistent
challenges stemming from a historical lack of interpretation
guidelines tailored towards non-coding variants and lack of
consistency in the stringency of assertion criteria application by
ClinVar submitters. We anticipate that future implementation of
tailored assertion criteria developed to expand the breadth of
noncoding variants that can be meaningfully interpreted will
improve the rigor with which variants are classified and
submitted to public repositories.

The genes implicated by variants classified as P/LP in this study
are largely involved in established gene-phenotype pairings, with all
of the 49 unique genes having associated genetic phenotypes
documented in OMIM, 45 of which (91.8%) involving a well-
established monogenic condition (Supplementary Table S5).
While the substrate available to perform functional enrichment
analysis was limited by the relatively small number of genes
implicated by variants classified in this study as P/LP, we did
find significant enrichment for multiple GO cellular components
and Reactome pathways relevant to hematological conditions. This
finding aligns with the notion that such related conditions as
hemoglobinopathies are among the most prevalent inherited
disorders, with genetic mechanisms well studied as a result
(Harteveld et al., 2022; Kountouris et al., 2022). Pathogenic
variant spectra underlying hereditary bleeding disorders including
hemophilia and von Willebrand disease have also been studied in
detail (Pezeshkpoor et al., 2022), likely contributing to an
overrepresentation of implicated genes in our dataset.

In addition to providing classifications as informed by applicable
criteria, our datasets serve as a rich repository of mechanistic
information accompanied by detailed summaries of functional
evidence, where available. A diverse array of proposed mechanisms
is represented across variants, operating at both the level of
transcription and translation, albeit with varying levels of
evidentiary support. Mechanistic information is relevant not only
from the pathophysiological perspective, providing insight into
functional underpinnings contributing to disease, but also with
respect to the development and validation of mechanism-specific
DL predictors of variant effects. Application of existing DL models to
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the curated 3′ and 5′ UTR datasets revealed a clear distinction in
prediction scores when applied to variants operating through the
mechanism for which the given predictor was designed.
Furthermore, particularly in the case of Enformer, the
absolute value of the scores was more informative in
differentiating model-matched P/LP variants from the two
other two groups. This finding reflects that pathogenicity can
be conferred through both overexpression and lack of expression
of a gene, as regulated through transcription. As such, the
magnitude of change should be considered when evaluating
the effect of multiple variants in aggregate, which may operate
through both expression increase and decrease. Lastly, by
combining PhyloP scores with this mechanistic information,
we were able to provide insights into which non-coding
mechanisms may be more greatly conserved in humans.
Overall, our findings support the value of detailed and
systematic curation of non-coding variant effects for the
development, validation, and use of DL variant effect
predictors in a mechanism-specific manner.

The datasets compiled and reported herein are not intended
as an exhaustive resource of all P/LP 3′ and 5′ UTR variants
documented in the literature, but rather a high-confidence set
generated using a systematic approach consisting of both
upstream bioinformatic processing and downstream curation
and classification. Variants documented as P/LP in ClinVar were
used as a reasonable starting point, although we recognize that
non-coding variants are under-ascertained clinically and
therefore under-reported in this database. Further, it is
possible that true P/LP variants are currently documented in
ClinVar as VUS, given historical challenges and lack of
availability of classification guidelines tailored to variants in
these regions. Increased implementation of WGS in the clinical
setting and utilization of guidelines developed specifically for
non-coding variants (Ellingford et al., 2022) will in theory
increase the number of UTR variants documented as P/LP in
ClinVar. These efforts can add to the breadth of the substrate
available to contribute to the development of datasets similar to
ours in the future. Also, towards our effort to develop and
implement a standardized and reproducible approach, we
considered only variants for which a UTR impact was
mediated through the variant’s effect on the APPRIS-defined
principal transcript. It is therefore possible that variants with
true pathogenic impacts mediated through UTRs on alternative
transcripts, such as those residing within transcripts defined as
MANE Plus Clinical, exist and are not represented in our
datasets. Lastly, one limitation of our benchmarks for variant
effect prediction is that not all P/LP variants could be matched to
a putative benign variant in the same UTR of the same gene. As
large-scale sequencing consortiums continue to focus on WGS,
benchmarks for DL models can be improved upon to be more
balanced and representative.

In conclusion, we present a high-confidence set of P/LP 3′
and 5′ UTR variants spanning a range of mechanisms and
supported by detailed evidence curation and a systematic
approach to classification. We anticipate these datasets to
serve as valuable resources, given that variants documented
in existing public repositories are not systematically curated
in a consistent manner, and the reliability of such sources

depends upon individual submitters. In generating this
resource, we highlight key challenges and important
considerations when conducting variant classification
specifically in non-coding regions, including considering the
potential for differential mechanistic impacts and classifications
depending on the transcript considered. Findings from DL
models further substantiate our classifications, with a
distinction in scores supporting the relevance of mechanism-
informed use of such predictors. These datasets will serve to
support continued efforts towards developing and validating DL
models designed to predict the impact of genetic variants
residing in the 3′ and 5′ UTR.
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SUPPLEMENTARY FIGURE S1
Distribution of variants across genes. (A)Genes represented across 59 3’UTR
variants proceeding to classification. (B) Genes represented across 105 5’
UTR variants proceeding to classification.

SUPPLEMENTARY FIGURE S2
Number of ClinVar submissions for variants classified as P/LP and VUS in this
study. This includes 26 P/LP variants and 33 VUS for 3’ UTR and 68 P/LP
variants and 37 VUS for 5’ UTR. Boxplots have a center line for the median,
box limits at the 25th and 75th percentiles, and the whiskers extended to 1.5x
the 25th and 75th percentile values. The y-axis is log2 scaled. LP, likely
pathogenic; M.W.W, Mann-Whitney Wilcoxon 2-sided test; P, pathogenic;
VUS, variant of uncertain significance.

SUPPLEMENTARY FIGURE S3
Overview of variants classified as P/LP or VUS in this study based on the year
of their most recent submission. (A) The distribution of variants classified as
P/LP or VUS in this study based on the year of their most recent submission.
In each facet, the values on the y-axis sum to one for each classification
group (P/LP or VUS). (B) The proportion of variants classified as P/LP or VUS
in our study based on the year of their most recent submission. Variants are
plotted along the x-axis in terms of the year of their most recent submission
(when available) and the bar is colored based on the proportion of variants
out of the total for that year that were classified as P/LP or VUS LP, likely
pathogenic; P, pathogenic; UTR, untranslated region; VUS, variant of
uncertain significance.

SUPPLEMENTARY FIGURE S4
Comparison of the number of classified P/LP variants from ClinVar and
Loss-of-Function Observed/Expected Upper bound Fraction (LOEUF)
scores of genes with at least one P/LP variant classified in this study,
genes with at least one VUS classified in this study (but no P/LP classified
variants) and a background set of genes in ClinVar. The background set of
genes are defined as all genes in ClinVar with at least one P/LP classified
variant as per ClinVar that is not a somatic or copy number variant.

(A) For genes in each of the 3’ and 5’ UTR dataset, those that had at least
one classified P/LP or VUS variant have a significantly greater number of
P/LP classified variants in ClinVar as compared to the background set of
genes. Boxplots have a center line for the median, box limits at the 25th
and 75th percentiles, and the whiskers extended to 1.5x the 25th and 75th
percentile values. The y-axis is log10 scaled. (B) The LOEUF of genes in
each of the sets is plotted. The constraint of genes that had P/LP or VUS
curated variants in the UTRs are not significantly different from the
background set of variants in ClinVar. LP, likely pathogenic; M.W.W, Mann-
Whitney Wilcoxon 2-sided test; P, pathogenic; VUS, variant of uncertain
significance.

SUPPLEMENTARY FIGURE S5
Variant effect scores (absolute values) from DL models for P/LP variants and
PhyloP conservation scores, with variants stratified by pathogenicity. (A)
Distribution of the absolute value of scores for 5’ UTR variants as predicted
by FramePoolCombined. (B)Distribution of the absolute value of scores for 3’
UTR variants as predicted by Saluki. (C) Distribution of the absolute value of
scores for 5’ UTR variants as predicted by Enformer. (D) Distribution of
PhyloP conservation scores for variants in the 5’ and 3’ UTR, stratified by
pathogenicity. The boxplots have a center line for the median, the box limits
are at the 25th and 75th percentiles, and the whiskers extend to 1.5x the
25th and 75th percentile values. Variants in the P/LP group have been colored
based on their curated mechanism. M.W.W, Mann-Whitney Wilcoxon 2-
sided test.

SUPPLEMENTARY FIGURE S6
Variant effect scores (original predictions) from DL models for model-
matched and model-mismatched variants and PhyloP conservation scores.
(A) Distribution of scores for 5’ UTR variants as predicted by
FramePoolCombined. (B) Distribution of scores for 3’ UTR variants as
predicted by Saluki. (C)Distribution of scores for 5’UTR variants as predicted
by Enformer. (D) Distribution of PhyloP conservation scores for variants in
the 5’ and 3’ UTR, stratified by pathogenicity. The boxplots have a center line
for the median, the box limits are at the 25th and 75th percentiles, and the
whiskers extend to 1.5x the 25th and 75th percentile values. Variants in the
P/LP group have been colored based on their curated mechanism. M.W.W,
Mann-Whitney Wilcoxon 2-sided test.

SUPPLEMENTARY FIGURE S7
Receiver operator (ROC) and precision-recall (PRC) curves showing the
performance of deep learning models in classifying model-matched P/LP
variants and putative benign variants. (A) The performance of
FramePoolCombined on classifying P/LP variants that affect the ORF (n = 23)
and putative benign variants in the 5’ UTR (n = 24). (B) The performance of
Saluki on classifying P/LP variants that affect mRNA stability (n = 13) and
putative benign variants in the 3’ UTR (n = 67). (C) The performance of
Enformer on classifying P/LP variants that affect transcription (n = 20) and
putative benign variants in the 5’ UTR (n = 24). AUC, area under the curve;
TPR, true positive rate; FPR, false positive rate.

SUPPLEMENTARY FIGURE S8
Receiver operator (ROC) and precision-recall (PRC) curves showing the
performance of deep learning models in classifying model-matched P/
LP variants and putative benign variants, using absolute values of the
scores. (A) The performance of FramePoolCombined on classifying P/LP
variants that affect the ORF (n = 23) and putative benign variants in the 5’
UTR (n = 24). (B) The performance of Saluki on classifying P/LP variants
that affect mRNA stability (n = 13) and putative benign variants in the 3’
UTR (n = 67). (C) The performance of Enformer on classifying P/LP
variants that affect transcription (n = 20) and putative benign variants in
the 5’ UTR (n = 24). AUC, area under the curve; TPR, true positive rate,
FPR, false positive rate.

SUPPLEMENTARY FIGURE S9
PhyloP conservation scores for P/LP variants stratified by mechanism and
putative B/LB variants. (A) Top: 5’ UTR P/LP variants grouped by their
mechanism Bottom: 5’ UTR P/LP variants grouped into whether they were
in a model-matched group (for any model) or have a mechanism in which
there was no model available (model-mismatched or unknown) and 5’ UTR
putative benign variants. (B) Top: 3’ UTR P/LP variants grouped by their
mechanism. Bottom: 3’UTR P/LP variants grouped into whether they were in
a model-matched group (for any model) or have a mechanism in which
there was no model available (model-mismatch or unknown) and 3’ UTR
putative benign variants. The boxplots have a center line for the median, the
box limits are at the 25th and 75th percentiles, and the whiskers extend to
1.5x the 25th and 75th percentile values. The dashed line represents a
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PhyloP conservation score of 0. B, benign; LB, likely benign; LP, likely
pathogenic; P, pathogenic.

SUPPLEMENTARY TABLE S1
3’ UTR variants: annotations, classifications and supporting evidence.
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