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Objective: The observational association between circulating metabolites and
systemic lupus erythematosus (SLE) has been well documented. However,
whether the association is causal remains unclear. In this study, bidirectional
Mendelian randomization (MR) was introduced to analyse the causal relationships
and possible mechanisms.

Methods: We conducted a two-sample bidirectional MR study. A genome-wide
association study (GWAS) with 7,824 participants provided data on 486 human
blood metabolites. Outcome information was obtained from a large-scale GWAS
summary, which contained 5,201 single nucleotide polymorphisms (SNPs) cases
and 9,066 control cases of Europeans and yielded a total of 7,071,163 SNPs. The
inverse variance weighted (IVW) model was recruited as the primary two-sample
MR analysis approach, followed by sensitivity analyses such as the heterogeneity
test, horizontal pleiotropy test, leave-one-out analysis, and linkage disequilibrium
score (LDSC) regression.

Results: In this study, we discovered that 24 metabolites belonging to the lipid,
carbohydrate, xenobiotic and amino acid superpathways may increase the risk of
SLE occurrence (p < 0.05). In addition, the metabolic disorders of 51 metabolites
belonging to the amino acid, energy, xenobiotics, peptide and lipid superpathways
were affected by SLE (p < 0.05). Palmitoleate belonging to the lipid superpathway
and isobutyrylcarnitine and phenol sulfate belonging to the amino acid
superpathway were factors with two-way causation. The metabolic enrichment
pathway of bile acid biosynthesis was significant in the forward MR analysis
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(p = 0.0435). Linolenic acid and linoleic acid metabolism (p = 0.0260), betaine
metabolism (p = 0.0314), and glycerolipid metabolism (p = 0.0435) were the
significant metabolically enriched pathways in the reverse MR analysis.

Conclusion: The levels of some specific metabolites may either contribute to the
immune response inducing SLE, or they may be intermediates in the development
and progression of SLE. These metabolites can be used as auxiliary diagnostic tools
for SLE and for the evaluation of disease progression and therapeutic effects.

KEYWORDS

metabolites, systemic lupus erythematosus, correlations, Mendelian randomization,
bidirectional

1 Introduction

The prevalence of systemic lupus erythematosus (SLE), a
complex autoimmune multisystemic disease of great clinical
heterogeneity, exhibits a wide range with rates varying between
29 and 7,713 per 100,000 individuals (Barber et al., 2021). The
heterogeneity of SLE is not only different in patients with different
individuals, different genders, different ages and different course of
disease, but also in organ damage and corresponding
manifestations, slow onset, overlapping damage, response to
treatment, outcome and prognosis, even in identical twins
(Bhaskar and Nagaraju, 2019; Wu et al., 2020). As
autoimmunity starts before its clinical manifestations, the long
time period between the onset of autoimmunity and final diagnosis
means that some patients with SLEmay develop irreversible, severe
organ damage and even death (Nashi and Shmerling, 2021). Early
diagnosis and treatment have become an urgent issue in SLE
management (Ugarte-Gil et al., 2019). Because of the clinical
complexity of lupus, identifying sensitive and specific
biomarkers for its diagnosis and monitoring has been
challenging. Therefore, the discovery of specific biomarkers is of
great significance for the prognosis of SLE.

In the past decade, an increasing number of studies have found
an association between metabolomics and SLE and other immune
diseases, which provides new ideas for metabolic-derived
biomarkers. Metabolomics is the study of small-molecule
metabolites in samples or organs of living organisms. Cellular
metabolic programs could affect the immune response by
regulating the activation, proliferation, and differentiation of
innate and adaptive immune cells. Many studies have shown that
the dysregulation of the immune system is associated with changes
in metabolite profiles (Teng et al., 2020). Metabolites can regulate
the process of immune diseases by targeting the corresponding
receptors (Wu et al., 2023a).

Metabolism is known for its intricate complexity at the
biochemical level. Recent studies have added levels of complexity
showing “moonlighting” functions of somemetabolic enzymes, such
as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regulating
Interferon γ (IFN-γ) production, and metabolites, such as succinate
or itaconate, with previously unsuspected immune signalling
functions (Chang et al., 2013; Murphy and O’Neill, 2018).
Therefore, screening out certain unreported metabolites
associated with SLE by Mendelian randomization (MR) analysis
has enlightening implications for exploring the mechanisms of
pathophysiology.

While metabolic abnormalities affect the development of SLE,
the disease also increases the metabolic burden. In an observational
study (Ouyang et al., 2011), the levels of serum amino acids in SLE
patients were decreased, including some glycolytic and ketogenic
amino acids and citric acid, an intermediate metabolite of the
tricarboxylic acid cycle, and the decrease in pyruvate, an
intermediate product of glycolysis, indicates that SLE patients
have energy metabolism disorders. This may be related to the
enhanced protein catabolism and increased energy requirements
that are present in a state of systemic inflammation.

Notably, cohort-based causal studies between metabolites and
SLE are lacking. If differentially abundant metabolites are risk
factors or protective factors for SLE, it is meaningful for the
prediction of the disease and auxiliary diagnosis based on specific
targets. MR analysis uses randomly occurring single nucleotide
polymorphisms (SNPs) in human genes as mediation tools. This
approach, which is similar to the randomized controlled trial (RCT)
design, better ensures the randomization of the sampling. The
establishment of exposure factors and outcome variables through
instrumental variables can also better prove the causal relationship
between them. At the same time, because metabolites may be
substances that affect the occurrence of diseases, or may be
substances produced after the occurrence of diseases,
bidirectional MR analysis can better explain the causal direction
of metabolites and diseases.

Therefore, this study collected relatively complete serum
metabolome data and introduced MR analysis similar to the RCT
design to interpret the causal relationship between SLE and related
metabolites through bidirectional MR verification. In this research,
MR methodology was used to evaluate the causal effects of
genetically proxied metabolomics elements of interest on SLE by
selecting metabolite-associated SNPs as instrumental variables (IVs)
and to assess pooled metabolic pathways to explain the mechanism.

2 Materials and methods

2.1 Study design

The dataset that contains all the data in this study is available to
the public on the database website. The genome-wide association
study (GWAS) summary statistics that have already been published.
The ethics committee at each institutional review board authorized
all participants’ written informed permission in separate studies. No
extra ethical approval or informed consent was required.
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In the current study, we comprehensively evaluated the
relationship between 486 serum metabolites and SLE based on a
rigorous MR design. A scientific MR study must include the testing
of the following three hypotheses: 1) genetic instrumental variables
are strongly associated with the exposure of interest; 2) genetic
instrumental variables should be irrelevant to the outcome and
independent of any known or unknown confounding factors; and 3)
the effect of instrumental variables on the results is mediated only by
the interest exposure. Briefly, a bidirectional analysis strategy was
utilized to select genetically significant SNPs for 486 human serum
metabolites and SLE from a European population. To avoid sample
overlap, the metabolites and SLE genetic information selected in this
study were obtained from separate GWAS datasets. A schematic of
this bidirectional MR study is shown in Figure 1.

2.2 GWAS data for human serummetabolites

A genome-wide association aggregate dataset of 486 serum
metabolites involved in this study was obtained by Shin et al.
(2014). These data are publicly available from the GWAS server
(http://metabolomics.helmholtz-muenchen.de/gwas/). The service
platform collects relatively complete human serum metabolomics
data. A total of 7,824 adults and approximately 2.1 million SNPs
from two European cohorts (TwinsUK and KORA cohorts) were
included in the GWAS analysis. Of the 486 metabolites, 309 are

named metabolites that can be assigned to eight broad metabolic
groups (amino acids, carbohydrates, cofactors and vitamins, energy,
lipids, nucleotides, peptides, and xenobiotic metabolism), as defined
by the kyoto encyclopedia of genes and genomes (KEGG) database
(Kanehisa et al., 2012). The chemical properties of another
177 unknown metabolites have not been fully determined.

2.3 GWAS data for SLE

The summary data of SLE were obtained from the (https://gwas.
mrcieu.ac.uk/) Integrative Epidemiology Unit (IEU) open GWAS
project. The GWAS ID is ebi-a-GCST003156 (Bentham et al., 2015).
In this GWAS meta-analysis, the summary data included 5,201 SLE
cases and 9,066 control cases, yielding a total of 7,071,163 SNPs. We
extracted SNPs by analysing vcf format files shared by this platform.
The SLE patients from the European population were diagnosed
according to the standard American College of Rheumatology
classification criteria.

2.4 Selection of instrumental variables (IVs)

The selection of IVs in this MR analysis was based on
3 fundamental assumptions. First, for each metabolite, we set p <
1 × 10−5 as the genome-wide significance threshold to select strongly

FIGURE 1
Schematic of the bidirectional Mendelian randomization (MR) analysis. Significant instrumental variables were selected for 486 differentially
abundant metabolites and systemic lupus erythematosus, and the bidirectional causalities were probed. The three basic assumptions of MR analysis are
illustrated in the acyclic graph.
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associated SNPs. Second, a clumping procedure implemented in R
software was employed to identify the independent variants. R2 <
0.001 within a 500-kilobase (kb) distance was used for linkage-
disequilibrium. Finally, to quantitatively verify whether the selected
SNPs are strong instruments, we calculated the proportion of
phenotypic variation explained (PVE) for each metabolite and
the F statistic. Typically, a threshold of F > 10 is suggested for
the following analysis (Burgess et al., 2013).

2.5 MR analysis

A standard inverse variance weighted (IVW) method was the
main evaluation approach used for causal association exploration
between metabolites and SLE (forward MR analysis and reverse MR
analysis) in this analysis. MR-Egger and weighted median (WM)
were secondary evaluation method. When the instrumental
variables satisfy all three major hypotheses, the IVW method can
provide a more accurate estimate of the causal effect of exposure and
is considered the most efficient MR method. Nevertheless, if some
IVs do not conform to the IV hypothesis, the analysis may give
inaccurate results. Thus, we implemented the following sensitivity
analyses: 1) the Q test was carried out with the IVW and MR‒Egger
methods to detect possible violations of the hypothesis by the
heterogeneity of the correlation between individual IVs (Cohen
et al., 2015); 2) the MR‒Egger intercept was implemented to
estimate the horizontal pleiotropy, ensuring that the genetic
variation was independently related to the metabolite and SLE
(Burgess and Thompson, 2017); 3) additional analyses such as
the weighted median and weighted mode were applied to
enhance the reliability and stability of hypothesis testing; and 4)
we conducted an individual SNP analysis and leave-one-out test to
evaluate the likelihood of relevance observed by individual SNPs.

2.6 Genetic correlation and direction
validation

MR analysis may violate cause-effects under the premise of
genetic correlation between the exposure and outcome of the
research (O’Connor and Price, 2018; Reay et al., 2022). Although
SNPs related to SLE were excluded in the selection of IVs, SNPs with
no relevance may also impact the occurrence of SLE. Linkage
disequilibrium score (LDSC) regression can compute the
coinheritance by calling chi-squared statistics based on SNPs
(Bulik-Sullivan et al., 2015). Therefore, to ensure that cause-
effects were not confused by the coheritability of exposure with
the outcome, LDSC was implemented to verify the genetic
correlation between the differentially abundant serum metabolites
and SLE.

2.7 Metabolic pathway analysis

Metabolic pathways were estimated using Web-based
metconflict 5.0 (https://www.Metaboanalyst.ca/) (Chong and Xia,
2104). The pathway and enrichment analysis modules were applied
to identify probable metabolite clusters or superpathways that may

be associated with metabolic processes and the potential association
with SLE. The small molecule pathway database (SMPDB) and the
KEGG database were applied for reference. The significance level of
the pathway was 0.05.

2.8 Intersection analysis

An intersection analysis was introduced to analyse the shared
metabolites screened by the forward and reverse MR analyses and, in
conjunction with potential pathway mechanisms, to evaluate the
relationship between metabolic pathways and circulatory
deterioration in SLE.

2.9 Statistical analysis

All MR analyses were performed using the “TwoSampleMR”
package in R (version 4.3.0). LDSC was conducted by the “ldscr”
package, and p < 0.05 was considered statistically significant. The
odds ratio (OR) was used to estimate the magnitude and direction of
the metabolic impact with its corresponding 95% confidence
interval (CI).

3 Results

3.1 Influence of 486 serum metabolites on
SLE (forward MR)

As the genome-wide significance threshold was p < 1 × 10−5 to
select strongly associated SNPs, a total of 483 serum metabolites
were selected. The IVs contained 7,881 SNPs in total, with a median
of 12 SNPs. The F statistic values were all greater than 10, indicating
that weak instrumental bias is unlikely to be significant. Except for
176 unnamed metabolites, the remaining 307 metabolites belong to
8 superpathways. The highest proportion of metabolites was lipids
(122, 39.74%), followed by amino acids (74, 24.10%) and xenobiotics
(39, 12.70%).

All metabolic analyses used IVW as the primary analytical
methodology, with no evidence of heterogeneity and no weak
instruments (Jin et al., 2020). From the primary results,
24 significantly associated metabolites were selected (p < 0.05 for
IVW), in which 17 were positively associated with SLE and 7 were
negatively associated with SLE. 2-Methoxyacetaminophen sulfate
(p = 8.55 × 10−5) was the most significant metabolite, followed by
palmitoleate (16:1n7) (p = 5.11 × 10−4) and ursodeoxycholate (p =
3.53 × 10−3) (Figure 2). Ten out of the 24 metabolites were unnamed.
Among the 14 identified metabolites, 6 metabolites belonging to
lipid pathways and 1,5-anhydroglucitol (1,5-AG) belonging to
carbohydrate pathways were positively associated with SLE. 2-
Methoxyacetaminophen sulfate, belonging to the xenobiotic
pathway, exhibits serum protection. In addition to citrulline’s
protective effect across the amino acid pathway, its other
metabolic involvement may also be a risk factor for SLE
(Figure 3). The results of the alternative MR analysis, Q test and
sensitivity analysis for the 14 known metabolites are shown in
Table 1. All IVs passed the sensitivity tests (p > 0.05).
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FIGURE 2
Volcano plot of correlations related to the influence of metabolites on SLE. This plot includes both odds ratios (ORs) in log 2 scale and p-values in
-log 10 estimated by the inverse variance weighted method for SLE.

FIGURE 3
Forest plot of the causal effects of metabolites on the risk of SLE derived from the IVW method. OR, odds ratio; CI, confidence interval.
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TABLE 1 The three MR model estimates of the causal relationships between 14 known metabolites and the risk of SLE and tests for heterogeneity and horizontal
pleiotropy.

Metabolite Method SNP (N) OR (95% CI) p Heterogeneity p Pleiotropy p

Q value Intercept

Isoleucine IVW 17 7.87 (1.07–58.14) 0.0431 16.10 0.45 0.03 0.25

MR–Egger 17 0.60 (0.01–63.39) 0.8311 14.67 0.48

WM 17 6.77 (0.34–134.87) 0.2105

Ursodeoxycholate IVW 8 2.10 (1.28–3.46) 0.0035 3.39 0.85 0.01 0.70

MR–Egger 8 1.78 (0.69–4.61) 0.2817 3.23 0.78

WM 8 2.00 (1.05–3.80) 0.0340

Citrulline IVW 36 0.32 (0.10–0.99) 0.0489 41.70 0.20 −0.02 0.12

MR–Egger 36 2.29 (0.16–32.33) 0.5427 38.79 0.26

WM 36 0.35 (0.07–1.81) 0.2130

Xanthine IVW 5 0.17 (0.03–0.85) 0.0312 2.51 0.64 0.01 0.87

MR–Egger 5 0.12 (0.00–5.06) 0.3510 2.47 0.48

WM 5 0.19 (0.02–1.58) 0.1248

Taurodeoxycholate IVW 9 1.59 (1.12–2.27) 0.0100 6.46 0.60 −0.02 0.57

MR–Egger 9 2.10 (0.79–5.60) 0.1798 6.10 0.53

WM 9 1.74 (1.11–2.72) 0.0156

N1-Methyladenosine IVW 4 0.01 (0.00–0.66) 0.0321 3.34 0.34 0.03 0.66

MR–Egger 4 0.00 (0.00–1805.66) 0.3965 2.94 0.23

WM 4 0.00 (0.00–0.45) 0.0244

Taurochenodeoxycholate IVW 9 1.61 (1.03–2.51) 0.0376 6.22 0.62 0.01 0.60

MR–Egger 9 1.35 (0.62–2.92) 0.4727 5.93 0.55

WM 9 2.04 (1.06–3.92) 0.0334

1,5-Anhydroglucitol (1,5-AG) IVW 25 4.87 (1.44–16.50) 0.0109 77.30 0.00 0.01 0.83

MR–Egger 25 3.64 (0.19–70.84) 0.4026 77.14 0.00

WM 25 5.12 (1.81–14.51) 0.0021

Phenol sulfate IVW 13 62.73 (1.35–2909.40) 0.0345 447.16 0.00 0.14 0.61

MR–Egger 13 0.95 (0.37–2.43) 0.9207 436.06 0.00

WM 13 1.70 (0.00–1916045.26) 0.9419

2-Methoxyacetaminophen sulfatea IVW 358 0.95 (0.92–0.97) 0.0001 430.43 0.00 0.01 0.48

MR–Egger 358 0.92 (0.85–1.00) 0.0447 429.81 0.00

WM 358 0.94 (0.91–0.98) 0.0047

1-Arachidonoylglycerophosphocholinea IVW 16 2.73 (1.22–6.15) 0.0150 15.80 0.40 −0.02 0.15

MR–Egger 16 7.01 (1.65–29.81) 0.0195 13.49 0.49

WM 16 3.61 (1.28–10.19) 0.0151

Isobutyrylcarnitine IVW 6 4.54 (1.50–13.75) 0.0074 4.25 0.51 0.04 0.44

MR–Egger 6 1.10 (0.04–34.11) 0.9604 3.52 0.48

WM 6 3.36 (0.78–14.49) 0.1044

Palmitoleate (16:1n7) IVW 7 5.06 (2.03–12.62) 0.0005 3.07 0.80 −0.03 0.37

(Continued on following page)
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TABLE 1 (Continued) The three MRmodel estimates of the causal relationships between 14 knownmetabolites and the risk of SLE and tests for heterogeneity and
horizontal pleiotropy.

Metabolite Method SNP (N) OR (95% CI) p Heterogeneity p Pleiotropy p

Q value Intercept

MR–Egger 7 11.64 (1.77–76.43) 0.0508 2.08 0.84

WM 7 5.31 (1.53–18.44) 0.0086

1-Oleoylglycerophosphoethanolamine IVW 6 4.24 (1.21–14.85) 0.0241 5.08 0.41 −0.11 0.16

MR–Egger 6 1697.67 (1.68–1715020.92) 0.1028 2.10 0.72

WM 6 2.69 (0.47–15.32) 0.2663

aIVW, inverse variance weighting; WM, weighted median.

TABLE 2 Enrichment pathways of the metabolites selected by forward MR.

Pathway Total Expected Hits Raw p FDR

Bile acid biosynthesis 65 0.317 2 0.035 1

Urea cycle 29 0.142 1 0.134 1

Aspartate metabolism 35 0.171 1 0.16 1

Arginine and proline metabolism 53 0.259 1 0.234 1

Valine, leucine and isoleucine degradation 60 0.293 1 0.261 1

Purine metabolism 74 0.361 1 0.313 1

FIGURE 4
Network of enrichment pathways of the metabolites selected by forward MR. The colour ranges from light yellow to dark red, indicating the level of
enrichment significance, and the size of the circle reflects the level of the enrichment ratio.
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The results of LDSC analysis show weak evidence of a genetic
correlation between SLE and ursodeoxycholate (rg = 0.0395, se =
0.2454, p = 0.8722), taurodeoxycholate (rg = −0.1601, se = 0.1715,
p = 0.3503), N1-methyladenosine (rg = −0.0427, se = 0.362, p =
0.7538), 1,5-anhydroglucitol (1,5-AG) (rg = −0.0395, se = 0.0840, p =
0.6383), 1-arachidonoylglycerophosphocholine (rg = −0.0320, se =
0.1026, p = 0.7554), isobutyrylcarnitine (rg = 0.1165, se = 0.1219, p =
0.3392), palmitoleate (16:1n7) (rg = 0.2461, se = 0.1551, p = 0.1124),
and 1-oleoylglycerophosphoethanolamine (rg = 0.1058, se = 0.2077,
p = 0.6105), suggesting that the shared genetic component did not
confound the MR estimates (Supplementary Table S1).

Fourteen metabolites significantly associated with SLE were
entered into the Metabolic Analyzer 5.0 platform to determine
various potential metabolic pathways involved in the
pathogenesis of SLE. Among them, taurodeoxycholate and
taurochenodeoxycholate were involved in the metabolic
enrichment pathway of bile acid biosynthesis (p = 0.035)
(Table 2). The metabolic mechanism formed by the above
metabolites may be involved in the pathogenesis of SLE. Figure 4
exhibits the network of interactions among the metabolic pathways
involved in this study.

3.2 Influence of the 486 serum metabolites
on SLE (reverse MR)

As the genome-wide significance threshold was p < 1 × 10−5,
21 significant SNPs were extracted as the IVs for SLE. The 486 serum
metabolites were viewed as the outcomes. Of the 486 metabolites,
21 SNPs met the harmonization criteria. In addition, the F statistic
values were all greater than 10, indicating that the weak instrumental
bias is unlikely to be significant.

As no heterogeneity or weak instruments were observed, the
IVW method was used as the primary estimation method for SLE
casualties. From the primary results, 51 significantly associated
metabolites were selected (p < 0.05 for IVW), among which
17 were positively associated with SLE, and 34 were negatively
associated with SLE. 2-Methoxyacetaminophen sulfate (p = 1.55 ×
10−4) was the most significant metabolite, followed by gamma-
glutamyltyrosine (p = 3.12 × 10−4) and pentadecanoate (15:0)
(p = 8.12 × 10−4) (Figure 5). Seventeen out of the 51 metabolites
were unnamed. Among the 34 identified metabolites, 9 metabolites
belonging to the amino acid pathway, phosphate belonging to the
energy pathway and 2-hydroxyhippurate (salicylurate) belonging to

FIGURE 5
Volcano plot of correlations related to the influence of SLE on metabolites. This plot includes both odds ratios (ORs) in log 2 scale and p-values in
-log 10 estimated by the inverse variance weighted method for SLE.
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the xenobiotic pathway were positively associated with SLE.
Gamma-glutamyltyrosine and cyclo(leu-pro), belonging to the
peptide pathway, exhibit serum protection. Twelve out of
21 metabolites across the lipid pathway have a protective effect,
and the other 9 metabolites may also be risk factors for SLE
(Figure 6). The results of the alternative MR analysis, Q test and
sensitivity analysis for 14 known metabolites are shown in Table 3.
Due to the influence of the number of IVs and the small confidence
interval of the OR value, the p-values of the sensitivity analysis of
lysine, 15-methylpalmitate (isobar with 2-methylpalmitate), glycerol
and myristate (14:0) are less than 0.05, and a random effect model
should be used.

The results of the LDSC analysis showweak evidence of a genetic
correlation between 36 metabolites and SLE (15 metabolites could
not be used to estimate heritability because the genetic covariance
matrix includes traits estimated to have negative heritability). Rg
ranges from −0.3351 to 1.0997, the standard error from 0.0710 to
0.5204, and the p-value from 0.0023 to 0.9950. Except for phosphate
belonging to the energy pathway (p = 0.0024) and X-13671
(unknown) (p = 0.0064), the genetic correlation of the other
metabolites was not significant (p > 0.05), suggesting that these
shared genetic components did not confound the MR estimates
(Supplementary Table S2).

Thirty-three metabolites significantly influenced by SLE were
put into the Metabolic Analyzer 5.0 platform to determine various
potential metabolic pathways involved in the pathogenesis of SLE

and immunomics. Among them, linoleic acid and docosapentaenoic
acid (22n-6) were involved in the metabolic pathway of alpha-
linolenic acid and linoleic acid metabolism (p = 0.0260), choline and
phosphate were involved in the metabolic pathway of betaine
metabolism (p = 0.0314), and glycerol and phosphate were
involved in the metabolic pathway of glycerolipid metabolism
(p = 0.0435) (Table 4). The metabolic mechanism formed by the
above metabolites may be involved in the pathogenesis impacted by
SLE. Figure 7 exhibits the network of interactions among the
metabolic pathways involved in this analysis.

3.3 Intersection between forward MR and
reverse MR

Intersection analysis was introduced to analyse the shared
metabolites screened by the forward and reverse MR analyses.
Palmitoleate belonging to the lipid superpathway and
isobutyrylcarnitine and phenol sulfate belonging to the amino
acid superpathway appeared in the intersection (Figure 8).

4 Discussion

We elucidated the bidirectional causal relationship between
metabolites and SLE by using genetic variation as the IVs in a

FIGURE 6
Forest plot of the causal effects of SLE on the risk of metabolites derived from the IVW method. OR, odds ratio; CI, confidence interval.

Frontiers in Molecular Biosciences frontiersin.org09

Li et al. 10.3389/fmolb.2023.1281987

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1281987


TABLE 3 The three MR model estimates of the causal relationships between the risk of SLE and 34 known metabolites and tests for heterogeneity and horizontal
pleiotropy.

Metabolite Method SNP (N) OR (95% CI) p Heterogeneity p Pleiotropy p

Q value (I2) Intercept

Lysine IVW 21 1.00 (1.00–1.01) 0.0023 23.01 0.29 0.00 0.00

MR–Egger 21 1.00 (0.99–1.00) 0.5765 17.48 0.56

WM 21 1.00 (1.00–1.01) 0.1123

Homocitrulline IVW 21 1.01 (1.00–1.01) 0.0049 18.41 0.56 0.00 0.39

MR–Egger 21 1.00 (0.99–1.02) 0.5729 17.63 0.55

WM 21 1.01 (1.00–1.02) 0.0220

Isovalerylcarnitine IVW 21 1.01 (1.00–1.01) 0.0049 18.28 0.57 0.00 0.54

MR–Egger 21 1.00 (0.99–1.01) 0.4246 17.90 0.53

WM 21 1.01 (1.00–1.01) 0.0908

5-Oxoproline IVW 21 1.00 (0.99–1.00) 0.0195 32.50 0.04 0.00 0.37

MR–Egger 21 0.99 (0.99–1.00) 0.0701 31.14 0.04

WM 21 1.00 (0.99–1.00) 0.0165

Isobutyrylcarnitine IVW 21 1.01 (1.00–1.01) 0.0206 15.47 0.75 0.00 0.12

MR–Egger 21 1.00 (0.99–1.01) 0.7468 12.81 0.85

WM 21 1.00 (1.00–1.01) 0.2638

Phenol sulfate IVW 21 1.01 (1.00–1.02) 0.0217 19.39 0.50 0.00 0.11

MR–Egger 21 1.02 (1.00–1.03) 0.0181 16.54 0.62

WM 21 1.01 (1.00–1.02) 0.2566

Histidine IVW 21 1.00 (1.00–1.00) 0.0246 12.01 0.92 0.00 0.75

MR–Egger 21 1.00 (0.99–1.00) 0.1999 11.91 0.89

WM 21 1.00 (0.99–1.00) 0.0223

Kynurenine IVW 21 1.00 (1.00–1.01) 0.0355 23.51 0.26 0.00 0.39

MR–Egger 21 1.01 (1.00–1.01) 0.0903 22.59 0.26

WM 21 1.00 (1.00–1.01) 0.0426

N-Acetylthreonine IVW 21 1.00 (1.00–1.01) 0.0437 25.09 0.20 0.00 0.32

MR–Egger 21 1.01 (1.00–1.02) 0.0792 23.77 0.21

WM 21 1.01 (1.00–1.01) 0.0086

Phosphate IVW 21 1.00 (1.00–1.00) 0.0292 15.90 0.72 0.00 0.62

MR–Egger 21 1.00 (0.99–1.00) 0.1595 15.65 0.68

WM 21 1.00 (0.99–1.00) 0.1163

Palmitoyl sphingomyelin IVW 21 0.99 (0.99–1.00) 0.0002 20.33 0.44 0.00 0.94

MR–Egger 21 0.99 (0.99–1.00) 0.0765 20.32 0.38

WM 21 0.99 (0.99–1.00) 0.0008

Pentadecanoate (15:0) IVW 21 0.99 (0.99–1.00) 0.0008 17.16 0.64 0.00 0.20

MR–Egger 21 1.00 (0.99–1.01) 0.6735 15.39 0.70

WM 21 0.99 (0.99–1.00) 0.0269

Glycochenodeoxycholate IVW 21 1.02 (1.01–1.03) 0.0030 15.63 0.74 0.00 0.67

(Continued on following page)
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TABLE 3 (Continued) The three MRmodel estimates of the causal relationships between the risk of SLE and 34 knownmetabolites and tests for heterogeneity and
horizontal pleiotropy.

Metabolite Method SNP (N) OR (95% CI) p Heterogeneity p Pleiotropy p

Q value (I2) Intercept

MR–Egger 21 1.02 (1.00–1.03) 0.0865 15.44 0.69

WM 21 1.02 (1.00–1.04) 0.0238

Propionylcarnitine IVW 21 1.00 (1.00–1.01) 0.0069 21.21 0.39 0.00 0.74

MR–Egger 21 1.00 (1.00–1.01) 0.3407 21.08 0.33

WM 21 1.00 (1.00–1.01) 0.1212

Cholesterol IVW 21 1.00 (0.99–1.00) 0.0085 34.38 0.02 0.00 0.67

MR–Egger 21 0.99 (0.99–1.00) 0.1279 34.05 0.02

WM 21 0.99 (0.99–1.00) 0.0015

1-Oleoylglycerol (1-monoolein) IVW 21 1.01 (1.00–1.02) 0.0110 14.46 0.81 0.00 0.36

MR–Egger 21 1.00 (0.99–1.02) 0.6920 13.59 0.81

WM 21 1.01 (1.00–1.02) 0.2091

Chiro-inositol IVW 21 0.97 (0.95–0.99) 0.0121 25.39 0.19 0.01 0.51

MR–Egger 21 0.96 (0.92–1.00) 0.0920 24.82 0.17

WM 21 0.95 (0.93–0.98) 0.0010

Linoleate (18:2n6) IVW 21 1.00 (0.99–1.00) 0.0136 13.58 0.85 0.00 0.38

MR–Egger 21 1.00 (0.99–1.01) 0.7048 12.75 0.85

WM 21 1.00 (0.99–1.00) 0.1996

15-Methylpalmitate (isobar with 2-methylpalmitate) IVW 21 0.99 (0.99–1.00) 0.0154 22.31 0.32 0.00 0.02

MR–Egger 21 1.00 (1.00–1.01) 0.3099 15.61 0.68

WM 21 0.99 (0.99–1.00) 0.0703

Palmitoleate (16:1n7) IVW 21 0.99 (0.99–1.00) 0.0172 15.48 0.75 0.00 0.14

MR–Egger 21 1.00 (0.99–1.01) 0.8296 13.06 0.84

WM 21 0.99 (0.99–1.00) 0.0913

5-Dodecenoate (12:1n7) IVW 21 0.99 (0.99–1.00) 0.0172 11.49 0.93 0.00 0.10

MR–Egger 21 1.00 (0.99–1.01) 0.7021 8.51 0.98

WM 21 1.00 (0.99–1.00) 0.3315

Myristoleate (14:1n5) IVW 21 0.99 (0.99–1.00) 0.0175 17.23 0.64 0.00 0.08

MR–Egger 21 1.00 (0.99–1.01) 0.6303 13.83 0.79

WM 21 1.00 (0.99–1.00) 0.2222

Octadecanedioate IVW 21 0.99 (0.99–1.00) 0.0284 16.65 0.68 0.00 0.90

MR–Egger 21 0.99 (0.98–1.00) 0.2602 16.64 0.61

WM 21 0.99 (0.99–1.00) 0.1713

X-12442-5,8-Tetradecadienoate IVW 21 0.99 (0.99–1.00) 0.0293 13.37 0.86 0.00 0.83

MR–Egger 21 0.99 (0.98–1.01) 0.4072 13.33 0.82

WM 21 1.00 (0.99–1.00) 0.2668

Choline IVW 21 1.00 (0.99–1.00) 0.0345 29.26 0.08 0.00 0.86

MR–Egger 21 1.00 (0.99–1.00) 0.4353 29.22 0.06

(Continued on following page)
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two-sample MR model. We discovered that 24 metabolites
belonging to the lipid, carbohydrate, xenobiotic and amino acid
superpathways may increase the risk of SLE occurrence. In addition,
the metabolic disorders of 51 metabolites belonging to the amino
acid, energy, xenobiotics, peptide and lipid superpathways were
affected by SLE. Palmitoleate belonging to the lipid superpathway
and isobutyrylcarnitine and phenol sulfate belonging to the amino
acid superpathway were factors with two-way causation.

In the first part of this study (forward MR), the metabolism of
bile acids has aroused our great concern. Our study showed that the
significantly altered metabolites (taurodeoxycholate,

taurochenodeoxycholate, and ursodeoxycholate) were mapped to
bile acid metabolism pathways (p = 0.035).

There is a subtle relationship between bile acid metabolism, gut
microbes and the immune system (Cai et al., 2022; Collins et al.,
2023). Bile acids are involved in processes including glucose and
lipid metabolism, energy balance, and immune regulation through
several key receptors such as the farnesoid X receptor (FXR), Takeda
G protein-coupled receptor 5 (TGR5), pregnane X receptor (PXR),
vitamin D receptor (VDR), sphingosine-1-phosphate receptor
2(SP1PR2), and retinoid-related orphan receptorγt (RORγt) (Jia
et al., 2023). In the T cells of the intestine, bile acids affect the

TABLE 3 (Continued) The three MRmodel estimates of the causal relationships between the risk of SLE and 34 knownmetabolites and tests for heterogeneity and
horizontal pleiotropy.

Metabolite Method SNP (N) OR (95% CI) p Heterogeneity p Pleiotropy p

Q value (I2) Intercept

WM 21 1.00 (1.00–1.00) 0.3815

Glycerol IVW 21 1.00 (0.99–1.00) 0.0373 17.46 0.62 0.00 0.04

MR–Egger 21 1.00 (1.00–1.01) 0.3491 12.58 0.86

WM 21 1.00 (0.99–1.00) 0.4697

Docosapentaenoate (n3 DPA; 22:5n3) IVW 21 0.99 (0.99–1.00) 0.0401 15.58 0.74 0.00 0.71

MR–Egger 21 0.99 (0.99–1.00) 0.5293 15.44 0.69

WM 21 1.00 (0.99–1.01) 0.1263

Glycocholate IVW 21 1.01 (1.00–1.02) 0.0404 25.23 0.19 0.00 0.35

MR–Egger 21 1.00 (0.98–1.02) 0.8721 24.07 0.19

WM 21 1.01 (1.00–1.02) 0.1093

Myristate (14:0) IVW 21 1.00 (0.99–1.00) 0.0408 23.64 0.26 0.00 0.02

MR–Egger 21 1.00 (1.00–1.01) 0.2770 17.40 0.56

WM 21 1.00 (0.99–1.00) 0.2438

1-Stearoylglycerophosphoethanolamine IVW 21 0.99 (0.99–1.00) 0.0452 23.01 0.29 0.00 0.95

MR–Egger 21 0.99 (0.98–1.01) 0.3953 23.00 0.24

WM 21 0.99 (0.99–1.00) 0.0405

Hexadecanedioate IVW 21 0.99 (0.99–1.00) 0.0474 15.95 0.72 0.00 0.36

MR–Egger 21 1.00 (0.99–1.01) 0.9022 15.08 0.72

WM 21 0.99 (0.98–1.00) 0.0496

Gamma-glutamyltyrosine IVW 21 0.99 (0.99–1.00) 0.0003 20.69 0.42 0.00 0.19

MR–Egger 21 0.99 (0.98–1.00) 0.0088 18.86 0.47

WM 21 0.99 (0.99–1.00) 0.0104

Cyclo (leu-pro) IVW 21 0.99 (0.98–1.00) 0.0287 17.13 0.64 0.00 0.97

MR–Egger 21 0.99 (0.97–1.01) 0.2919 17.13 0.58

WM 21 0.99 (0.98–1.00) 0.0747

2-Hydroxyhippurate (salicylurate) IVW 21 1.03 (1.00–1.06) 0.0438 20.31 0.44 0.00 0.92

MR–Egger 21 1.03 (0.97–1.10) 0.3152 20.30 0.38

WM 21 1.02 (0.98–1.06) 0.3609

aIVW, inverse variance weighting; WM, weighted median.

Frontiers in Molecular Biosciences frontiersin.org12

Li et al. 10.3389/fmolb.2023.1281987

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1281987


differentiation of Th17, Treg through the regulation of RORγt, FXR,
and VDR receptors (Hang et al., 2019). Through Spearman’s
correlation analysis showed good prediction of the SLEDAI score
by bile acids (deoxycholic acid, glycocholic acid, and
isohyodeoxycholic acid) and arachidonic acid, demonstrating a
correlation between bile acids and SLE activity in a metabolomics
study (He et al., 2020a). Our MR analysis indicated that individuals
with high levels of bile acids (ursodeoxycholate, taurodeoxycholate,
taurochenodeoxycholate) were more likely to develop SLE. Previous
research on SLE found that chenodeoxycholic acid (CDCA)
suppresses inflammatory cytokines and showing its association
with SLE in MRL/lpr mice (Lian et al., 2012). Considering that
bile acids are involved in the metabolic balance and
immunoregulatory processes in multiple tissues, the exploration
of the mechanism affecting systemic lupus erythematosus through
the regulation of bile acids and their receptors will be the next step of
our research.

Altered lipid metabolism is well known to occur in SLE patients.
Especially in serum, a metabolomics study revealed that the identified
lipids accounted for approximately 46.3% of the total identified
metabolites, and the altered lipids in SLE patients were more than
65% of all changed metabolites (de Carvalho et al., 2008). Two
observational studies from China and Brazil suggested that SLE can
cause disorders of lipidmetabolism [12,28]. In the present systematicMR
study, we confirmed these associations of lipid metabolism (palmitoleat,
isobutyrylcarnitine, 1-arachidonoylglycerophosphocholine, 1-
oleoylglycerophosphoethanolamine) with the risk of SLE from a
genetic perspective.

Citrullline was found to be protective as a differential metabolite
in our MR analyses (p = 0.0489). No direct literature reports of
citrulline and SLE have been retrieved. But previous studies have
shown that increased citrulline directly binds to JAK2 and inhibits
JAK2-STAT1 signalling (Nakayamada and Tanaka, 2022). The JAK-
STAT signalling pathway is involved in the pathogenesis of multiple
autoimmune diseases, including SLE. In an animal model of lupus,
the JAK inhibitor tofacitinib improved clinical features, immune
deregulation, and vascular dysfunction. It can therefore be
speculated that increased citrulline, as a JAK2 inhibitor, may act
as a protective factor in the pathogenesis of SLE.

1,5-AG is one of the main polyol sugars in the human body, is
mainly derived from food and is hardly synthesized by the human body

(Yamanouchi and Akanuma, 1994). When blood glucose levels are
above the renal glucose threshold, the reabsorption of 1,5-AG in the
kidney is competitively inhibited by glucose, which leads to a decrease in
serum 1,5-AG levels. Measuring serum 1,5-AG levels can reflect the
average blood glucose level in the last 1–2 weeks (Almeida et al., 2021).
Previous studies showed that elevated levels of 1,5-AG in the immune
microenvironment could inhibit macrophage proinflammatory
polarization and promote survival of acute B lymphocyte leukemia
cells in vitro through upregulation of C-X-C Motif Chemokine Ligand
14 (CXCL14) (Wu et al., 2023b). Our MR study identified that 1,5-AG
acted as a pathogenic factor, leading to a high risk of SLE (p = 0.0109).
Considering that the detection technology of 1, 5-AG is relatively stable
and mature (Ortiz-Martínez et al., 2022), it has the potential to be used
as a biomarker for predicting SLE to achieve clinical translation.

In a metabolomics study covering 4,569 differentially expressed
metabolites identified in SLE, elevated levels of these metabolites
were associated with the biosynthesis of valine, leucine, and
isoleucine (Zeng et al., 2021). This study indicated that the
metabolism of isoleucine is involved in the pathogenesis of SLE.
By comparison, our MR study identified that isoleucine (p = 0.0431)
also acted as a pathogenic factor, leading to a high risk of SLE.

For the other metabolites we screened, such as 2-
methoxyacetaminophen sulfate, xanthine, N1-methyladenosine,
we had not found reports related to SLE. A mounting array of
studies has revealed that patients with SLE have abnormal
metabolism compared to the general population (Teng et al.,
2020). Due to limited understanding of the role about these
metabolite in SLE, it would be a suggestive finding.

In the second part of this analysis (reverse MR), we found that
alpha-linolenic acid and linoleic acid were the most significantly
enriched metabolic pathways (p = 0.0260). The linolenic acid
involved in this pathway is a new class of oxylipins that are
produced by enzymatic or nonenzymatic oxidation of
polyunsaturated fatty acids (PUFAs) (Kortz et al., 2014). Oxidized
lipids play a very important role in the pathological and physiological
environment, especially in inflammation and the immune response
(Fullerton et al., 2014; Dennis and Norris, 2015). In SLE, several
oxylipins have been identified to be significantly changed and critical
for SLE pathophysiology, suggesting the potential utility of oxylipins as
candidate biomarkers for SLE diagnosis and clinical treatment (Hye
Khan et al., 2019; He et al., 2020b). Jingquan H et al. used targeted mass

TABLE 4 Top ten enrichment pathways of the metabolites selected by the reverse MR.

Pathway Total Expected Hits Raw p FDR

Alpha-linolenic acid and linoleic acid metabolism 19 0.26 2 0.026 0.825

Betaine metabolism 21 0.287 2 0.0314 0.825

Glycerolipid metabolism 25 0.342 2 0.0435 0.825

Methylhistidine metabolism 4 0.0547 1 0.0537 0.825

Bile acid biosynthesis 65 0.889 3 0.0537 0.825

Ammonia recycling 32 0.438 2 0.0681 0.825

Galactose metabolism 38 0.52 2 0.0922 0.825

Biotin metabolism 8 0.109 1 0.105 0.825

Methionine metabolism 43 0.588 2 0.114 0.825
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spectrometry analysis to explore the alteration of oxylipins in the serum
of 98 SLE patients and 106 healthy controls (He et al., 2022). The
negative correlation of linolenic acid with lupus nephritis and SLE
disease activity is consistent with our study. This study further
confirmed that SLE may be the cause of reduced linolenic acid
metabolism.

This reverse MR analysis also revealed enrichment of the betaine
metabolism pathway that was significantly associated with SLE (p =
0.0314). Although we did not find reports of a direct association
between betaine and SLE, a study based on ultra-high-performance
liquid chromatography-quadrupole time-of-flight mass
spectrometry suggested that the betaine pathway differed
significantly between rheumatoid arthritis patients and healthy
controls (Zhu et al., 2022). Rheumatoid arthritis and SLE are

autoimmune-related diseases. In fact, these two diseases share
several clinical manifestations, serological profiles, and
immunological characteristics. The third significant metabolic
enrichment pathway of interest in the reverse MR analysis was
glycerolipid metabolism (p = 0.0435). Glycerolipids are an
important component of the cell membrane. Their activation not
only has antioxidant effects (Matsufuji et al., 2000) but also has anti-
inflammatory effects, especially in atherosclerosis caused by
inflammatory factors (KaranionisH et al., 2002). It is well known
that atherosclerosis is a major complication of SLE (Liu et al., 2022).
The levels of circulating apoptotic endothelial cells are increased in
SLE patients and are strongly linked to vascular dysfunction and
increased tissue factor levels, suggesting an imbalance between
endothelial cell damage and repair in individuals with SLE

FIGURE 7
Network of enrichment pathways of the metabolites selected by reverse MR. The colour ranges from light yellow to dark red, indicating the level of
enrichment significance, and the size of the circle reflects the level of the enrichment ratio.
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(Rajagopalan et al., 2004). The regulation of glycerolipids, as
intermediate metabolites, is undoubtedly an innovative idea to
prevent atherosclerosis in SLE patients.

In addition to the above significantly enriched pathways, this study
specifically focused on threemetabolites (palmitoleate, isobutyrylcarnitine
and phenol sulfate) with bidirectional causal effects on SLE. Palmitoleic
acid is a kind of free fatty acids (FFAs), and its correlation with SLE has
been studied. A study used gas chromatography with mass spectrometry
to identify the relationship between 24 FFAs and SLE (Shin et al., 2017).
The results showed that palmitoleic acid levels were significantly elevated
in SLE patients. Our causal study suggests that the elevation of palmitoleic
acid levels may be due to metabolic abnormalities caused by the SLE
immune response. In a study of serummetabolites and acute graft-versus-
host disease (GVHD), isobutyrylcarnitine was found to be altered in
patients with advanced GVHD (Reikvam et al., 2016). Carnitine is
important for fatty acid transport and may also be important for the
release of immunomodulatory cytokines. There is a lack of direct reports
on the relationship between phenol sulfate and SLE. However, phenol
sulfate is the main metabolite of intestinal microorganisms (Lustgarten
et al., 2014), and the balance of intestinalmicroorganisms is closely related
to the pathogenicity of SLE (Manfredo Vieira et al., 2018). Under the
influence of the gut microbiota, the microbial pathways related to sulfur
metabolism are altered in SLE patients (Tomofuji et al., 2021). In short,
the above three metabolites may be involved in the whole process of SLE
onset and development, and their metabolic mechanisms interact with
SLE-related mechanisms.

Our study has several merits. In this observational study, the
application of MR methodology efficiently decreases the potential
confounding factors and reverses causality. The chronology of the
causal chain of metabolites and SLE is clearer. Second, because a large
sample for theMR analysis was recruited in this study, the statistical power
of the results was increased. Third, to avoid bias from population
stratification, this research limited the GWAS data to the major
European ancestry cohorts. Furthermore, we adopted a two-way MR

analysis process to more comprehensively explain the causal relationship
between metabolites and SLE, as well as the mechanisms of the metabolic
abnormalities associated with SLE onset and disease progression.

There are certain limitations to this study. First, the study was
carried out using summary datasets, which makes it challenging to
undertake stratified analysis. Some behavioural and biological
characteristics are obscured. Second, it is possible that some
metabolites associated with SLE may be excluded due to the level of
pleiotropy of the IVs. Third, some important metabolites and pathways
are ignored because they are not named or annotated in the pathway
database. Therefore, the unproven metabolites still need to be explored
in depth. In the future, we will continue to pay attention to the database,
especially the characteristics of different types of SLE, and make more
accurate prediction of influencing factors.

In conclusion, the results of this study indicate that the levels of
some particular metabolites may either contribute to the immune
response inducing SLE or may be intermediates in the development
and progression of SLE. These metabolites can be used as auxiliary
diagnostic tools for SLE and for the evaluation of disease progression
and therapeutic effects. Future studies are necessary to derive more
accurate inferences from our findings.
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