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Background: Acute myeloid leukemia (AML) is a heterogeneous disorder with an
unpredictable prognosis. Ferroptosis, the iron-dependent cell death program,
could serve as an alternative for overcoming drug resistance. However, its effect
on AML remains largely unclear.

Methods: We collected RNA sequencing data and relevant clinical information of
AML patients from The Cancer Genome Atlas to construct a prognosis prediction
model. Risk score was calculated with eight prognosis-related ferroptosis genes
(PRFGs) discovered through univariate analysis and Least Absolute Shrinkage and
Selection Operator (LASSO) Cox regression. A nomogram was constructed by
incorporating LASSO risk score, age, and cytogenetic risk based on univariate/
multivariate Cox regression.

Results: Of the 33 AML PRFGs identified from the TCGA-derived dataset, 8 genes
were used to construct a gene signature to predict AML prognosis. Principal
component analysis and heatmap showed significant differences between the low
and high risk score groups. Next, LASSO risk score, age, and cytogenetic risk were
incorporated into the nomogram to predict the overall survival (OS) of AML
patients. According to survival analysis, patients with a low risk score had
markedly increased OS as compared to those with a high risk score. Based on
the results of GeneOntology and Kyoto Encyclopedia of Genes andGenomes, the
differences between the two risk groups showed a close relationship with
immune-related pathways and membrane transportation. The analysis of
tumor-infiltrating immune cells and immune checkpoints revealed that the
immunosuppressive tumor microenvironment possibly facilitated different
prognostic outcomes between the two groups. Gene expression analyses
showed that the mRNA expression levels of PARP1 and PARP3 (PARPs) were
closely related to the different clinical subgroups and the analyzed OS in AML
patients. Finally, the PARP inhibitor talazoparib and the ferroptosis inducer erastin
exerted a synergistic anti-proliferative effect on AML cells.
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Conclusion: We constructed a nomogram by incorporating PRFGs, and the
constructed nomogram showed a good performance in AML patient
stratification and prognosis prediction. The combination of PARP inhibitors with
ferroptosis inducers could be a novel treatment strategy for treating AML patients.
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Introduction

Acute myeloid leukemia (AML) is a heterogeneous
hematologic tumor with the features of abnormal growth of
myeloblasts or pro-granulocytes without physical
differentiation. Over the past 10 years, tremendous progress
has been made in the development of approaches for treating
AML, such as hematopoietic stem cell transplantation; inhibitors
targeting MCL-1, IDH2, and NPM1/FLT3-ITD mutations,
epigenetic agents, antibody-based treatments, and cellular
therapies. Consequently, the survival of patients with AML
has significantly improved (Newell and Cook, 2021). Between
2017 and 2019, nine new drugs were approved by the FDA for
AML patients. Despite these advances, older patients with AML
show poor prognostic outcomes, with a long-term survival rate
of <15% (Short et al., 2018). Because AML is highly
heterogeneous, the treatment of this disease is challenging due
to varying clinical features, including abnormal genetic and
cytogenetic characteristics, and isolated factors such as
coexisting diseases and physical conditions (Dohner et al.,
2017). Hence, a prognosis prediction model that incorporates
these well-recognized factors is important to precisely stratify the
pretreatment risk and to implement clinical treatment decision-
making.

Ferroptosis is a specific cell death program triggered by iron-
dependent phospholipid peroxidation, and it is regulated by
different cellular metabolic pathways such as iron metabolism,
redox homeostasis, amino acid/lipid/sugar metabolism, and
mitochondrial activity (Stockwell et al., 2017; Jiang et al.,
2021). Recently, ferroptosis has received increasing attention,
and considerable progress has been achieved in developing drugs
targeting the regulatory mechanisms of ferroptosis in cancer cells
(Lei et al., 2022). Several studies have investigated the
involvement of ferroptosis in AML. Yu et al. (2015) showed
that the ferroptosis inducer erastin not only inhibits AML cell
growth but also enhances their sensitivity to chemotherapeutic
drugs. Du et al. (2019) revealed that dihydroartemisinin
specifically induced AML cells ferroptosis by modulating the
activation of the AMPK/mTOR/p70S6k autophagy pathway
activation. Yusuf et al. (2020) found that leukemic cells, rather
than healthy myeloid cells, were dependent on the aldehyde
dehydrogenase 3a2 enzyme for oxidizing long-chain aliphatic
aldehydes to prevent cellular oxidative injury and synthetic
lethality of ferroptosis inducers. Moreover, glutathione
peroxidase-4 (GPX4) (Liu et al., 2023), TP53 (Cui et al.,
2022), reactive oxygen species (ROS) metabolism (Du et al.,
2020), and glutathione (GSH) metabolism (Wei et al., 2020)
were found to be closely associated with the ferroptosis
process in AML cells and with prognostic outcomes in AML

patients. Additionally, numerous ferroptosis-related genes
(FRGs) have been discovered, but these genes have shown
inconsistent functions. Recently, the association of FRGs with
the prognostic outcome of AML patients has been investigated.
However, a prognosis prediction model incorporating the
prognosis-related FRGs together with the clinical
characteristics of AML patients is yet to be established. In the
present study, machine learning was used to assess data from
AML patients collected from public databases. We then
established a prognostic signature by incorporating prognosis-
related FRGs and used this signature to generate a prognosis
prediction model for AML patients.

Materials and methods

Cell lines

AML cell lines MOLM-13, U937 and KG-1a were acquired from
American Type Culture Collection (ATCC). Cells were cultured at
37°C and 5% CO2 in humidified incubator. Culture medium for
MOLM-13 and U937 consisted of RPMI-1640 with 10% v/v fetal
bovine serum and 1% v/v penicillin/streptomycin, while medium for
KG-1a was IMDM with 20% v/v fetal bovine serum and 1% v/v
penicillin/streptomycin.

Data collection

RNA sequencing data and the related clinical information of
AML patients were obtained from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/repository/).
Expression profiles and clinical information of AML patients
from two datasets (GSE71014 and GSE37642) were obtained
from the Gene Expression Omnibus (GEO) database (https://
www.genecards.org/).

PRFG screening

Prognosis-related genes (PRGs) of AML patients were analyzed
with “survival” package in R software (version 4.2.1). PRGs were
identified based on the following criteria: hazard ratio (95% CI) >
1.0 and p-value ≤ 0.05. The “limma” package was used to analyze
differentially expressed genes (DEGs). The threshold was set as
log2 fold change > 1 and false discovery rate < 0.05. FRGs were
collected based on FerrDB (http://www.zhounan.org/ferrdb/
current/). The intersection genes of PRGs, DEGs, and FRGs were
defined as PRFGs.
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Protein-protein interaction (PPI) network
construction

PPI network of PRFGs was constructed with STRING web tool
(https://string-db.org/) and visualized with Cytoscape (version 3.9.1). The
parameters were set as follows: network type: full STRING network,
meaning of network edges: confidence, active interaction sources:
experiments, text mining, databases, co-expression, neighborhood,
gene fusion, co-occurrence, minimum required interaction score = 0.4,
max number of interactors to show:Query proteins only. The node scores
of the PPI networkwere calculatedwith cytoHubbamodule of Cytoscape.
The top 10 nodes rank by node score were defined as hub genes.

Establishment and verification of the PFRG-
based prediction model for AML patients

The “glmnet” package in R software was used to establish a PRFG
signature by least absolute shrinkage and selection operator (LASSO)-
penalizedCox regression (Liu et al., 2018). The lowest partial likelihood of
deviance was used to determine the model penalty parameter (λ). The
regression coefficient (β) of the LASSOmodelwas linearly combinedwith
gene expression to determine the prognostic risk score. AML patients
were assigned to the high- and low-risk score groups according to the
threshold. Principal component analysis (PCA) was performed using the
“prcomp” function in R software according to the risk scores of the
identified genes. The effect of the prognostic PRFG-based signature on
prediction was analyzed through Kaplan–Meier survival analysis and
time-dependent receiver operating characteristic (ROC) curves.

Construction of the prognostic nomogram
for AML patients

Based on the univariate/multivariate Cox regression analysis of
the clinical features of AML patients, a nomogram was constructed
using the R packages “survival” and “rms.” Based on the median
nomogram risk scores, AML patients were assigned to the high or
low-risk score groups. The accuracy of the nomogram was evaluated
based on ROC curves and the concordance index (C-index).

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) analyses of DEGs between the low- and high-risk
score groups were conducted with “clusterProfiler” and “ggplot2”
packages in R software (Subramanian et al., 2005; Yu et al., 2012). p <
0.05 was considered the significance level for the enriched pathways.

Analysis of immune profiles

To analyze the immune status of each sample, we used Cell-type
Identification By Estimating Relative Subsets Of RNA Transcripts
(CIBERSORT) to calculate 22 tumor-infiltrating immune cell (TIIC)
proportions in AML patients (Newman et al., 2015; Becht et al.,

2016). We also used CIBERSORT to convert mRNA data to tumor-
infiltrating non-cancer cell proportions in the tumor
microenvironment with standard annotation files for organizing
gene expression profiles. The list of immune checkpoint molecules
was derived from (Fang et al., 2022). By querying the PubMed,
thirty-two molecules out of the forty-seven immune checkpoint list
that related to AML were further analyzed.

CCK-8 assay and treatment combination
analysis

Cell viability was determined by cell counting kit-8 (CCK-8) assay
(Beyotime Technology, China). After the cells culturing for 48 h, 20 µL
CCK-8 solution was added to each well, and the absorbance (OD) value
was measured at 450 nm. The concentrations of erastin used in this
study were set as around 40% inhibitory activity of AML cell lines. For
synergize assay, the concentrations of talazoparib were set as serial
concentration less than EC50 of AML cell lines. The combination effect
of talazoparib and erastin at indicated concentration, combination
index (CI), fraction affected (FA) levels were calculated by
CompuSyn software using Chou-Talalay method with constant-ratio
combinations. CI values less than 1, equal to 1, greater than 1 indicate
synergistic, additive, or antagonistic effects, respectively.

Cell migration assay

A total of 1 × 105 cells were resuspended with 200 μL serum-free
medium and seeded into the Transwell chamber (8 μm in diameter,
Corning, United States), then the chambers were insert into a well
with 500 μL culture medium containing corresponding
concentrations of drugs. The plate was placed for 72 h incubation
at 37°C. The migrated cells from the chambers were imaged with a
microscope and the number was calculated.

Statistical analysis

Continuous variables that exhibited a normal distribution were
presented as the mean ± standard deviation, and comparisons
between groups were examined using Student’s t-test.
Kaplan–Meier survival analysis was used to estimate overall
survival and Cox regression was used to compare survival
differences between patient groups. Survival analysis was carried
out with “survminer” and “survival” R packages. R software
(Version 4.2.1) and GraphPad Prism 9 were adopted for data
analysis. p-value < 0.05 stood for statistically significant.

Results

Discovery of PRFGs

We obtained 3436 DEGs and 1613 PRGs by comparing dead and
alive AML patients derived from the TCGA database. Heatmap
showed a total of 78 significant differential expressed FRGs in alive
and dead patients and they were further divided into up- and
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downregulated groups according to their log2 fold-change (Figures
1A, B). By intersecting DEGs, PRGs, and FRGs, we obtained
33 PRFGs (Figure 1B). We then constructed protein–protein
interaction (PPI) networks based on the STRING database to
analyze and predict protein interactions and protein functional
connectivity. Rank by node score of the PPI network, as shown
in Figure 1C, SCD, SREBF1, SRC, SREBF2, KEAP1, etc. were
identified as the hub genes.

Establishment and verification of the
prognostic gene signature

We incorporated the 33 PRFGs in LASSO Cox regression
(Figure 2A) and constructed the 8-gene signature according to the
optimum λ value (Figure 2B). These 8 genes included SOCS1,
PARP1, TGFB1, AGAPT3, PARP3, FH, ARF6, and CREB3. To clarify
the association of the selected genes with patient survival, univariate Cox

regression was performed (Figure 2C). According to the β-value of every
gene discovered based on LASSO Cox regression, the prognostic risk
score was calculated as follows: (0.0893* SOCS1 expression) + (0.0815 *
PARP1 expression) + (0.0014 * TGFB1 expression) + (0.00159 *
AGPAT3 expression) + (0.0065 * PARP3 expression) + (0.0217 * FH
expression) + (0.0067 * ARF6 expression) + (0.1914 *
CREB3 expression). Based on the median risk score, we assigned the
patients to the high-risk score group (n = 74) or the low-risk score group
(n = 56). Furthermore, based on the PCA results, patients in both
subgroups showed a discrete distribution (Figure 2D). The expression
levels of the selected genes also showed a significant difference between
both groups (Figure 2E; Supplementary Figure S3). Moreover,
Kaplan–Meier survival analysis indicated a significantly increased OS
in the low-risk score group as compared to that in the high-risk score
group (Figure 2F). Furthermore, the area under the ROC curve (AUC)
values for 1-, 2-, and 3-year OS were 0.867, 0.855, and 0.810, respectively,
which indicated good predictive performances of LASSO analysis
(Figures 2G–I).

FIGURE 1
Prognosis-related gene (PRG) analysis in AML patients. (A) Heatmap of the differential expressed PRGs in AML patients. (B) Venn plots showing
prognosis-related ferroptosis genes (PRFGs). (C) PPI network diagram of PRFGs.
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Next, GEO-derived data were analyzed for model validation. The
AMLpatients from theGEO cohort were classified into the high or low-
risk score group according to the risk score. A significant difference was
noted between both subgroups, with a markedly increased survival rate
in the low-risk score group compared to that in the high-risk score
group (p < 0.001) (Supplementary Figures S1A–F, S2A–F).

Risk score independently predicts the
prognosis of AML

To predict theOSofAMLpatients, the risk score and clinical features,
including age, gender, BM blast percentage, FLT3 mutation, and
cytogenetic risk were incorporated into the univariate/multivariate Cox
regression. The results revealed that the risk score independently predicted

patient survival. Furthermore, age, cytogenetic risk (intermediate), and
cytogenetic risk (poor) also independently predicted the prognosis of p ≤
0.05 (Figures 3A, B). All patients were then classified according to age,
cytogenetic risk (intermediate), and cytogenetic risk (poor). Based on the
Kaplan–Meier survival curves, the low-risk score group showed increased
survival as compared to the high-risk score group (Figures 3C–F).

Establishment and verification of the
prognosis prediction nomogram

A nomogram that can visually represent the prognosis prediction
model was constructed by incorporating age, cytogenetic risk, and the
risk score for illustrating patient survival (Figure 4A). The nomogram
showed that the Lasso risk score most significantly affected 1-, 2-, and

FIGURE 2
Discovery of prognosis-related ferroptosis genes (PRFGs) for establishing the prognosis prediction signature for AML patients derived from the
TCGA database. (A) LASSO Cox regression of the PRFGs. (B) LASSO coefficients of the PRFGs. (C) Univariate Cox regression confirmed the relationship
between PRFGs and the prognostic outcome for AML patients. (D) PCA plot showing AML cases based on the expression levels of the signature genes in
both risk score groups. (E) Heatmap showing the mRNA levels of the eight chosen PRFGs in the low-risk score and high-risk score groups. (F)
Kaplan–Meier survival curves suggest increased OS in the low-risk score group as compared to that in the high-risk score group. (G–I) ROC curves of the
LASSO model to predict 1-, 2- and 3-year OS of AML patients.
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3-year survival of AML patients, followed by cytogenetic risk and age.
ROC curves and C-index were then used to evaluate the
discrimination performance of the nomogram. The C-index value
for predicting 1-, 2-, and 3-year patient OS was 0.785 (0.762–0.808).
The area under the ROC curve (AUC) values for 1-, 2-, and 3-year OS
were 0.872, 0.891, and 0.863, respectively, which were superior to
those of the Lasso risk score model (Figure 4B). The model calibration

performance was analyzed with a calibration curve.We found that our
predicted results were consistent with the observed results
(Figure 4C). The patients were assigned to high- or low-risk score
groups in accordance with the median risk score value. Compared to
the high-risk AML patients, low-risk AML patients showed markedly
distinct dispersion direction with superior OS (p < 0.001)
(Figures 4D, E).

FIGURE 3
Independent prognostic factors of risk scores and clinical features. (A,B)Univariate/multivariate Cox regression confirmed that age, cytogenetic risk
(poor), and LASSO risk score could independently predict prognosis. (C–F) Kaplan–Meier survival curves suggested that OS was associated with age <
60 (C), age ≥ 60 (D), cytogenetic risk score (intermediate) (E), and cytogenetic risk score (poor) (F).
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Functional annotation

To elucidate the pathways related to the nomogram risk score,
KEGG pathway enrichment analysis was performed for DEGs in

both risk score groups. We observed that DEGs were mostly
associated with “neuroactive ligand-receptor interaction,”
“cytokine-cytokine receptor interaction,” “PI3K-Akt pathway,”
and “Phagosome” (Figure 5A). GO functional enrichment

FIGURE 4
A nomogram for predicting the prognosis of TCGA-derived AML patients. (A) A nomogram was constructed to predict 1-, 2-, and 3-year OS in AML
patients. (B) ROC curves for the nomogram for predicting 1-, 2-, and 3-year survival of AML patients. (C) Nomogram calibration curves showing survival
probabilities at 1-, 2-, and 3-year. (D) PCA plot for AML cases according to the mRNA levels of the signature genes in both risk groups. (E) Kaplan-Meier
survival curves suggest increased OS of patients in the low-risk score group as compared to that of patients in the high-risk score group.
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analyses showed that the biological process (BP) terms were mostly
“leukocyte migration,” “regionalization,” and “regulation of cell-cell
adhesion” (Figures 5B–D). The cellular component (CC) terms were
mainly “collagen-containing extracellular matrix,” “synaptic
membrane,” and “external side of plasma membrane” (Figures
5B–D). The molecular functions (MF) terms were “receptor
ligand activity,” “passive transmembrane transporter,” and
“channel activity” (Figures 5B–D).

Immune status of AML patients based on the
nomogram risk score groups

Because the enrichment analysis highlighted immune-related
terms like “cytokine-cytokine receptor interaction” (hsa04060) and
“leukocyte migration” (GO005090) (Figures 5A, B, D), we examined
the correlation between the nomogram and TIICs. The differences

of 22 types of TIICs in AML patients between the two risk score
groups were assessed by the CIBERSORT algorithm. Figure 6A
shows the similarities and differences in immune cell infiltration
between the AML subgroups. “T cells CD4+ memory resting,” “Mast
cell resting,” and “Monocyte” exhibited significant differences
between both risk score groups (Figure 6B). Immune checkpoint
molecules are the indicators for prognosis and serve as
immunotherapeutic targets for AML patients. The expression
levels of LAIR1, LAG3, CTLA4, CD200R1, CD276, KIR3DL1,
CD80, PDCD1, LGALS9, TNFSF14, PDCD1LG2, CD86, and
CD274 in high-risk patients were markedly increased as
compared to those in low-risk patients (Figure 6C). We further
evaluated the association between immune checkpoint molecules
and OS in AML patients. Higher expression levels of LAIR1, CD276,
LGALS9, PDCD1, PDCD1L2G, and TNFSF14 levels were correlated
with poor OS (Supplementary Figure S4). Taken together, these data
suggest that the poor prognostic outcome in the high-risk score

FIGURE 5
GO and KEGG analyses for DEGs in both risk score groups. (A) KEGG analysis of DEGs in both risk score groups. (B) GO annotation of DEGs in both
risk score groups. (C) Bubble plots of top 3 GO and KEGG enrichment terms in both risk score groups. (D)Chord diagram showing the related genes of the
GO term 0050900 (leukocyte migration) and the KEGG term hsa0460 (cytokine-receptor interaction).
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group may be partly associated with the tumor immune
microenvironment.

Correlation between the expression levels of
the risk-associated genes and
clinicopathological subgroups of AML
patients

PARPs are potential therapeutic targets for AML. However, the
correlation between PARPs expression levels and AML
clinicopathologic features, as well as the prognosis of patients with
specific clinical variables remained to be explored. PARP1 and
PARP3 were selected for further investigations as they showed
significantly higher expression levels in the high Lasso risk score
groups in all the analyzed datasets (Figure 2E; Supplementary Figures
S1B, S2B, S3). According to the subgroup classification, the
association between the clinicopathologic features of TCGA AML
patients and the expression level of PARPs was analyzed. As shown in
Figures 7A–F, the expression levels of PARP1 and PARP3 were
significantly associated with the clinicopathologic features of FAB
classification, cytogenetic risk, and OS event. Moreover, a higher

expression level of PARP1 or PARP3 also predicted poor prognosis in
the clinical subgroups of BM (bone marrow) blasts (%) > 20, PB
(peripheral blood) blasts (%) > 70, and WBC (white blood cell) count
(×109/L) ≤ 20 (Figures 7G–L).

The PARP1 inhibitor talazoparib shows a
synergistic effect with the ferroptosis
inducer erastin on AML cells

Antitumor drug combinations can effectively prevent resistance
and provide novel treatments. Previous studies have shown that the
PARP inhibitor shows a synergistic effect with ferroptosis inducers
on BRCA-proficient ovarian cancer. We tested whether this drug
synergy also affected the survival of AML cells. Consistent with the
results of previous studies, talazoparib inhibited the growth of AML
cells (Figures 8A–C). Furthermore, every combination index at
specific talazoparib and erastin doses was <1 for MOLM-13,
U937, and KG-1a cells (Figures 8D–F). Talazoparib also showed
a synergistic effect with erastin to inhibit AML cell migration
(Figures 8G–I; Supplementary Figure S5). These findings suggest
that the PARP1 inhibitor shows a synergistic effect with the

FIGURE 6
Immune profiles between the nomogram risk groups. (A)Heatmap showing immune cell expression between the risk score groups. (B)Comparison
of diverse immune cell subtypes of both risk score groups. (C) Expression levels of immune checkpoint molecules in both risk score groups. *p < 0.05;
**p < 0.01; ***p < 0.001; and ****p < 0.0001.
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ferroptosis inducer erastin for inhibiting the growth and migration
of AML cells.

Discussion

In the present study, to predict the survival of AML patients, a
prognosis predictionmodel was constructed based on the combination of
8 prognosis-related FRGs and clinical characteristics. The established
model exhibited favorable calibration and discrimination performance
for predicting patient survival. The association of the model with TIICs

and immune checkpoint molecules was also partially investigated. The
PARP inhibitor talazoparib showed a synergistic effect with the
ferroptosis inducer erastin to enhance anti-proliferation efficacy for
AML cells. AML has the highest occurrence frequency among acute
leukemias during adulthood. Presently, cytogeneticmarkers play a critical
role in stratifying the associated risk and treatment of AML patients.
Although several studies have been conducted to find appropriate
prognostic biomarkers, AML remains the disease with substantially
different prognostic outcomes. The 5-year OS rate of AML is <50%,
and the 2-year survival rate is only 20% among old people with AML
(Gregory et al., 2009; Riva et al., 2012). Ferroptosis is a novel cell death

FIGURE 7
Association of the expression of PARPs with different clinical features of AML. (A–C) Correlation between PARP1 expression and FAB classification (A),
cytogenetic risk (B), and OS event (C). (D–F) Correlation between PARP3 expression and FAB classification (D), cytogenetic risk (E), and OS event (F). (G–I)
Correlation between PARP1 expression level and BMblasts (20%) > 20% clinical subgroup, PB blasts (20%) > 70% clinical subgroup, andWBC count (× 109/L) ≤
20. (J–L)Correlation between PARP3 expression level and BM blasts (20%) > 20% clinical subgroup, PB blast (20%) > 70% clinical subgroup,WBC count
(× 109/L): ≤20. *p < 0.05; **p < 0.01; and ***p < 0.001. OS, overall survival; BM, bone marrow; WBC, white blood cell; PB, peripheral blood.
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program (Dixon et al., 2012), which is closely associated with AML (Yin
et al., 2022). Although some ferroptosis-related prediction models for
AML have been reported (Cui et al., 2022; JinghuaWang et al., 2022; Kai
Zhu et al., 2022; Yu et al., 2022), a model that incorporates well-
recognized factors is highly important to precisely stratify AML patients.

By analyzing DEGs in AML patients, 33 prognosis-related
ferroptosis DEGs were obtained based on 3436 DEGs in dead
and alive patients. We chose eight genes following LASSO Cox
regression and univariate analysis. Most of these genes were verified
or predicted to be closely associated with cancers. The increased
SOCS1 level in the bone marrow of AML patients was closely
associated with advanced age, mutations in FLT3-ITD, NPM1,
and DNMT3A, and SOCS1 overexpression in zebrafish mimic
leukemia phenotype (Hou et al., 2017). PARPs, including
PARP1 and PARP3, can mediate the early stage in DNA damage
response. The inhibition of these proteins shows varying degrees of
antitumor activity in AML, which mainly depend on the
rearrangement of the genes (Padella et al., 2022). TGFB1 induces

ALDH+ stem cell-like phenotype in AML cells and contributes to
leukemogenesis and chemotherapy resistance (Yuan et al., 2020).
ARF6 belongs to the small GTPase ADP-ribosylation factor (Arf)
family, and the upregulation and activation of ARF6 are markedly
associated with the migration and invasion of multiple cancers (Li
et al., 2017). CREB3 has been identified as an HDAC3-interacting
protein that enhances NF-κB activation and promotes the migration
of breast cancer cells (Kim et al., 2010).

The clinical features of AML patients are closely associated with
their prognostic outcomes. To optimize the model and improve its
survival prediction performance, we selected age and cytogenetic
risk based on univariate/multivariate Cox regression. Age and
cytogenetic risk are significantly associated with AML
performance status, multidrug resistance, and prognosis outcome
(Appelbaum et al., 2006; Dohner et al., 2017); hence, we
incorporated these two clinical features and a gene signature to
construct the nomogram. Additionally, the ROC curve and C-index
were used to evaluate the discrimination performance of the

FIGURE 8
Erastin synergistically sensitizes AML cells to talazoparib. (A–C) Cell viability in MOLM-13 (A), U937 (B), and KG-1a (C) cells exposed to talazoparib
and/or erastin treatment at specific doses. (D–F) Chou-Talalay plot showing the synergistic effects of specific treatments in MOLM-13 (D), U937 (E), and
KG-1a (F) cells. Purple/black/red/blue dots in the plot represent talazoparib combined with erastin at specific doses. CI values of <, = , and >1 represent
synergistic, additive, and antagonistic effects, respectively. (G–I) The synergistic effects of specific treatments in inhibiting MOLM-13 (G), U937 (H),
and KG-1a (I) cells migration. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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nomogram. The C-index for 1-year, 2-year, and 3-year OS of
TCGA-derived AML patients was 0.785 (0.762–0.808), while the
AUC values were 0.872, 0.891, and 0.863, respectively. These
findings suggest the favorable discrimination performance of the
model for survival prediction. Furthermore, according to the
calibration curve, the constructed nomogram demonstrated good
calibration. Based on the nomogram risk score, the patients were
assigned to the high-risk score group or the low-risk score
group. Functional annotation of the DEGs in both risk groups
revealed that the enriched functional terms mainly involved
leukocyte cell migration, T cell activation, and transmembrane
transportation. We postulated that this finding might be
correlated with the tumor-infiltrating cells in both subgroups.
Hence, the proportions of immune cell in both groups were
determined. CD4+ memory resting T cells and resting mast cells
showed an evidently higher proportion in the low-risk group, while
monocytes showed a higher abundance in the high-risk score
group. These findings suggest the association of the poor
prognostic outcome of AML patients with immune cell
infiltration. FRGs also possibly affect cancer cells through
immune cells. We compared the expression levels of the immune
checkpoint molecules such as LAIR1, LAG3, CTLA4, CD200R1,
CD276, KIR3DL, CD80, PDCD1, LGALS9, TNFSF14, PDCD1L2G,
CD86, and CD274 in high-risk and low-risk AML patients. AML
patients showing a higher expression level of LAIR1, CD276,
LGALS9, PDCD1, PDCD1L2G, and TNFSF14 experienced worse
prognosis; thus, indicating that targeting these immune checkpoints
may be beneficial for treating high-risk AML patients.

PARP1 and PARP3 belong to the Ploy (ADP-ribose) polymerase
superfamily and are associated with DNA damage response (DDR).
Based on our computational results, PARP1 and PARP3 were found
to be associate with certain clinicopathologic features and overall
survival of clinical subgroups. These data may facilitate the risk
grouping and treatment of AML patients. Moreover, inhibition of
PARPs is suggested to enhance the antitumor effect by regulating
ferroptosis. Hong et al. (2021) reported that PARP inhibitor olaparib
synergizes with erastin via repressing SLC7A11 in BRCA-proficient
ovarian cancer cells. The mechanism underlying this synergistic
effect is that the repression of SLC7A11 by olaparib may potently
enhance lipid peroxidation and ferroptosis. Another study
conducted by Tang et al. (2022) showed that PARPs inhibitor
olaparib enhances the arsenic trioxide induces ferroptosis by
suppressing the expression levels of stearoyl-CoA desaturase1
(SCD1) in platinum-resistant ovary cancer cells. It is, therefore,
rational to postulate that PARP1 inhibitors may show a synergistic
effect with ferroptosis inducers. Our preliminary results show that
the PARP1 inhibitor talazoparib exhibited a synergistic effect with
the ferroptosis inducer erastin in suppressing the growth and
migration of AML cells. To the best of our knowledge, the
combination of talazoparib and erastin in AML has not been
previously reported. Since PARPs inhibitors were reported to
enhance the oxidative stress of cancer cells (Giovannini et al.,
2019) and oxidative stress enhance the lipid peroxidative-
dependent ferroptosis (Lei et al., 2022), the synergistic effect of
talazoparib and erastin may be achieved by enhancing the
ferroptotic cell death pathway.

In conclusion, we constructed a new prognosis prediction model
involving 8 PFRGs and clinical characteristics. The model showed

favorable calibration and discrimination performance. Our study
also provided preliminary evidence that ferroptosis inducers
sensitize AML cells to PARP inhibitors, which may benefit AML
treatment.
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