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Introduction: Bisphenol A (BPA) is a substance belonging to the endocrine-
disrupting chemicals, globally used in the production of polycarbonate plastics. It
has been found that BPA enhances carcinogenesis, triggers obesity and exerts a
pathogenic effect in several disorders, such as type 2 diabetes, asthma, or increased
blood pressure. Recent studies have revealed, that BPA has a harmful impact on the
kidneys function, therefore, the current research aimed to explore the specific
molecular changes triggered in these organs after oral BPA exposure in mice.

Materials and Methods: The experiment was carried out on 12 (3-month-old)
female mice. Six mice served as controls. The other 6 mice were treated with BPA
in the drinking water at a dose of 50 mg/kg b. w. for 3 months. Then animals were
euthanized, the kidneys were collected, and extracted RNA was used to perform
RNA-seq.

Results: Applied multistep bioinformatics revealed 433 differentially expressed genes
(DEGs) in the BPA-treated kidneys (232 upregulated and 201 downregulated).
Additionally, 95 differentially expressed long-noncoding RNAs (DELs) were
revealed in BPA samples. The Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) annotations indicated that BPA exposure resulted in
profound changes in several essential processes, such as oxidative phosphorylation,
mitochondrial and ribosome function, or chemical carcinogenesis.

Conclusion: The obtained novel results suggest that BPA has a harmful impact on
the fundamental processes of the kidney and significantly impairs its function by
inducing mitochondrial dysfunction leading to oxidative stress and reactive
oxygen species production.
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1 Introduction

Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl)propane, is a
product of the condensation reaction of two molecules of phenol
and one molecule of acetone, in the presence of hydrogen chloride
(Ma et al., 2019). BPA, according to the U.S. Environmental
Protection Agency, belongs to the endocrine-disrupting chemicals
(EDCs), which are responsible for reproductive and developmental
dysfunctions in laboratory rats (Alonso-Magdalena et al., 2016).
EDCs are naturally occurring or synthetic exogenous substances
capable of disturbing the homeostasis of the human endocrine
system, thus affecting physiological functions such as growth,
metabolism and reproduction (Alonso-Magdalena et al., 2016).
Recent researches prove that EDSs cause diseases such as
diabetes, cancer, fatty liver disease, neurological disorders, and
dysfunctions of the reproductive system in both women and men
(Sukjamnong et al., 2020).

In humans, the main exposure to BPA comes from food and
water, primarily due to the direct contact with food containers and
other materials used in the course of production, handling, and
transportation (Moreno-Gómez-Toledano et al., 2021). Another
important source of BPA exposure is air. Household items such
as epoxy flooring, adhesives or electronic equipment may release
BPA which accumulates in dust and is absorbed by the respiratory
tract (Ma et al., 2019). BPA is also used in the chemical production of
polycarbonate plastics which can be found in healthcare equipment
(dental composites, contact lenses), products for children (toys,
soothers, milk bottles), a thermal paper that is used in receipts
and even cinema tickets (Konieczna et al., 2015). The National
Health and Nutrition Examination Survey performed between
2005 and 2010 revealed that in humans the average daily intake
of BPA is in the range of 0.03–0.07 μg/kg b.w./day (Lorber et al.,
2015).

Due to the phenolic structure, BPA can interact with estrogen
receptors and interfere with endogenous hormones by binding to
transporter proteins and affecting their free and bound levels in the
plasma. BPA exerts a pathogenic effect in several endocrine
disorders and affects both female and male reproductive systems
(Ma et al., 2019). Moreover, it has been found that contact with BPA
triggers obesity, type 2 diabetes, asthma, increased blood pressure,
and developmental diseases such as reduced birth weight or
shortened anogenital distance. It has been proven that BPA can
modify the epigenome, and thus influences disease susceptibility
(Alonso-Magdalena et al., 2016). Furthermore, BPA exposure
enhances carcinogenesis and inflammatory or immune responses
(Brandt et al., 2014).

BPA metabolism takes place mainly in the liver, where it is
broken down by enzymes such as UDP-glucuronosyltransferase
2B15 (UGT2B15) and estrogen sulphotransferase. Therefore in
our previous study, we have investigated changes in the liver
transcriptomics of mice exposed to BPA in drinking water. Data
from this study suggested that BPA has a significant impact on gene
expression in this organ, and may alter pathways linked to the
pathogenesis of severe metabolic liver disorders and malignant
tumors, in particular hepatocellular carcinoma (Wiszpolska et al.,
2023). About 1% of BPA does not break down and accumulates in
tissues. However, most conjugates generated by BPA with
glucuronides and sulfates are excreted into urine or faeces after a

few days (Michałowicz, 2014). Recent studies have revealed, that
BPA has a detrimental effect on kidneys and contributes to the
progression of kidney damage by enhancing oxidative stress,
inducing an inflammatory response, blocking autophagic flow,
and exacerbating tubular damage, thus leading to excessive
collagen accumulation and renal fibrosis (Priego et al., 2021).

Taking into account the existing knowledge, the present study
was designed to provide detailed information on the influence of oral
exposure to BPA on the transcriptomic profile of kidneys inmice. To
achieve this goal a targeted bioinformatic analysis of the control and
BPA-treated kidney samples was performed to explore the specific
molecular pathways that underlie the BPA mechanism of action.
The discovery of specific dysregulated genes may shed new light on
the full impact of this chemical on the affected organs.

2 Materials and methods

2.1 Laboratory animals

The experiment was carried out on twelve, 3-month-old female
mice (Mus musculus, C57BL6/J/CMDB strain) with an average body
weight of 30 g. The same animals were used in our previous study to
investigate changes in the liver transcriptomics of mice exposed to
BPA in drinking water (Wiszpolska et al., 2023). Mice were kept in
the animal house (at the Faculty of Veterinary Medicine, University
of Warmia and Mazury in Olsztyn, Poland) under constant
temperature 22°C ± 20°C, humidity 55% ± 10% and 12:12 h
light-dark cycle. The animals had free access to food and water.
The study was conducted according to the guidelines of the Local
Ethics Committee for Animal Experimentation in Olsztyn, Poland
(affiliated with the National Ethics Committee for Animal
Experimentation, Polish Ministry of Science and Higher
Education; decision No. 46/2019). The animals were randomly
divided into two groups. Six mice served as controls (CTR) and
were not subjected to any experimental procedures. The other
6 mice served as an experimental group and were treated with
BPA in the drinking water at a dose of 50 mg/kg b.w. for
3 months–which is considered a Lowest Observed Adverse Effect
Level (LOAEL) for this species (Choi et al., 2010). Both groups of
mice were given the same food, they were also weighed weekly, and
the BPA dose was gradually increased on this basis. After 3 months,
the animals were sacrificed by decapitation (Makowska et al., 2022).
Immediately after death, the kidneys were removed under sterile
conditions, then placed in liquid nitrogen and stored at −80°C until
further analysis.

2.2 RNA extraction, library construction and
high-throughput transcriptome sequencing

The total RNA of both groups was isolated from kidneys using
the mirVanaTM miRNA Isolation Kit with phenol according to the
manual (Thermo Fisher Scientific, United States). A
2100 Bioanalyzer (Agilent Technologies, United States) with a
6000 Nano LabChip Kit was used to measure the quantity and
quality of total RNA isolates. Only the samples with the highest RIN
values (greater than or equal to 7.5) and concentrations were
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selected for RNA-Seq library construction. The sequencing
procedure was held by an outsourcing company (Macrogen,
South Korea) exploiting Illumina NovaSeq 6000 System
(Illumina, San Diego, CA, United States). Briefly, 1 µg of total
RNA for each sample was selected for library construction by the
Illumina TruSeq mRNA LT Sample Prep Kit (Illumina, Inc., San
Diego, CA, United States). The first step involved the purification of
mRNA molecules using poly-T-attached magnetic beads. Next, the
mRNA was cut into small fragments with divalent cations. The
cleaved RNA pieces were amplified into the first-strand cDNA using
SuperScript II reverse transcriptase (Invitrogen, Waltham, MA,
United States) and random primers. In the upstream step,
second-strand cDNA synthesis using DNA Polymerase I and
RNase H was performed. The purified products of PCR reactions
were enriched and the final cDNAs libraries were constructed. The
RNA-seq libraries were quantified using qPCR according to the
qPCR Quantification Protocol Guide (KAPA Library Quantification
kits for Illumina Sequencing platforms) and qualified using the
TapeStation D1000 ScreenTape (Agilent Technologies, Waldbronn,
Germany). Indexed libraries were then sequenced using the
NovaSeq6000 platform (Illumina, San Diego, CA, United States).

2.3 In silico profiling of kidney transcriptome
affected by BPA

2.3.1 Raw reads processing and mapping to a
reference genome

The raw high-throughput sequencing dataset retrieved from
NovaSeq 6000 was evaluated according to the quality control
standards using FastQC software version 0.11.7 (Andrews, 2010).
The paired-end reads (2 × 150 bp, type stranded) were trimmed
after the Illumina adaptors identification within the sequences and
also low-quality reads (PHRED cut-off score <20) were excluded from
downstream analysis using Trimmomatic software v. 0.38 (Bolger et al.,
2014). The 120 bp trimmed reads were mapped to the mouse reference
genome according to ENSEMBL annotation (Mus_
musculus.GRCm39), using STAR software v. 2.7.10a (Dobin et al.,
2013). Sequences aligned multiple times were not considered for
subsequent analysis. The StringTie v. 2.2.1 pipeline was incorporated
to re-evaluate the ENSEMBL annotations to obtain novel annotations of
intergenic-expressed regions (Pertea et al., 2015). The integrity of the
RNA-seq libraries was validated and clustered with the
ggplot2 Bioconductor library v. 3.3.5 of R software v. 4.1.3 (R Core
Team; https://cran.r-project.org/) (Ramos et al., 2017). Whole
transcriptome high-throughput sequencing (RNA-seq) of BPA
libraries was applied to identify expression profiles of differentially
expressed genes (DEGs), differentially expressed long non-coding RNA
(DELs) and differential alternative splicing events (DASs).

2.3.2 Detection of differentially expressed genes
and long non-coding RNAs and interaction
analyses

The differentially expressed analyses were performed for the
protein-coding transcripts. The expressed transcripts were grouped
according to the genomic localization and tagged as
transcriptionally active regions (TARs). The differentially
expressed analysis was performed by the DESeq2 tool v. 1.36.0

(Love et al., 2014), with a negative binomial generalized linear model
implemented. Only TARs whose expression modification patterns
reached the presumed binary logarithm of fold change (log2FC)
cutoff level (absolute log2FC > 1) and significance threshold
(adjusted p-value <0.05) were included in further analyses. TARs
located on the reference genome within the range of protein-coding
genes were classified as DEGs, while those occurring in regions of
long non-coding RNAs were assigned to DELs. Relationships
between DEGs and DELs were estimated by co-expression
analysis. DELs−DEGs pairs located on different chromosomes,
but showing similarity of transcriptional profiles, were
characterized as trans-interactions based on Pearson’s correlation
coefficient (absolute r value >0.9 and p-value <0.05). For cis
interactions between DEGs−DELs the FEELnc software was used
(Wucher et al., 2017).

2.3.3 Differential alternative splicing events analysis
Alternative splicing events were predicted using the rMATS tool

v. 4.1.0 (Shen et al., 2014) based on StringTie’s output files. DASs
between BPA and CTR murine groups were statistically tested and
the inclusion level difference for all splicing events was estimated.
Detected DASs were considered statistically significant with a false
discovery rate (FDR) < 0.001, and the absolute value of the
percentage of splicing inclusions difference (ΔPSI) > 0.1. All
discovered DASs were classified into five categories by rMATS:
alternative 5′ splice site (A5SS), alternative 3′ splice site (A3SS),
mutually exclusive exons (MXE), retained intron (RI) and skipping
exon (SE). DASs involved in relevant physiological processes
identified during functional analyses were visualized using the
rmats2sashimiplot Python tool v. 2.0.4 and the Circos software v.
0.69–9 (Krzywinski et al., 2009).

2.3.4 Functional annotations of DEGs, DELs and
DASs

Obtained DEGs, DELs and DASs were scanned using g:Profiler
software (Reimand et al., 2016) against Gene Ontology Consortium
(GO) (Ashburner et al., 2000; Carbon et al., 2017) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2017) annotations. The essential genes were annotated to
ontological terms within three aspects, such as biological
processes (BP), cellular components (CC), molecular functions
(MF), and also assigned to signaling and metabolic KEGG
pathways. The enrichment analysis (FDR <0.05) was applied to
uncover ontology and pathway annotations regulated by DEGs,
DELs and DASs. To obtain the kidney gene signatures, the DEGs
were also scanned according to the Human Phenotype Ontology
(HP) database following the terms representing individual
phenotypic anomalies (https://hpo.jax.org/app/; accessed on
20 December 2021). To visualize the contribution of the
identified DEGs, DELs and DASs to kidney function, those
events were highlighted in the KEGG pathways using the
Pathview v. 1.30.1 R library (Luo and Brouwer, 2013).

2.4 Real-time PCR

The mRNA content of selected genes was determined by Real-
time PCR. Primers for the selected genes were designed using
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Primer3Plus software (Untergasser et al., 2012) (ELIXIR, Hinxton,
Cambridgeshire, United Kingdom) based on the sequences listed in
Supplementary Table S1. The cDNA was obtained using the Applied
Biosystems™ High-Capacity cDNA Reverse Transcription Kit
(Thermo Fisher Scientific, Vilnius, Lithuania) according to the
manufacturer’s protocol. Real-time PCR was performed using the
Applied Biosystems™ PowerUp™ SYBR™ Green Master Mix
(Thermo Fisher Scientific, Vilnius, Lithuania) according to the
manufacturer’s protocol on the QuantStudio™ 3 Real-Time PCR
System (Applied Biosystems™, Thermo Fisher Scientific Inc.,
Waltham, MA, United States). Briefly, each reaction contained
5 μL of master mix (2X), forward and reverse primers at
1,000 nM each, 10 ng of cDNA, and an appropriate volume of
nuclease-free water to a final volume of 10 μL. Reactions were
performed in four technical replicates for each biological sample.
Expression of each gene was calculated using the comparative Pfaffl
method (Pfaffl, 2001), in which expression of the gene of interest in
treated samples is represented as a fold change compared with
control samples and normalized to endogenous reference genes
(UBC, GenBank NM_019639.4 and ACTB GenBank NM_
007393.3) (relative quantification RQ = 1). Results were
expressed as means of biological replicates ± standard deviations.
Statistical analysis was performed using Student’s t-test (two-sided
test) in Prism 8 software (GraphPad Software Inc., San Diego, CA,
United States). p values # 0.05 were considered statistically
significant when #0.0332 (*), #0.0021 (**), #0.0002 (***), and
#0.0001 (****).

3 Results

3.1 Kidney transcriptomic statistics and the
abundance of expression profiles

After sequencing, 753,323,838 raw reads were obtained, globally
(Supplementary Table S2). The filtration procedure removed
114,924,754 reads with a low-quality score and the trimming
procedure clipped out Illumina adaptor sequences. The surviving
638,399,084 paired-end reads were mapped to the Mus musculus
reference genome. The results of the mapping process were applied
to the identification of the DEGs and DAS events. Uniquely mapped
reads contained an average of 82.89% out of all processed sequences.
According to the gene structure, 58.88% of paired-end reads’
nucleotides were aligned to the coding sequence (CDS), 37.88%
to the untranslated regions (UTR), 2.98% to the intronic sequences,
and 2.26% to the intergenic localizations. The transcriptomic data
from this study have been submitted to the European Nucleotide
Archive under accession No. PRJEB59035.

3.2 Transcriptomic differences in the kidney
under BPA influence

Screening RNA-seq data for differential gene expression analysis
revealed that the kidney transcriptome affected by BPA was
associated with 16,551 differentially expressed TARs. Among
them, 433 TARs were classified as DEGs, which encoded protein
sequences (Supplementary Table S3). Under the BPA influence,

232 DEGs were upregulated and 201 downregulated. Estimated
log2FC values of DEGs ranged from 7.63 (SULT2A2) to −10.55
(TMEM26). The deep transcriptome analysis revealed 95 DELs
under BPA influence, within which 43 were upregulated and
52 downregulated. Computed DELs’ log2FC values ranged from
3.34 (D630033O11Rik) to −8.75 (Gm27028). According to the
ENSEMBL, the most frequent biotypes of identified long-
noncoding RNAs were: antisense RNA (28 DELs) and lincRNA
(17 DELs).

The co-expression analysis revealed 1249 DEGs−DELs trans-
interactions. Identified events showed the mediation of 74 DELs in
the regulation of 176 DEGs (assuming a strong Pearson’s
correlation; Supplementary Table S4). The majority of
DEGs−DELs trans-actions (1244) were positively correlated,
although only 5 showed a negative correlation of expression
(involving 4 DEGs: CALHM6, S100A4, TNNT1 and ZC3HAV1L).
The expression profiles of all DEGs and DELs were presented in a
volcano plot (Figure 1) and a heatmap supplemented with trans-
interactions information (Figure 2). Moreover, 80 correlation pairs
(DEGs−DELs) located in the same chromosomes have been
identified and none of the DELs were localized in the vicinity
(10,000 bp) of DEGs.

3.3 Transcriptomic alternative splicing
signatures of BPA-treated kidney

The applied procedure, incorporating rMATS software, allowed
the detection of 65,673 alternative splicing events, including
383 DASs resulting from the comparison of BPA vs. CTR
samples (Figure 3). Among all detected DASs, 50 were classified
as A5SS, 53 as A3SS, 8 as MXE, 207 as RI, and 65 as SE (Figure 4).
Calculated ΔPSI values ranged from 0.54 (A3SS within EBF1 gene)
to −0.57 (RI within Gm41792 lncRNA). All disclosed DASs were
localized within 289 protein-coding genes and 12 lncRNA-coding
regions. Alternative splicing events were discovered in the 12 DEGs:
ANKRD24 (SE), CLASRP (RI), FUBP1 (RI), GUK1 (RI), HDAC7
(RI), IL15RA (A5SS and A3SS), RPL13A (RI), TET2 (A3SS and RI),
ZKSCAN3 (RI); and 3 DELs: Gm15860 (SE), C030005K06Rik
(A3SS), 5031425E22Rik (A3SS). Selected events of alternative
splicing occurring within HSF1 (RI), MCFD2 (SE) and SON
(A3SS) genes are visualized in Figure 5, while all identified cases
are summarized in Supplementary Table S5.

3.4 Gene ontology networks and pathway
signaling analysis of DEGs, DELs and DASs

Gene ontology (GO) enrichment analysis reflected the
functional annotations of the identified TARs engaged in kidney
activity under BPA impact. The 382 unique DEGs were assigned to
functional GO annotations grouped into 36 BP, 5 MF and 49 CC
categories (Supplementary Table S6). The GO gene annotation,
enriched in BP ontological processes in BPA-affected kidneys,
revealed DEGs within terms such as “Oxidative
phosphorylation”, “Mitochondrial ATP synthesis coupled electron
transport”, “Aerobic respiration”, “Aerobic electron transport
chain”, “Mitochondrial respiratory chain complex assembly”,
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“Mitochondrion organization”, “Ribosomal Small Subunit
Biogenesis”, “Ribosomal Small Subunit Assembly”, “Ribosome
Assembly” or “Ribosome Biogenesis”. In the MF category, the
DEGs were engaged in the processes involved for example in the
“Structural Constituent of Ribosome”, while the CC category
grouping revealed that BPA-modulated mRNAs were involved
mainly in ribosome organization and function (for instance
“Cytosolic large ribosomal subunit” or “Large Ribosomal
Subunit”) as well as “Oxidative phosphorylation” (i.a.
“Oxidoreductase complex”, “Mitochondrial respiratory chain
complex I″, “NADH dehydrogenase complex”). The
comprehensive GO enrichment classification was summarised in
Figures 6A, B.

In the signaling pathway analysis, 11 KEGG pathways were
identified for the kidney’s mRNAs modulated by BPA
(Supplementary Table S6). Among the signalling and metabolic
pathways, 17 DEGs enriched “Oxidative phosphorylation” (KEGG:
00190; Figure 7), 17 DEGs were found in the “Chemical
carcinogenesis - reactive oxygen species” pathway (KEGG:
005208; Supplementary Figure S1), 16 DEGs were revealed in the
“Parkinson disease” KEGG: 05012, Supplementary Figure S2), and
19 in the “Alzheimer disease” (KEGG: 05010; Supplementary Figure
S3). The “Ribosome” (KEGG: 03010; Supplementary Figure S4)
pathway mapped 33 DEGs, linked mostly to ribosomal protein (RP)
engaged in self-assembly of ribosomes.

The 301 DASs-biased genes were assigned to functional GO
annotations grouped into 39 BP terms, 20 MF and 16 CC categories

(Supplementary Table S7, Supplementary Figure S5). Some of the
DASs were also entangled in the most important KEGG pathways
revealed in the BPA-treated samples (Supplementary Figure S6).
Within DASs genes, there were transcripts linked directly with the
function and structure of the kidney. One discovered DAS gene
(DVL1) was a component of the Wnt signaling in kidney disease.
Changes in expression of alternative splicing profiles of DVL1 and
others (INPP5E, NDUFAF3, ARVCF, NEK8, FANCE, BUD23,
MCFD2, MKS1, METTL27, SON, FANCL, KAT6A, and DNA2)
according to GO-derived data cause the potential “abnormality of
the kidney”. The HSF1 and SIRT2 take part in the response to
oxidative stress. The other interesting alternatively spliced genes
were engaged in chemical carcinogenesis (ARAF), chronic kidney
disease (NEK8) and kidney development (CNTRL, TET2, NLE1).

3.5 Validation of the results

The genes for validation were selected following the assessment
of the expression values and read’s distribution within samples.
Statistical analysis using the Pfaffl method proved the significant
changes in the expression levels of 13 genes compared with the
control (Supplementary Figure S7). The results showed that six
genes (ERC1, APOA1, S100A8, HAMP2, SULT2A1 and SULT2A2)
were upregulated and seven (PEG3, AKT3, COL19A1, GPLD1,
CEP350, PEAK1, and ATM) were downregulated. The expression
profiles of all validated genes determined by Real-time PCR were

FIGURE 1
Expression profiles overview of kidney differentially expressed transcriptionally active regions (TARs) under BPA influence. Volcano plot with binary
logarithmic values of fold change (log2FC; X-axis) plotted against negative logarithmic adjusted p-values (-log10 (p-value); Y-axis). The dotted horizontal
line indicates a negative logarithmic adjusted p-value cut-off (0.05).
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similar to those obtained in the sequencing experiment. The
analyzed results revealed that 7 of the validated DEGs had 14
(PEG3), 6 (ERC1), 2 (CEP350, HAMP2, SULT2A1) or 1 (ATM,
S100A8) positive correlations with DELs expression (Supplementary
Figure S8).

4 Discussion

The existing data indicate that BPA should be considered as a
factor capable of inducing distinct effects on kidneys. Although it
has been known, that its high concentration in the blood increases

FIGURE 2
Circular heatmap visualization of differentially expressed genes (DEGs) and long non-coding RNAs (DELs) in BPA-affected and CTR-control libraries.
The 12 upper tracks visualize the normalized (Z-score) expressions for DEGs in each biological replicate. The large part of the circle (green-red) depicts
DEGs and the smaller part (blue-yellow) describes DELs. The inner track shows the correlation links between the co-expressed DEGs and DELs, whereas
blue links depict positive (>0.9) and yellow negative (<-0.9) Pearson’s correlation.
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the risk of kidney damage (Hu et al., 2016), the precise molecular
pathomechanisms exerted by BPA on the kidney have not been fully
discovered. The results of our study revealed that BPA induces a
significant impact on kidneys at the transcriptomic level. The gene
expression profiling of organs taken from the control and BPA-
treated mice revealed 433 DEGs (including 201 downregulated and
232 upregulated), and profound changes have been observed in
several essential processes such as mitochondrial and ribosome
function, oxidative phosphorylation and chemical carcinogenesis
induced by reactive oxygen species.

Furthermore, this project examined also the relationship between
several genes within the identified pathways and genes with alternative
splicing bias, exposed by DASs, for instance within genes assigned to
abnormalities of the kidney, such as Inositol Polyphosphate-5-
Phosphatase E (INPP5E), Dishevelled Segment Polarity Protein 1
(DVL1), ARVCF Delta Catenin Family Member (ARVCF), NIMA
Related Kinase 8 (NEK8) or SON DNA and RNA Binding Protein
(SON) (Walter et al., 2009; Zalli et al., 2012; Hakim et al., 2016; Sharifian
et al., 2018; Kim et al., 2019).

It has been found, that BPA excreted by the kidneys can
contribute to progressive, cumulative kidney damage throughout
life, caused by oxidative stress and mitochondrial dysfunction
(Kobroob et al., 2018). Kidneys are highly susceptible to reactive
oxygen species (ROS) damage due to the abundance of long-chain
polyunsaturated fatty acids in renal lipids. It has been observed, that

5 weeks long exposure to a low dose (50 mg/kg) of BPA in rats leads
to apparent renal dysfunction manifested by glomeruli impairment,
mitochondrial swelling, and increased ROS production. Moreover,
the high dose of BPA (150 mg/kg) causes sclerosis of the glomeruli,
atrophy, and damage to the basal membrane, and many of these
pathological changes are caused via oxidative stress mechanisms
(Kobroob et al., 2018). The results of the present study confirm
previous findings, as many of the molecular changes induced by
BPA in renal tissue were associated with the mitochondrial oxidative
phosphorylation (OXPHOS) process, implying that the imbalance
between the production and accumulation of ROS is one of the main
mechanisms induced by BPA in kidneys. In the BPA-treated
samples, altered gene expression has been identified in “Oxidative
phosphorylation” KEGG pathway. Additionally, the essential genes
were annotated to ontological terms within BP ontological terms,
such as: “Oxidative phosphorylation”, “Mitochondrial ATP
synthesis coupled electron transport”, “Mitochondrial ATP
synthesis coupled electron transport”, “Aerobic respiration”,
“Aerobic electron transport chain”, “Mitochondrial respiratory
chain complex assembly” or “Mitochondrion organization”.
Further, the present data revealed two alternatively spliced genes,
namely Sirtuin 2 (SIRT2) and Heat Shock Transcription Factor 1
(HSF1) entangled in response to oxidative stress, encoding factors
that are activated for instance in kidney damage (Lou et al., 2019;
Ogura et al., 2021).

FIGURE 3
Volcano plot showing the percentage of splicing inclusions difference (ΔPSI) against the statistical significance (-log10FDR) of DASs identified within
genes of murine BPA-affected kidneys vs. control samples. The dashed lines indicate the applied cut-off thresholds, described in the text.

Frontiers in Molecular Biosciences frontiersin.org07

Wiszpolska et al. 10.3389/fmolb.2023.1260716

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1260716


Since OXPHOS generates ATP for mammalian cells, it is not
surprising that an inadequate mitochondrial energy supply can
cause deleterious dysfunctions in organs that require a great deal

of energy (Bhargava and Schnellmann, 2017). The kidneys demand a
significant number of efficient mitochondria to fulfil their functions,
i.e. to eliminate waste products and to control fluid and electrolyte

FIGURE 4
Circular visualization of differentially alternative splicing events (DASs) occurring after BPA treatment. The five-scale color heatmaps (outer track)
represent percentage inclusion values (PSI) in experimental (BPA) and control (CTR) samples. The middle track shows dPSI values (red–higher inclusion
level in BPA, blue–higher inclusion level in CTR). Color links join common genes withmore than oneDAS classified in different types of alternative splicing
events.

Frontiers in Molecular Biosciences frontiersin.org08

Wiszpolska et al. 10.3389/fmolb.2023.1260716

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1260716


balance. Consequently, renal mitochondrial impairment results in
disturbances in ATP production and thus influences cellular
structure (Bhargava and Schnellmann, 2017). OXPHOS consists
of five multi-subunit enzymes called complexes I - V. Electrons are
transferred across complexes I - IV in conjunction with proton
transfer through the inner membrane. By converting
electrochemical potential into ATP by H+-ATP synthase, it is
translated into chemical energy (Kontro et al., 2015). The results
of the present study revealed that BPA administration was followed
by upregulated expression of genes associated with complexes I, III,
IV and V of the “Oxidative phosphorylation” pathway. Most of the
DEGs associated with this pathway are engaged in the coding of
subunits of complex I (NADH: ubiquinone oxidoreductase) and
complex IV - cytochrome c oxidase (COX). Considering genes
related to subunits of complex I, the present study uncovered
upregulation of five genes, namely: NADH-Ubiquinone
Oxidoreductase MLRQ Subunit (NDUFA4), Ubiquinone
Oxidoreductase Subunit C (NDUFC2), Ubiquinone
Oxidoreductase Subunit A7 (NDUFA7), Ubiquinone
Oxidoreductase Subunit B4 (NDUFB4) and Ubiquinone
Oxidoreductase Subunit B8 (NDUFB8). Complex I, located in the
inner mitochondrial membrane, is crucial for respiration in many
aerobic organisms and controls oxidative phosphorylation and
mitochondrial respiration (De Paepe et al., 2012). Among its
function, it oxidizes NADH from the tricarboxylic acid cycle,
assists in the reduction of ubiquinone, and transports protons
across the inner membrane. In addition, it is a major contributor
to the production of ROS within cells (Vinothkumar et al., 2014).
Our research revealed also the upregulation of S100 Calcium
Binding Protein A8 (S100A8) encoding a molecule that is mainly
found in calprotectin form (S100A8/S100A). The overexpression of
S100A8 leads to mitochondrial complex I inhibition and causes
mitochondrial dysfunction (Li et al., 2019). Moreover, the present
study revealed, that several genes upregulated in the BPA-treated
kidney samples, namely: Mitochondrially Encoded Cytochrome C
Oxidase III (COX3 also known MT-CO3), Cytochrome C Oxidase
Subunit 7A (COX7A), Cytochrome C Oxidase Subunit 7B (COX7B)
and Cytochrome C Oxidase Subunit 7C (COX7C), were associated
with complex IV of OXPHOS. COX is a component of the
mitochondrial respiratory chain, responsible for transferring
electrons from reduced cytochrome c to molecular oxygen. It has
been found, that COX deficiency leads to severe mitochondrial
disorders (Kogot-Levin et al., 2016). Researchers observed that
decreased COX activity in human fibroblasts results in
compromised ATP synthesis, reactive oxygen species
overproduction, and abnormal mitochondrial morphology (De
Paepe et al., 2012). Additionally, COX dysfunctions and age-
related inactivity have been reported in Alzheimer’s and
Parkinson’s diseases (Kogot-Levin et al., 2016).

Interestingly, the overexpressed genes encoding subunits of
complex I, III-V of the OXPHOS have been assigned also to
other KEGG pathways identified in the BPA-treated kidneys,
including “Chemical carcinogenesis - reactive oxygen species”.
Therefore, the present results confirm the available data
suggesting that BPA exposure may increase the risk of cancer
incidence (Brandt et al., 2014). Moreover, it has been revealed

FIGURE 5
Sashimi plot visualizing the detected coverage of RNA-Seq reads
on the reference genome and the average values of reads combining
distant genome fragments (black blocks underneath the graphs) in
CTR and BPA groups. Displayed fragments of (A) HSF1, (B)
MCFD2 and (C) SON genes were classified as statistically significant
differentiated alternative splicing events.
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that BPA can also induce resistance in many types of cancer cells to
chemotherapeutics such as doxorubicin, cisplatin, carboplatin and
tamoxifen (Hafezi and Abdel-Rahman, 2019). The present study
revealed in BPA-treated samples several DEGs which potentially
may contribute to the carcinogenic potential of BPA, for instance,
the underexpression of Paternally Expressed 3 (PEG3). It has been
previously found, that the PEG3 expression is significantly reduced
in renal clear cell carcinoma (ccRCC) compared to non-tumor renal
tissue, and in vitro studies have shown that knockout of PEG3 causes
acceleration of ccRCC proliferation. Findings suggest that PEG3 is
indispensable for the regulation of ccRCC progression (Qiu et al.,
2023). Another DEG associated with cancer revealed in BPA-treated
tissues is Apolipoprotein A1 (APOA1). APOA1 plays a crucial part
in lipid metabolism, however, by regulating cholesterol export and
dampening COX-2 expression, APOA1 overexpression could curb
the malignancy of cancer (Zeng et al., 2022). Furthermore, our
research has shown underexpression of genes associated with tumor
formation and cancer cell migration, including AKT Serine/
Threonine Kinase 3 (AKT3), Serine/Threonine Kinase (ATM)
and Pseudopodium Enriched Atypical Kinase 1 (PEAK1) gene
(Bristow et al., 2013; Weber and Ryan, 2015; Grottke et al., 2016).

Considering our results, the carcinogenic effect of BPA is exerted
mainly by the disturbances in OXPHOS and ROS production
processes, not surprisingly, as accumulating ROS is reported to
play a crucial role in signal transduction, cell differentiation and
proliferation, leading to activation of oncogenic pathways (Hafezi

and Abdel-Rahman, 2019). It is also well known that oxidative stress
causes deleterious modifications of DNA (including gene mutations
and altered gene expression) leading to tumor development (Franco
et al., 2008). It should be also mentioned, that BPA administration
was followed by overexpression of Lactoperoxidase (LPO), assigned
to the “Chemical carcinogenesis - reactive oxygen species” pathway.
This gene encodes a member of the peroxidase family of proteins
which participate in the generation of the antimicrobial substance
hypothiocyanous acid (Nichol et al., 1987). However, it has been also
revealed that LPO has mutagenic and carcinogenic action through
its capacity to generate free radicals (Jahanbakhsh et al., 2020).
Moreover, it has been found that LPO is engaged in breast cancer
etiology due to its ability to activate heterocyclic amines belonging to
environmental and dietary carcinogens (Sheikh et al., 2017). Thus
the upregulation of LPO, together with OXPHOS imbalance,
observed after BPA-treatment, may contribute to the increased
risk of kidney cancer development. Furthermore, the “Chemical
carcinogenesis - reactive oxygen species” pathway was also exposed
by alternatively spliced A-Raf Proto-Oncogene, Serine/Threonine
Kinase (ARAF, also known as RAF). This gene encodes Raf family
kinases involved in the Ras-Raf-MAPK pathway participating in cell
cycle regulation, proliferation and differentiation, survival and
apoptosis. ARAF alteration is a common indicator in cancer and
contributes to tumor initiation, progression and metastasis (Leicht
et al., 2007). Furthermore, ARAF is altered in renal cell carcinoma
patients (AACR Project GENIE Consortium, 2017).

FIGURE 6
Gene Ontology (GO) enrichment dot-plot (A) of abundances (size of dots) and significance (color of dots) of the top GO terms. (B) Circos-plot
relationship of differentially expressed genes (DEGs) engaged in kidney function under BPA influence significantly associated with four selected GO
enriched terms. Gene symbols with logarithmic values (blue-red scale) of fold change (log2FC) are located on the left side of the circos. Color linksmerge
genes with the GO terms (cytoplasmic translation, oxidative phosphorylation, electron transport chain and cellular respiration) on the right side.
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Surprisingly, although the present study focused on the influence of
BPA on renal tissue, bioinformatics resources disclosed a collection of
DEGs annotated in two KEGG pathways “Alzheimer’s disease” and
“Parkinson’s disease”. Of course, we are aware of the fact that these two
diseases affect neurons within the brain. However, it cannot be excluded
that similar KEGG signaling interactionsmay be triggered in the central
nervous system, especially since the interconnection between kidney
impairment and increased risk of the above-mentioned mental diseases
has been previously discovered for instance in patients suffering from
Chronic Kidney Disease (CKD) (Zhang et al., 2020). The main cause of
CKD is a bad lifestyle which leads to obesity, diabetes and hypertension.
Moreover, increased blood levels of BPA have been observed in patients
suffering from this disease (Krieter et al., 2013). The observation of
altered gene expression in KEGG pathways associated with both
Alzheimer’s and Parkinson’s in BPA samples is highly alarming.
Considering that most energy comes from oxidative
phosphorylation, brain tissue is highly susceptible to ROS. It has
been revealed that BPA affects the blood-brain barrier, and its
increased plasma levels exert neurotoxicity and neuroinflammation
by enhancing oxidative stress (Engin and Engin, 2021). Moreover, this
effect may be accelerated by the fact that BPA, by impairing glomerular

filtration, may lead to the decreased renal elimination of this substance
and thus further increase in blood concentration. Due to the present
findings, the main pathomechanism exerted by BPA associated with
these two diseases is again connected with disturbances in OXPHOS.

In BPA-treated kidneys, the present study revealed modified DEGs
enriched in the “Ribosome” KEGG pathway. Furthermore, several
altered genes associated with ribosome function were annotated to
ontological terms within processes including MF (“Structural
Constituent of Ribosome”), BP (“Ribosomal Small Subunit
Biogenesis”, “Ribosomal Small Subunit Assembly”, “Ribosome
assembly”, “Ribosome Biogenesis”) and CC (“Cytosolic large
ribosomal subunit”, “Large Ribosomal Subunit”). Ribosomal proteins
(RP) are themain components of ribosomes and are essential for proper
cell growth and maintenance (Dai and Wei, 2017). Our research
revealed upregulation of several genes coding RP related to large
subunit (RPL), such as RPLP1, RPL9, RPL11, RPL12, RPL13A,
RPL17, RPL22, RPL31, RPL32, RPL34, RPL35, RPL35A, RPL36,
RPL36A, RPL36A-PS1, RPL39, and RPL41. A variety of physiological
and pathological cellular activities, including protein synthesis, cell
proliferation, DNA repair and tumorigenesis are regulated by RP
(Fan et al., 2017). Thus the altered expression of these genes may

FIGURE 7
Enrichment Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes (DEGs) engaged in “Oxidative
phosphorylation” signaling pathway induced in the kidney after BPA exposure. Red rectangles represent upregulated genes. Logarithmic fold change
(log2FC) red-green scale describes gene expression values.
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again lead to the impairment of kidney function and enhanced
carcinogenesis.

5 Study limitations and future work

Themain goal of this studywas to perform an analysis of the kidney
transcriptome and define changes in the expression profile caused by
the influence of BPA. The obtained results constitute the basis for the
selection of significant genes and enriched pathways that should next be
evaluated functionally, however, this remains beyond the purpose of the
current research and should be determined in the future. In the current
manuscript, we focused on the description of the DEGs and the co-
expression analysis performed to reveal DEGs−DELs trans-interactions.
As described in the manuscript, identified events showed the mediation
of 74 DELs in the regulation of 176DEGs. Themajority of DEGs−DELs
trans-actions were positively correlated, and only 5 showed a negative
correlation of expression. Moreover, the analyzed results revealed that
among the validated DEGs 7 had 14 (PEG3), 6 (ERC1), 2 (CEP350,
HAMP2, SULT2A1) or 1 (ATM, S100A8) positive correlations with
DELs expression. Such an approach has been selected as lncRNA is
emerging as equally important to DEGs and it is intended to fully
analyze possessed data in terms of lncRNA and present it in a separate
research. During DEGs−DELs interaction analyses, cis-actions have
been also examined based on the colocalization of genes encoding these
molecules. Unfortunately, a procedure that has been usedmany times in
our previous studies (Majewska et al., 2018; Paukszto et al., 2020;
Makowczenko et al., 2022; Makowczenko et al., 2023), did not reveal
any significant cis-interactions in the current research. 80 correlation
pairs (DELs and DEGs) located in the same chromosomes have been
identified and none of the DELs were localized in the vicinity
(10,000 bp) of DEGs. Due to the lack of conclusive results, this
section of bioinformatics analyses was omitted.

6 Conclusion

To the best of our knowledge, this is the first study concerning the
thorough investigation of the changes in the gene expression profiling,
posttranscriptional modifications and pathway analysis of kidneys after
oral exposure to BPA inmice. BPA is used globally in the production of
polycarbonate plastics, which is why the main exposure to BPA comes
from food and water primarily due to the direct contact with food
containers and other materials used in the course of production,
handling, and transportation. BPA can disturb the homeostasis of
the human endocrine system, resulting in reproductive and
developmental dysfunctions. Moreover, BPA enhances cancer
development, triggers obesity, and causes respiratory tract disorders.
Which is a serious problem, is that the obtained results indicate that
BPA exposure causes profound changes in several critical processes,
including oxidative phosphorylation, mitochondrial and ribosome
function, and chemical carcinogenesis induced by reactive oxygen
species. Moreover, evidence from this study indicates the altered
gene expression in functional pathways associated with both
Alzheimer’s and Parkinson’s diseases. The transcriptomic findings of
this research shed light on how BPA affects kidney function and
broadens the potential target points for clinical interventions.
Therefore, we hope that this research lays the groundwork for

studies and clinical trials regarding the possible effect of BPA on
other organ dysfunctions.
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