
Deciphering Treg cell roles in
esophageal squamous cell
carcinoma: a comprehensive
prognostic and
immunotherapeutic analysis

Pengpeng Zhang1,2†, Shiyang Dong3†, Wei Sun4†, Wan Zhong5†,
Jingwen Xiong6, Xiangjin Gong6, Jun Li2*, Haoran Lin2* and
Yu Zhuang7,8*
1Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin,
China, 2Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University,
Nanjing, China, 3Department of General Surgery, Fuyang Tumour Hospital, Fuyang, China, 4Department
of Thoracic Surgery, The Second Hospital of Nanjing, Nanjing, China, 5Department of General Surgery,
The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China, 6Department of Sports
Rehabilitation, Southwest Medical University, Luzhou, China, 7Department of Thoracic Surgery, Nanjing
Chest Hospital, Nanjing, China, 8Afliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing,
China

Background: Esophageal squamous cell carcinoma (ESCC) is a prevalent and
aggressive form of cancer that poses significant challenges in terms of prognosis
and treatment. Regulatory T cells (Treg cells) have gained attention due to their
influential role in immune modulation within the tumor microenvironment (TME).
Understanding the intricate interactions between Treg cells and the tumor
microenvironment is essential for unraveling the mechanisms underlying ESCC
progression and for developing effective prognostic models and
immunotherapeutic strategies.

Methods: A combination of single-cell RNA sequencing (scRNA-seq) and bulk
RNA-seq analysis was utilized to explore the role of Treg cells within the TME of
ESCC. The accuracy and applicability of the prognostic model were assessed
through multi-dimensional evaluations, encompassing an examination of the
model’s performance across various dimensions, such as the mutation
landscape, clinical relevance, enrichment analysis, and potential implications
for immunotherapy strategies.

Results: The pivotal role of the macrophage migration inhibitory factor (MIF)
signaling pathway within the ESCC TME was investigated, with a focus on its
impact on Treg cells and other subpopulations. Through comprehensive
integration of bulk sequencing data, a Treg-associated signature (TAS) was
constructed, revealing that ESCC patients with elevated TAS (referred to as
high-TAS individuals) experienced significantly improved prognoses.
Heightened immune infiltration and increased expression of immune
checkpoint markers were observed in high-TAS specimens. The model’s
validity was established through the IMvigor210 dataset, demonstrating its
robustness in predicting prognosis and responsiveness to immunotherapy.
Heightened therapeutic benefits were observed in immune-based
interventions for high-TAS ESCC patients. Noteworthy differences in pathway
enrichment patterns emerged between high and low-TAS cohorts, highlighting
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potential avenues for therapeutic exploration. Furthermore, the clinical relevance
of keymodel genes was substantiated by analyzing clinical samples from ten paired
tumor and adjacent tissues, revealing differential expression levels.

Conclusion: The study established a TAS that enables accurate prediction of patient
prognosis and responsiveness to immunotherapy. This achievement holds
significant implications for the clinical management of ESCC, offering valuable
insights for informed therapeutic interventions.
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1 Introduction

Esophageal squamous cell carcinoma (ESCC) represents a
pressing global health challenge, characterized by its alarming
mortality rates and intricate tumor microenvironment (TME).
Recent years have witnessed both advances in treatment
strategies and the emergence of immunotherapeutic
interventions, casting a hopeful light on ESCC management
(Yamamoto and Kato, 2022). Immunotherapy, in particular, has
garnered significant attention, offering novel avenues for therapeutic
exploration. However, a comprehensive understanding of the TME,
specifically the intricate involvement of regulatory T (Treg) cells,
remains pivotal for optimizing immunotherapy and devising
prognostic tools (Zou, , 2006).

In recent years, the mortality rates associated with ESCC have
posed significant challenges within the realm of oncology. Despite
incremental improvements in therapeutic strategies, ESCCmortality
remains distressingly high. The pursuit of novel treatment avenues
has culminated in the emergence of immunotherapy, presenting a
promising approach to addressing this clinical conundrum (Ozer
and Sahin, 2022). Immunotherapy has transformed the landscape of
ESCC treatment, shifting the focus from conventional modalities
towards harnessing the power of the immune system. Immune
checkpoint blockade, particularly targeting programmed cell
death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1)
interactions, has shown encouraging efficacy in subsets of ESCC
patients (Markar, 2022). These therapies unleash the immune
system’s potential to recognize and eliminate malignant cells,
offering prospects of prolonged survival and improved quality of
life. The intricate TME of ESCC is characterized by multifaceted
interactions between malignant cells and the surrounding stromal
and immune components. Stromal cells, immune infiltrates,
cytokines, and extracellular matrix constituents interplay to shape
tumor progression, invasion, and therapy resistance. A
comprehensive comprehension of this complex milieu is essential
for devising tailored therapeutic interventions. Central to the
intricate TME of ESCC are Treg cells, which play a dual role in
immune homeostasis and suppression. In the context of ESCC, Treg
cells create an immunosuppressive niche that fosters tumor immune
evasion and growth (Yue et al., 2020). As immunotherapy gains
prominence, understanding the interplay between Treg cells and the
immune response becomes crucial for circumventing immune
resistance and enhancing treatment outcomes.

In pursuit of personalized and precise therapeutics, the
integration of scRNA-seq with bulk RNA-seq analysis holds
immense potential. By dissecting the heterogeneity of TME

cellular constituents, including Treg cells, a comprehensive
understanding of their functional diversity and impact on
treatment response can be attained. Constructing a Treg-
associated signature (TAS) through this integrative approach
offers a promising avenue for predicting patient prognosis and
stratifying individuals likely to benefit from immunotherapy.

2 Methods

2.1 Dataset source

The utilization of the Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/) facilitated the acquisition of bulk
RNA-seq data, mutation data, and clinical characteristics
pertaining to patients diagnosed with ESCC. From the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/), a scRNA-seq dataset (GSE188900) encompassing
tissues from 6 ESCC patients (Pan et al., 2022), comprising
7 surgically resected tumor tissue samples and 1 normal tissue
sample, was obtained. Inclusion of external validation cohorts
(GSE53624, iMvigor 210) in the analysis was also undertaken. To
ensure uniformity and comparability of data, the expression data
was converted into the transcripts per million (TPM) format.
Mitigation of any potential batch effects was performed using the
“combat” function within the “sva” R package (Zhang et al., 2020).
Furthermore, the TCGA database supplied bulk sequencing data,
mutation data, and clinical details of ESCC patients. All of which
were log2-transformed to attain a standardized data format prior to
commencement of the analysis.

2.2 scRNA-seq data analysis

The initial steps of cell clustering and dimension reduction were
carried out employing the R package “Seurat” (Cao et al., 2022;
Zhang et al., 2023). Cells were excluded if their gene expression
encompassed over 5,000 genes or fewer than 300 genes, or if the
proportion of unique molecular identifiers (UMIs) originating from
the mitochondrial genome surpassed 10%. The dataset’s
dimensionality underwent reduction through the application of
principal component analysis (PCA) to the subset of variably
expressed genes (Ren et al., 2023; Wang et al., 2023). Following
this, cluster analysis was executed via utilization of the
“FindClusters” function, considering the top 20 PCA
components. After iterative adjustments, a resolution of 0.8 was
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designated to enhance the distinction among subgroups effectively.
Subsequent annotation of the resultant two-dimensional
representation of cell clusters was performed using canonical
marker genes, enabling the identification of established biological
cell types. To ascertain the marker genes associated with cell clusters,
the Seurat “FindAllMarkers” function was harnessed to conduct
comparisons between cells within a specific cluster and cells
encompassing all other clusters. For the inference of
communication networks between cell subpopulations, the
“cellchat” R package (Jin et al., 2021) was employed (Liu et al., 2023).

2.3 Building a high-performance TAS

Prognostic key genes were identified through the
implementation of univariate Cox regression and lasso regression
analyses (Cui et al., 2023). Subsequent to this, a refinement process
was executed to select the genes and ascertain their corresponding
coefficients utilizing multivariate Cox regression. The risk score
calculation for patients diagnosed with ESCC was conducted
according to the subsequent formula: Risk score =
∑n

k�1Coef k × Expr k, wherein Coef_k represents the
abbreviation for regression coefficients, and Expr_k signifies the
expression level of prognostic model genes. The computation of the
risk score was extended to the ESCC patients present within the
dataset, resulting in their stratification into high- and low-TAS
groups based on the median risk score. The evaluation of the
model’s predictive efficacy was carried out by employing receiver
operating characteristic (ROC) curves, with an area under the curve
(AUC) value surpassing 0.65 indicative of exceptional performance.
Additionally, the utilization of PCA facilitated the visual
representation of the distribution of patients across distinct risk
groups.

2.4 Clinical correlation

We integrated clinical features, risk stratification, and gene
expression levels into our analysis, employing the “pheatmap”
package to craft informative heatmaps. Subsequently, we
grouped patients according to their clinical attributes,
aiming to explore potential associations between clinical
characteristics and the stability of our model. This approach
allows us to comprehensively assess how clinical factors may
impact the robustness and reliability of our model. By doing so,
we gain valuable insights into the potential real-world
applicability and generalizability of our findings in different
clinical contexts.

2.5 Enrichment analysis

We employed GSVA, a non-parametric method, to deduce
the activity levels of biological pathways or gene sets across
individual samples. GSVA leverages the complete expression
profile of each sample, comparing it against predefined gene sets
to quantify the enrichment of specific pathways. This approach
offers a holistic perspective on variations in pathway activity

within our dataset (Subramanian et al., 2005). In parallel, we
utilized GSEA, a widely recognized enrichment analysis tool, to
assess whether predefined gene sets displayed statistically
significant differences in their expression patterns between
two predefined biological states. GSEA achieves this by
ranking genes based on their expression changes across
various conditions and then evaluating the enrichment of
gene sets within these ranked lists. Consequently, GSEA
unveils pertinent biological pathways associated with the
specific experimental or clinical context under investigation.
By combining GSVA and GSEA, we facilitated a more in-depth
exploration of pathway activities and their biological
significance within our dataset. This synergistic approach
enhanced our comprehension of the underlying molecular
mechanisms, shedding light on potential implications for the
phenomenon under study.

2.6 Mutation analysis

Through utilization of the “maftools” R package (Mayakonda
et al., 2018), an in-depth examination was conducted concerning the
frequency and distribution of somatic mutations spanning diverse
genes. This analytical endeavor facilitated the identification of genes
exhibiting noteworthy mutation rates, which, in turn, hold the
potential to assume pivotal roles in the pathogenesis of ESCC.
Moreover, the inherent capabilities of the package enabled the
visualization of patterns associated with mutation co-occurrence
and mutual exclusivity. This visual representation cast illuminating
insights onto plausible synergistic or antagonistic interactions
present amid distinct genetic alterations. In parallel, TCGA-ESCC
patients underwent a stratification process resulting in their
categorization into four discrete groups predicated upon both
median risk score and median tumor mutational burden (TMB).
A subsequent comparative analysis was undertaken, scrutinizing the
survival disparities among these groups based upon their respective
median risk scores and TMB values.

2.7 The TME and immunotherapy

Seven distinct immune infiltration algorithms were harnessed to
rigorously assess the immune cell composition, facilitated through
access to the comprehensive resources provided by the timer
2.0 database (http://timer.comp-genomics.org/). Employing this
approach, a comprehensive evaluation of the immune landscape
within the context of the study was achieved. Subsequently, to
convey the intricate variances in immune cell infiltration across
diverse risk groups, heatmaps were employed as an effective visual
representation, thereby elucidating the nuances within immune cell
populations. Furthermore, the quantification of immunological
scores, stromal scores, and ESTIMATE scores for patients
diagnosed with ESCC was meticulously carried out using the
specialized functionalities afforded by the “estimate” R package
(Yoshihara et al., 2013). This strategic deployment empowered a
robust assessment of the TME and its potential implications. In the
pursuit of identifying potentially efficacious chemotherapeutic
agents among the various risk groups, the predictive capabilities
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of the “oncoPredict” R package (Maeser et al., 2021) were harnessed.
By leveraging this tool, an insightful prognostication of suitable
therapeutic interventions was facilitated, contributing to a more
informed treatment strategy.

2.8 qRT-PCR

Ethical approval was secured from the Medical Ethics
Committee (No. 2SRFA-005) of the First Affiliated Hospital of
Nanjing Medical University for the procurement of tissue
specimens. These specimens, encompassing tumor tissue (T) and
precancerous tissue (N), sourced from ESCC patients who
underwent tumor resection, were diligently preserved at −80°C.
Total RNA extraction from ESCC tissues was executed
employing the TRIzol reagent, a product of Thermo Fisher
Scientific headquartered in Waltham, MA, United States. The
subsequent cDNA synthesis followed the manufacturer’s
guidelines, utilizing the RevertAid™ First Strand cDNA Synthesis
Kit, also provided by Thermo Fisher Scientific. The qRT-PCR
analysis transpired utilizing the StepOne Real-Time PCR system,
an instrument likewise manufactured by Thermo Fisher Scientific.
For amplification, the SYBRGreen PCR kit from Takara Bio in Otsu,
Japan, was employed. The quantification of relative gene expression
levels was achieved via the 2-△△CT method.

2.9 Statistical methods

We utilized R version 4.2.0 to conduct a comprehensive range of
statistical analyses and data processing procedures. To establish
statistical significance, we employed Kaplan-Meier curves for
survival analysis, complemented by the application of the log-rank
test. The “survminer” R package was instrumental in generating the
complete set of survival curves. To visually represent data and explore
patterns, we skillfully constructed informative heatmaps using the
specialized functionalities offered by the “pheatmap” R package. For
variables that followed a normal distribution, we quantified
quantitative differences through two-tailed t-tests or one-way
analysis of variance, depending on the context. In cases where the
data exhibited a non-normal distribution, we applied either the
Wilcoxon test or the Kruskal-Wallis test to assess differences. It is
essential to emphasize that all statistical analyses were conducted
within the R programming environment, adhering to a stringent
p-value threshold of less than 0.05. This threshold served as the critical
criterion for identifying and interpreting statistical significance,
ensuring the robustness of our findings.

3 Results

3.1 The analysis of scRNA profiling in ESCC

Figure 1 displays the flow chart outlining the study. The results
from the PCA analysis in Figure 2A indicate that there were no
significant alterations observed in the cell cycle. This research
involved a total of 8 samples, and Figure 2B demonstrates the
distribution of the ESCC cells within each sample. It is worth
noting that the samples were not significantly impacted by batch
effects. Utilizing the uniform manifold approximation and
projection (UMAP) dimensionality reduction algorithm, all cells
were classified into 32 more detailed clusters, as depicted in
Figure 2C. To showcase the expression of characteristic marker
genes for each cell cluster, Figure 2D presents a bubble plot.
Realistically, Figure 2E illustrates the distinctive metrics
associated with different cell types. Additionally, Figure 2F
presents the presence of 12 distinct cell types, including smooth
muscle cells, T cells, and NK cells. The proportional representation
of these 12 cell types in different samples is illustrated in Figure 2G.

3.2 Cell-cell interactions

The GSEA enrichment analysis visually depicted the enrichment
of pathways in 12 distinct cell types (Figure 3A). The GO analysis
revealed significant enrichment in essential pathways such as the
regulation of T cell activation, cell surface function, and the external
side of the plasma membrane. Additionally, the KEGG analysis
demonstrated significant enrichment in pathways including cell
adhesion molecules (cams), cytokine receptor interaction, and
hematopoietic cell lineage (Figure 3B). Within the TME, robust
cellular interactions were observed between Treg cells and several
cellular components including B cells, epithelial cells, and NK cells
(Figure 3C). These interactions play a pivotal role in immune
responses and tumor development. The findings of this study

FIGURE 1
Overall flowchart of all analyses. Integrating single-cell and bulk
transcriptome analyses for a comprehensive exploration of Treg cells
function in ESCC and building a TAS for predicting the prognosis and
immunotherapy of ESCC patients—a multi-omics analysis.
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uncovered that Treg cells can engage with B cells through the
utilization of MIF-(CD74 +CXCR4) pairs (Figure 3D). Similarly,
epithelial and plasma cells were found to communicate with Treg
cells via the MIF-(CD74 +CXCR4) pairs (Figure 3E). This indicates

that the MIF-(CD74 +CXCR4) axis serves as a critical signaling
pathway facilitating crosstalk between Treg cells and various cell
populations within the TME. Figures 3F, G illustrate the afferent and
efferent signaling pathways of the 12 cell types, with MIF identified

FIGURE 2
Flow chart of single cell analysis. (A)PCA dimensionality reduction clustering was performed according to the cell cycle related scores (G1, G2M,
S-phase scores). (B) A tSNE plot showing the distribution of cell samples from different LUAD tissues. (C) A total of 33 cell subsets were separated by
dimensionality reduction clustering. (D) Bubble plots showing the expression of marker genes corresponding to each cluster. (E) Multiple UMAP plots
showing the expression of classic cell type marker genes. (F) A tSNE plot demonstrating the distribution of different cell types. (G) A histogram
showing the variation of cell proportions between different samples.
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FIGURE 3
Cell-cell communication. (A)GSVA Enrichment Analysis: This panel depicts the enrichment of different cell subsets in the 50 hallmark gene sets. (B)
GO and KEGG Enrichment Analysis: Here, we present the results of enrichment analysis focusing on marker genes in Treg cells. (C) Interaction Intensity:
This section displays the number and intensity of interactions between different cell populations within the tumormicroenvironment (TME). (D,E) Ligand-
Receptor Pairs: These bubble plots highlight potential ligand-receptor pairs between Treg cells and other cell subpopulations in the TME. (F,G)
Signaling Pathway Strength: Heatmaps visually represent the strength of outgoing and incoming signaling pathways across various cell subpopulations.
(H,I) Role in MIF Signaling Pathway: This section outlines the roles of different cell populations in the MIF signaling pathway network within the TME. (J)
Scatter Plot: Lastly, a scatter plot showcases the distribution of different cell populations concerning the intensity of outgoing and incoming signaling
interactions.
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as the primary conduit for both types of signaling, playing a
paramount role in intercellular communication. Figure 3H
presents a hierarchical diagram showcasing the interactions
between T cells, Treg cells, and other cell populations within the
TME through typical MIF signaling pathways. The size of each circle

corresponds to the number of cells in each cell group, while the
thickness of the edges represents the probability of communication.
Figures 3I, J provide evidence that Treg cells serve as both
transmitters and receivers, actively facilitating communication
with various neighboring cells.

FIGURE 4
Construction of a stable risk model. (A,B) Sample distribution characteristics of two bulk RNA-seq cohorts before and after removal of batch effects.
(C) LASSO regression screening for significant variables affecting prognosis. (D) Forest plot showing the results of multivariate COX analysis. (E)
Distribution of coefficient values of model genes. (F) A forest plot was used to validate the constructed riskscore as an independent prognostic model. (G)
The survival differences and PCA sample distribution of different risk groups in TCGA-TRAIN, TCGA-TEST, TCGA-ALL, and GEO53624, respectively,
were presented. (H) Survival validation of the model genes. Note: # represents p < 0.05; ## represents p < 0.01; ### represents p < 0.001.
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3.3 Developing TAS model

Figures 4A, B illustrate that the two datasets employed in the
investigation, TCGA and GEO53624, underwent de-batching
procedures to mitigate any batch effects. Notably, the TCGA

cohort served as the reference for constructing the model.
Utilizing Lasso and COX regression analyses, a comprehensive
assessment led to the identification of ten marker genes
associated with Treg cells, which were subsequently utilized to
construct the Treg-associated signature (TAS). Among these

FIGURE 5
Clinical correlation analysis. (A) A heatmap was constructed by combining clinical features and model gene expression to demonstrate the
distribution of clinical features andmodel genes in high- and low-risk groups. (B–E)Bar plots showing the proportion of age group, clinical stage, T-stage,
and N-stage in the high- and low-risk groups. (F) Grouping based on clinical features to validate the impact of other clinical characteristics on the
performance of the risk model.
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genes, two were determined to be risk factors, while the remaining
eight exhibited protective characteristics (Figures 4C, D). The
corresponding coefficients of the ten model genes are visually
presented in Figure 4E.

3.4 Assessing the performance of TAS

The calculation of the risk score for each individual patient was
achieved through the multiplication of the expression levels of the
genes in question by the corresponding coefficient. This
mathematical modeling resulted in a quantifiable risk score,
which was then utilized to categorize patients into two distinct
groups: high-TAS group and low-TAS group. The division of these
groups was determined by the median value of the calculated risk
score. In Figure 4F, it was demonstrated that the risk score, much
like other clinical characteristics, could serve as a prognostic risk
factor for ESCC. Of particular note is the observation that patients
classified in the high-risk group, as per the analysis of TCGA and
GEO53624 cohorts, demonstrated a significantly poorer prognosis.
Through PCA, it was demonstrated that the sample populations of
the high- and low-TAS groups could be effectively segregated into
two distinct clusters. This demonstrates not only the accuracy of
the proposed model but also its robustness and stability (as
presented in Figure 4G). Figure 4H further elucidates that the
prognostic risk factors for ESCC patients are eight specific model
genes: Proline Rich 13 (PRR13), SH2 Domain Containing 2A
(SH2D2A), Thymosin Beta 4 X-Linked (TMSB4X),
TSC22 Domain Family, Member 3 (TSC22D3),
Phosphoinositide-3-Kinase Interacting Protein 1 (PIK3IP1),
Coatomer Protein Complex Subunit Epsilon (COPE),
TERF2 Interacting Protein (TERF2IP), and DAZ Associated
Protein 2 (DAZAP2). Moreover, DEAD-Box Helicase 18
(DDX18) was identified as a prognostic protective factor for
ESCC. Interestingly, the expression level of DNA Damage
Inducible Transcript 4 (DDIT4) did not present a significant
difference between the high- and low-TAS groups, indicating
that its role in ESCC prognosis might be limited or non-significant.

3.5 Clinical correlation analysis

Figure 5A portrays a captivating portrayal of the clinical
features’ distribution within the high- and low-TAS groups,
presented as a visually captivating heatmap. Within the high-TAS
cohort, a noteworthy pattern emerges, revealing a correlation with
advanced age, T-stage, N-stage, and clinical stage. These findings
strongly indicate that patients belonging to this high-TAS group
faced a relatively unfavorable prognosis, as highlighted in Figures
5B–E. To delve deeper into the prognostic potential of the riskScore,
additional survival analyses were conducted. These analyses
explored the predictive performance across various subgroups,
including age subgroups, clinical staging subgroups, T-staging
subgroups, and N-staging subgroups, unraveled in Figure 5F.
Remarkably, the results consistently demonstrated that the
riskScore maintained a robust ability to forecast outcomes within
these distinct subgroups, further emphasizing its significance as a
prognostic indicator.

3.6 Mutation landscape

The study meticulously investigated genetic alterations found in
model-associated genes among the TCGA cohort of patients diagnosed
with ESCC. The analysis unveiled that a noteworthy 5.21% of the ESCC
patient population harbored mutations in a set of 10 pivotal genes. Of
the top ten genetic aberrations found in the model-associated genes,
TP53, a well-known tumor suppressor gene, exhibited the maximum
incident rate, with an alarming 90%mutation frequency. The remaining
genes in this set demonstrated mutation frequencies straddling a wide
spectrum, from a moderate 11% to a substantial 33%, as depicted in
Figures 6A, B. Figure 6C elucidates the interconnections among the top
15mutated genes, showcasing KMT2D—a gene associated with histone
modification—as the one exhibiting the strongest correlation with
TP53. Figure 6D offers a comprehensive overview of the distribution
of mutated genes across samples. The genetic alterations within high-
and low-TAS groups were displayed separately, revealing that every
patient within these groups experiencedmutations. As with the broader
cohort, TP53 retained its position as the gene with the highest mutation
frequency, as demonstrated in Figures 6E, F. The Tumor Mutational
Burden (TMB), ameasure of the number ofmutations carried by tumor
cells, was found to be positively correlated with the risk score
(Figure 6G). Notably, patients characterized by a high-TMB
exhibited a significantly worse prognosis compared to their low-
TMB counterparts, underscoring a clear divergence in outcomes
(Figure 6H). The comparative analysis of survival curves across four
distinct groups (High-TMB with high-risk, High-TMB with low-risk,
Low-TMB with high-risk, and Low-TMB with low-risk) revealed a
significant disparity (p < 0.001), further highlighting the crucial role of
genetic mutations and TMB in determining the risk and survival of
ESCC patients.

3.7 Enrichment analysis

The study harnessed GSVA to delve into pathway enrichment
within the high-TAS group. Notably, our investigation unveiled
significant enrichment in several pivotal pathways within this group,
including angiogenesis, gamma interferon response, and IL2_
STAT5 signaling (Figure 7A). These findings strongly suggest that
these pathways may be either dysregulated or heightened in activity
among individuals in the high-TAS group. Such dysregulation or
increased activity could potentially contribute to their heightened
susceptibility to specific medical conditions and, in turn, result in
poorer prognostic outcomes. Figure 7B complements this by
shedding light on the pathway enrichment of genes associated with
each model. In order to further probe the intricate correlations between
the 10 model genes and well-established pathways, we conducted a
comprehensive correlation analysis. The results of this analysis are
visually represented in Figure 7C, utilizing a heatmap to provide a clear
overview of these relationships. Additionally, our study employed
GSEA to shed light on the pathways affected. Remarkably, GSEA
unveiled significant enrichment in pathways related to Positive
regulation of gluconeogenesis, Translation repressor activity, and
Odorant binding (Figures 7D, E). These enrichments may contribute
to our understanding of why the high-TAS group experiences
comparatively poorer prognostic outcomes, shedding light on
potential mechanistic underpinnings of their condition.
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3.8 Evaluating the level of immune
infiltration

Differences in immune infiltration between high- and low-TAS
groups in TCGA-ESCC were assessed by using data obtained from

7 immune infiltration algorithms in TIMER. The results showed that
the high-TAS group had relatively high levels of immune
infiltration, while the low-TAS group had relatively low levels of
immune infiltration (Supplementary Figure S1A). The heatmap
demonstrated the correlation analysis of model-related genes with

FIGURE 6
Mutation landscape in high- and low-risk groups. (A) Summary ofmutational features in TCGA-ESCC samples. (B) An oncoplot ofmodel genes in the
TCGA-ESCC cohort. (C) Co-occurrence and mutual exclusivity relationships among the Top 15 ranked genes with mutations. (D) Enrichment status of
10 tumor-associated pathways. (E,F) mutation landscape of top 20 genes in high-risk and low-risk groups. (G) Scatter plot of correlation between risk
scores and TMB. (H) Survival disparities between high and low mutation burden groups. (I) Survival curves showing the difference between survival
among four subgroups (high-risk and high-mutation, high-risk and low-mutation, low-risk and high-mutation, low-risk and low-mutation).
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common components in TME (Supplementary Figure S1B). In
addition, this study validated the immune infiltration levels in
different risk groups using the ESTIMATE method. This method
estimates the immune infiltration and the stromal fraction in the
interstitium of tumor tissues. It was found that the immune score
was lower in the low-TAS group compared to the high-TAS
group. Spearman’s correlation analysis showed that the risk score
was positively correlated with immune infiltration (Figures 8A–C).

ssGSEA analysis showed that the high-risk group had a higher
abundance of infiltrating immune cells, especially CD8+_T cells and
T_helper cells (Figure 8D). Figure 8E shows that the level of immune
infiltration correlated with model gene expression, with the highest
correlation with TMSB4X. Figure 8F shows the correlation of
stromal score, immune score, and ESTIMAT score with the
model-related genes, and it is obvious that the correlation with
TMSB4X, SH2D2A, PIK3IP1, and TSC22D3 is higher. The heatmap

FIGURE 7
Enrichment pathways between different risk groups. (A) GSVA enrichment analysis demonstrates the enrichment of hallmark gene sets between
different risk groups. (B,C) Heatmap and correlation plot depict the association between model genes and KEGG pathways. (D,E) GSEA enrichment
analysis demonstrating the enrichment of GO and KEGG pathways between high- and low-risk groups.
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demonstrates the analysis of the correlation of the 10 model genes
with the various types of cells in the TME (Figure 8G), with most of
them being positively correlated. Figure 8H shows the comparison of
immune infiltration between the high and low expression groups of
each model gene, in which there was a significant difference in the
level of immune infiltration between the high and low expression
groups of genes such as TMSB4X, SH2D2A, TERF2IP, and
TSC22D3.

3.9 Immunotherapy and chemotherapy
drugs

Correlations between modeled genes, risk scores, and ICGs
were depicted using bubble plots (Figure 9A). Blue color indicates
negative correlation and orange color indicates positive
correlation. Interestingly, there was a positive correlation
between risk scores and all ICGs, whereas the expression levels

FIGURE 8
Evaluation of Immune Infiltration between High and Low-Risk Groups. (A–C) Box plots depicting differences in stromal score, immune score, and
estimate score between high and low-risk groups. Scatter plots illustrating the correlation of risk scores with stromal score, immune score, and estimate
score. (D) Assessment of immune cell infiltration and immune-related pathways differences between high and low-risk groups using the ssGSEA
algorithm. (E)Correlation betweenmodel genes and immune scores. (F)Correlation heatmap illustrating the relationship betweenmodel genes and
stromal score, immune score, and total score. (G) Evaluation of the correlation between model genes and immune cell infiltration using the CIBERSORT
algorithm. (H) Differences in immune scores between groups stratified by high and low expression of model genes.
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of model genes were positively correlated with the vast majority of
ICGs and negatively correlated with individual ICGs, including
CD200R1, IDO2, and TNFSF14. In this study, we analyzed the
relationship between mature ICGs and risk scores in the TCGA
cohort. It was found that the expression of all ICGs-related genes
was higher in the high-risk group than in the low-TAS group, such
as CD28, CD40LG and TNFRSF9 (Figure 9B). Drug sensitivity
analysis showed that Zoledronate, Nilotinib, Irinotecan, and
GSK2606414 might enhance the efficacy in the high-TAS group,
while Osimertinib, Lapatinib, Afatinib, and Sapitinib showed
higher sensitivity in the low-risk group (Figure 9C). Re-
validation in the IMvigor210 cohort revealed that the risk

scores in the CR/PR group were significantly higher than those
in the SD/PD group, indicating that immunotherapy was more
effective in the high-risk group and that patients in the high-risk
group had a shorter survival than those in the low-risk group,
suggesting that the present prediction model is also applicable to
bladder cancer (Supplementary Figure S2A, B).

3.10 Performing experimental validation

The expression levels of SH2D2A, TERF2IP, and TMSB4X were
significantly different between normal and tumor samples of TCGA,

FIGURE 9
Immune checkpoint and immunotherapy analysis. (A) Correlation scatter plots showing the correlation between model genes and risk scores and
immune checkpoint expression. (B) Boxplots showing the difference in immune checkpoint expression between high- and low-risk groups. (C) Boxplots
demonstrating the possible sensitivity of chemotherapeutic agents between different risk groups.
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while other model genes were not significantly different. To verify
this finding, qRT-PCR was performed using surgically resected
tumor tissue and normal esophageal tissue. The results showed
that the expression of SH2D2A and TERF2IP genes was significantly
upregulated in the tumor tissues, whereas the expression of
TMSB4X, although also elevated, was not statistically different
(Figures 10A–C).

4 Discussion

Esophageal cancer is a highly aggressive malignancy with a
significant global burden, characterized by high mortality rates
and unfavorable prognoses (Xia et al., 2022). ESCC represents
the predominant histological subtype, comprising approximately
95% of all esophageal cancer cases (Zou et al., 2018). The immune
system plays a pivotal role in the pathogenesis of cancer, exerting its
influence by modulating the body’s specific anti-tumor immune
response capacity, thereby potentially impeding tumor cell
dissemination and metastasis (Zimmermann and Curtis, 2019;
Gong et al., 2023).

Treg cells have been identified as active participants in tumor
progression and development, exerting their influence through the
suppression of anti-tumor immunity and facilitation of immune
evasion (Corral-J et al., 2021). Within TME, various factors
contribute to the resistance observed in immune checkpoint
blocker therapy, with Treg cells playing a pivotal role in
immunosuppression within the TME (Pitt et al., 2016). The
accumulation of Treg cells within the TME hampers the immune
response against tumors and is considered a critical mechanism by
which tumors evade immune surveillance (Wang et al., 2019a).
Enhanced infiltration of CCR4+ Treg cells has been associated with
unfavorable prognoses in different cancer types, including
pancreatic ductal adenocarcinoma, prostate cancer, and colorectal
cancer (Grage-Griebenow et al., 2014; Wang et al., 2019b; Watanabe
et al., 2019).

Treg cells contribute to immune evasion primarily through the
production of various soluble factors, including Interleukin-10(IL-
10) and transforming growth factor-β(TGF-β). TGF-β is an
immunosuppressive cytokine that plays a crucial role in the
activation and sustenance of Forkhead box protein P3(FOXP3)
expression and Treg cells function. The regulation of the TGF-β

FIGURE 10
Experimental validation of model gene. (A) Boxplots showing the differential expression of SH2D2A between tumor and normal tissues in TCGA-
ESCC; Relative expression of LTB gene in 10 pairs of cancer and paracancer samples, respectively. (B) Boxplots showing the differential expression of
TERF2IP between tumor and normal tissues in TCGA-ESCC; Relative expression of TERF2IP gene in 10 pairs of cancer and paraneoplastic samples,
respectively. (C) Boxplots showing the differential expression of TMSB4X between tumor and normal tissues in TCGA-ESCC; Relative expression of
TMSB4X gene in 10 pairs of cancer and paraneoplastic samples, respectively.
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signaling pathway directly impacts the development, stability, and
functionality of Treg cells. Additionally, multiple cellular
components within TME, such as lymphocytes, fibroblasts
(including cancer-associated fibroblasts or CAFs), bone marrow-
derived inflammatory cells, blood vessels, and extracellular matrix,
can influence the migration, generation, expansion, and activity of
Treg cells in the TME (Joyce and Fearon, 2015). For instance, a
specific subset of CAFs known as CAF-S1 fibroblasts can attract
Treg cells through CXCL12 secretion, retain Treg cells by
upregulating OX40L, PD-L2, and JAM2 expression, and induce
the differentiation of T-lymphocytes into Treg cells by increasing the
expression of B7H3, CD73, and DPP4. These mechanisms
collectively contribute to the establishment of an
immunosuppressive microenvironment (Costa et al., 2018).
Hence, it is essential to investigate the involvement of Treg cells
in ESCC to facilitate the development of efficacious immunotherapy
strategies. Targeting Treg cells or modulating their suppressive
capabilities holds promise as a potential avenue to augment anti-
tumor immune responses and ameliorate the prognosis of ESCC
patients.

Single-cell analysis offers unparalleled resolution for
studying intratumor heterogeneity, cellular differentiation
trajectories, and intercellular communication, thus offering
promising applications. By analyzing cell clustering in the
scRNA-seq dataset, we identified genes that are specifically
expressed in tumor cells, thus shifting the focus from the
comparison of tumor to normal tissue observed in previous
database analyses to exploring the distinctions between tumor
cells themselves (Huang et al., 2020).

In this study, we harnessed scRNA-seq data to pinpoint crucial
marker genes intricately associated with Treg cells. Leveraging the
power of integrated multiple bulk RNA-seq datasets, we
meticulously crafted a prognostic signature comprising a set of
ten genes. Subsequently, we employed this signature to calculate
risk scores, effectively stratifying patients diagnosed with ESCC into
two distinct groups: high-TAS and low-TAS. Through a series of
rigorous survival analyses conducted across multiple cohorts,
including the TCGA test cohort, TCGA training cohort, TCGA
whole cohort, and GEO53624 cohort, a consistent and compelling
pattern emerged. Patients within the low-TAS group consistently
exhibited a more favorable prognosis, as evidenced by statistical
significance (p < 0.05). To gain deeper insights into the underlying
biological mechanisms at play, we conducted a comprehensive
functional enrichment analysis. This analysis unveiled the
significant enrichment of the TAS in specific pathways, shedding
light on why individuals in the high-TAS group might experience
comparatively poorer prognostic outcomes. These pathways
included those associated with the positive regulation of
gluconeogenesis, translation repressor activity, and odorant
binding. It is worth noting that prior investigations have
illuminated the role of miR-145 as a potent suppressor of
PLCE1 expression, a susceptibility gene known to promote ESCC
development. miR-145 achieves this inhibitory effect by suppressing
the translation of PLCE1, ultimately curbing the proliferation,
migration, and metastasis of esophageal cancer cells. This insight
contributes to our understanding of the molecular mechanisms
underlying the differential prognosis observed between high- and
low-TAS groups in ESCC patients (Cui et al., 2016).

A comprehensive examination of the immune cells infiltrating
the tumor could shed light on the mechanisms underlying cancer
immune evasion, presenting an opportunity to develop innovative
therapeutic strategies (Zhang and Zhang, 2020). Through an
assessment of immune cell infiltration in the high- and low-TAS
groups, this study revealed a higher abundance of immune cell
infiltration in the high-TAS group compared to the low-TAS
group. Previous research has established a correlation between
the expression levels of immune checkpoint genes and the
effectiveness of immunotherapy (Ahluwalia et al., 2021). Analysis
of the variations in immune checkpoint gene expression between the
high- and low-TAS groups suggests that alternative immune
checkpoints could be targeted for treatments in the low-TAS
group. Therapeutic interventions focused on TME have emerged
as a promising approach in cancer treatment, given the critical role
of the TME in influencing tumor progression and response to
conventional therapies (Bejarano et al., 2021). Notably, TME
scores exhibited a statistically significant distinction in immune
scores between the low- and high-TAS groups. This finding implies
that patients in the low-TAS group may exhibit heightened
responsiveness to immunotherapy.

The SH2D2A gene encodes a T cell-specific adaptor protein,
known as T cell-specific adaptor (TSAd), that regulates early T cell
activation (Kolltveit et al., 2008). It is involved in the interaction
between vascular endothelial growth factor receptor 2 (VEGFR2)
and c-Rous sarcoma (c-Src), leading to c-Src activation and
promotion of tumor vascular permeability (Matsumoto et al.,
2005; Sun et al., 2012). TERF2IP is a component of the
protective protein complex responsible for safeguarding telomeric
DNA and maintaining chromosomal stability (de Lange, 2005). It
has been implicated in tumorigenesis, progression, and
chemoresistance in various human cancers. Overexpression of
TERF2IP has been observed in breast, gastric, non-small cell
lung, condylomatous lymphoma, multiple melanoma, colorectal,
and renal cell carcinomas (Panero et al., 2014; Panero et al., 2016; Pal
et al., 2017; Xiao et al., 2017; Anu et al., 2020; Bhari et al., 2021).
However, studies investigating the role of TERF2IP in ESCC are
currently lacking. TMSB4X, also known as thymosin beta-4, is a
member of the thymosin beta family. It acts as an actin chelating
protein, playing a crucial role in regulating actin polymerization.
TMSB4X is involved in intracellular signaling and has been found to
be overexpressed in colorectal, lung, gastric, pancreatic, head and
neck squamous, and squamous cell carcinomas (Chu et al., 2019).
Ma et al. identified a prognostic signature comprising 16 genes,
including TMSB4X, which accurately predicts the prognosis of
ESCC patients (Ma and Luo, 2022).

In our investigation, we substantiated the heightened expression
levels of SH2D2A and TERF2IP in tumor tissues based on our
analysis of clinical surgical resection samples. Moreover, we noted a
noteworthy increase in the expression of TMSB4X within tumor
tissues, although statistical significance was not firmly established. It
is imperative to acknowledge that the study’s limitations stem from
the relatively small size of our validation cohort. Consequently,
future endeavors should prioritize validation with larger sample
sizes to fortify these findings. Additionally, our study underscores
the essential need for further experimental investigations to delve
into the biological functions and underlying mechanisms of action
of the candidate genes we identified. By doing so, we can attain a
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more comprehensive understanding of their roles in the context of
ESCC. To summarize, the prognostic signature developed in this
study holds significant promise as a valuable tool for prognostic
predictions in ESCC patients. This signature also opens up exciting
possibilities for the integration of immunotherapeutic approaches
into the clinical management of these patients.
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