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Type 2 diabetes mellitus (T2DM) can be multifactorial where both genetics and
environmental factors play a role.We aimed to investigate the use of polygenic risk
scores (PRS) in the prediction of pre-transplant T2DM and post-transplant
diabetes mellitus (PTDM) among solid organ transplant (SOT) patients. Using
non-genetic risk scores alone; and the combination with PRS, separate logistic
regression models were built and compared using receiver operator curves.
Patients were assessed pre-transplant and in three post-transplant periods:
0–45, 46–365 and >365 days. A higher PRS was significantly associated with
increased odds of pre-transplant T2DM. However, no improvement was observed
for pre-transplant T2DM prediction when comparing PRS combined with non-
genetic risk scores to using non-genetic risk scores alone. This was also true for
predictions of PTDM in all three post-transplant periods. This study demonstrated
that polygenic risk was only associated with the risk of T2DM among SOT
recipients prior to transplant and not for PTDM. Combining PRS with a clinical
model of non-genetic risk scores did not significantly improve the predictive
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ability, indicating its limited clinical utility in identifying patients at high risk for T2DM
before transplantation, suggesting that non-genetic or different genetic factors
may contribute to PTDM.
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type 2 diabetes mellitus, transplant, post-transplant diabetes mellitus, solid organ
transplant recipient, polygenic risk score

Introduction

Post-transplant diabetes mellitus (PTDM) is a complication that
can occur after a solid organ transplant (SOT). It refers to newly
diagnosed diabetes mellitus following SOT, irrespective of
diagnostic timing or whether T2DM was present but undetected
before transplantation (Sharif et al., 2014). The prevalence of PTDM
ranges from 10%–40% (Kasiske et al., 2003; Jenssen and Hartmann,
2019) and is associated with higher risk of death and complications
after transplantation when compared to non-diabetes patients
(Martínez-Dolz et al., 2005; Cho et al., 2012; Kim et al., 2017;
Dos Santos et al., 2022).

Polygenic risk scores (PRS) are scoring profiles that extend
information provided by genome wide association studies and
focus on the collective contribution of individual genetic
mutations to the phenotype of interest. While genome wide
association studies provide p-values and effect sizes to assess
the association between individual single nucleotide
polymorphisms (SNPs) with the phenotype (Marees et al.,
2018), these associations are treated as single events and those
that have weak associations with the phenotype are often removed
through multiple testing correction. PRS in contrast calculates a
score to describe the effect of each SNP, thus it is possible to assess
the risk for a given patient where multiple SNPs have been
identified and can be treated collectively as a polygenic risk
(Choi et al., 2020).

Previous studies assessing the use of PRS to predict T2DM have
reported differing results. While some studies found PRS
contributed very little to the prediction of T2DM in addition to a
model with non-genetic risk scores for T2DM such as age, body
mass index (BMI) and sex (Lango et al., 2008; Lyssenko et al., 2008;
Chikowore et al., 2016), others demonstrated an improvement in the
predictive performance of the model (Meigs et al., 2008; Chatterjee
et al., 2013). As the knowledge in this area remains limited, this study
aimed to assess the prediction of T2DM prior to transplant and
PTDM among SOT recipients using non-genetic risk scores alone
and the combination of non-genetic and PRS to investigate whether
adding PRS could be useful for understanding the risk of T2DM and
PTDM among SOT recipients.

Patients and methods

Study population

All patients ≥18 years old who underwent a SOT (heart, liver,
lung, or kidney) at Rigshospitalet, Copenhagen University Hospital
between January 2010 and December 2015 were eligible for
inclusion. The study included SOT recipients who had an

ethylenediaminetetraacetic acid stored blood sample in either the
Region Hovedstadens Biobank (Rigshospitalet) or PERSIMUNE
biobank (Rigshospitalet) and were part of the Management of
post-Transplant infections in Collaborating Hospitals (MATCH)
cohort (Lodding et al., 2015). For patients with more than one
transplantation, only data related to the first transplant after
2010 were assessed.

Data sources

Clinical characteristics, sociodemographic and biochemical data
were extracted from the MATCH database and the Centre of
Excellence for Personalized Medicine for Infectious Complications
in Immune Deficiency (PERSIMUNE) data warehouse, (https://www.
persimune.dk/), which includes both regional and nationwide data
collected prospectively as part of routine care.

Information on prescribed medications including insulin and
oral anti-diabetic medication were obtained from the Electronic
Prescription Medication (EPM) database that had records of
hospital prescriptions from 2006 to 2016, and the Danish
Prescription Database, a database with outpatient prescription
records from 2004 onwards (Dos Santos et al., 2022). There was
a gap in the data from EPM fromMay 2011 to December 2011 due to
a change in systems. Data on specific immunosuppressive therapies
for individual patients were not available. However, detailed
information on the immunosuppressive schemes per transplant
type have been previously published by Ekenberg C et al.
(Ekenberg et al., 2020).

Data on diagnoses were retrieved from the National Patient
Registry (Lynge et al., 2011) and Sundhedsdatabanken. The National
Patient Registry was established in 1977 and contains national data
on all hospital admissions up to 2016 while Sundhedsdatabanken
holds data records for patients in the capital region of Denmark
from 2008 until 2016 (Dos Santos et al., 2022). Mortality data from
the Danish Civil Registration System were used for death dates
(Pedersen, 2011).

Diabetes definition

Assessment of T2DMwas consistent with a previously published
study (Dos Santos et al., 2022). T2DMwas assessed at pre-transplant
and at three different PTDM time-periods.

1. 0–45 days post-transplant- “Early Likely PTDM” (EL-
PTDM).

2. 46–365 days post-transplant
3. >365 days post-transplant
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The fulfillment of at least one of the following criteria during the
time-period of interest (for all time-periods, except before
transplant), would classify the patients as “having developed
diabetes mellitus”.

• A Hemoglobin A1C test ≥6.5 mmol/L or (Sharif et al., 2014).
• A prescription of antidiabetic medication from either EPM or
Danish Prescription Database (use of insulin- Anatomical
Therapeutic Chemical (ATC) code A10A, or use of oral
antidiabetic medication -ATC code A10B) (Methodology
WCCfDS, 2023).

• A diagnosis of diabetes (International Classification of Disease
(ICD)-10 codes: E11, E13) (ICD10Data.com, 2023).

T2DM prior to transplant follows the above criteria with the
exception of insulin treatment used during hospitalization (from
EPM database) (Dos Santos et al., 2022), since these patients present
a high incidence of corticoid-induced hyperglycaemia before
transplant (Dos Santos et al., 2022). Additionally, prescription for
antidiabetic medication during the first 15 days post-transplantation
was not included in the definition of EL-PTDM due to a high
prevalence of glucose intolerance and hyperglycaemia (Chakkera
et al., 2009; Hecking et al., 2012). Patients classified with pre-
transplant T2DM were classified as having T2DM in the entire
follow-up period. Patients who were not classified as having pre-
transplant T2DM were classified as PTDM if they met the T2DM
definition in one of the time-periods of interest after-transplant, but
could subsequently return to non-diabetes status in the following
time-period if they did not meet the T2DM definition in the new
time-period (Dos Santos et al., 2022).

SOT recipients with a diagnosis code for type-1 diabetes (E10)
prior to transplantation were excluded as this study focuses on
polygenic scores for T2DM.

Genotyping, quality checks and imputation

Genotyping was performed using Infinium Global Screening
Array-24 v1.0 BeadChip (Illumina). SNP array data were provided
in plink file formats with an initial count of 673,642 SNPs and were
lifted to GRCh37 using CrossMap (Zhao et al., 2014). Initial quality
check was performed using PLINK software (v2.00a3LM) (Chang
et al., 2015), filtering out individuals and SNPs with less than 90%
genotyping and Hardy-Weinberg equilibrium p-value less than 1 ×
10−6. Higher or lower than expected genotype heterozygosity was
also performed through PLINK. Individuals with F-values more
than three standard deviations above or below the F-value mean
were removed from the data set. Subsequent quality checks such as
strand flipping, position, frequency and reference/alternate allele
checks were performed using PLINK through a helper script (HRC-
1000G-check-bim-v4.3.0) developed by McCarthy Group tools
(Centre for Human Genetics, 2023) with default recommended
parameters while specifying the input population to be European.
Reference files for this process used 1,000 Genomes Phase
3 combined data set (https://mathgen.stats.ox.ac.uk/impute/
1000GP_Phase3.html) (Genomes Project et al., 2015). Phasing of
the data was performed using SHAPEIT (v4.2) (Delaneau et al.,
2019) and the imputation of SNPs was performed using IMPUTE5

(Rubinacci et al., 2020) using the 1,000 Genomes SNP set as
reference panel and generated a total of 48,864,655 SNPs.
Imputed SNPs with INFO score less than 0.8 were removed. An
additional set of quality checks using the same parameters were
performed on the imputed data to ensure high quality imputed
SNPs. SNPs with minor allele frequency less than 1% were removed
from the data set followed by an additional check on the
heterozygosity count using same F-value filtering criterion. The
final number of SNPs used for downstream analysis was 8,771,317.

Genome-wide PRS

PRS selected for the MATCH cohort were obtained from a
genome wide PRS study containing T2DM scores performed by
Khera et al. (Khera et al., 2018) and downloaded from PGS Catalog
(ID: PGS000014) (Lambert et al., 2021). This data set consisted of
6,917,436 SNPs generated from a European cohort. The scores for
theMATCH cohort were calculated with PLINK (Chang et al., 2015)
and a total of 3,134,520 SNPs were processed.

Statistical analyses

Patient characteristics at the time of transplantation were
described and compared for those with and without pre-
transplant T2DM. Continuous variables were analysed using the
Wilcoxon test (nonparametric data) and χ2 test was used for
categorical variables.

PRS was split into quintiles for better visualization of their
potentially non-linear associations with T2DM.

To construct the non-genetic risk score clinical risk factors were
included in a multivariable logistic regression model predicting
T2DM prior to transplant. The individual event probabilities
were then used to create a ‘non-genetic score’ for each patient.
The clinical risk factors were selected a-priori based on those
previously identified in the literature (Lango et al., 2008;
Lyssenko et al., 2008; Meigs et al., 2008), and available in our
database. These included age at transplant (in years), sex,
transplant type, BMI and Charlson Comorbidity Index (CCI)
(per point) (Quan et al., 2005). For the CCI (Quan et al., 2005),
the two dimensions related to T2DM (presence of T2DM with and
without chronic complications) were excluded from calculation of
the index to avoid collinearity issues with our outcome (Dos Santos
et al., 2022). All non-genetic risk factors were calculated immediately
prior to transplant and were not recalculated during follow-up.

This single measure of “non-genetic risk score” was then split
into quintiles similar to the PRS. These non-genetic risk quintiles
were then used to check and visualize interactions with the quintiles
of the PRS. T2DM and PTDM event variation explained by the
different univariable logistic regression models (non-genetic risk
scores alone or PRS alone) and multivariable models (non-genetic
risk scores + PRS) were documented with receiver operating
characteristic values and the area under the curve (AUC) for
each model was compared using χ2 tests. The area under the
precision-recall curve (AUPRC) for each model is also presented.
The quintiles for both the non-genetic risk scores and PRS were
recalculated during each time-period to account for changes in the
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population. Sensitivity analyses including only patients that had a
diagnosis code for T2DM prior to transplant and excluding those
with a medication prescription and/or a haemoglobin A1C ≥
6.5 mmol/L were performed to assess model consistency. For all
PTDM analyses, patients with T2DM prior to transplantation were
excluded.

An additional sensitivity analysis was performed, using Poisson
regression analysis to account for the varying follow-up time of the
SOT recipients. In this analysis patients were included from day 46 post-
transplant and followed until the first time they met our definition of
PTDM. Those not developing PTDM were censored at their date of
death, new transplant date, or the end of follow-up (31.12.2016),
whichever occurred first. All data analyseswere performed using SAS 9.4.

Results

A total of 959 SOT recipients had a transplant between January
2010 and December 2015. Due to the absence of available genetic
information, 133 patients were excluded from this analysis. A
further 121 patients with a diagnosis code for type-1 diabetes
before transplant were also excluded. Thus, a total of 705 SOT
recipients were included in the final data set.

Table 1 shows the patient characteristics prior to SOT. Prior to
transplant, 521 patients were categorised as non-diabetes and 184 as
having pre-transplant T2DM. Within the four SOT types, the
percentage of patients with pre-transplant T2DM varied (p =
0.001). Heart transplant was the only transplant procedure to
have more pre-transplant T2DM patients than non-diabetes
patients (50.9% vs 49.1%). Additionally significant differences in
the distributions were also identified between the groups when
comparing BMI (p = 0.002) and age (p = 0.001). For BMI, 26.5%
of the patients with BMI <25.0 had T2DM prior to transplant
compared to 32.9% of the patients with BMI ≥25.0. In the age

category, patients with pre-transplant T2DM were older (54.9 years,
IQR: 46.7–62.1 years) than non-diabetic patients (49.4 years, IQR:
40.1–58.3 years).

Pre-transplant diabetes

The results of the multivariable logistic regression model used to
generate the ‘non-genetic risk score’ are given in Supplementary Table
S1 while results of the univariate logistic regression model are provided
in Supplementary Table S2. Figures 1A,B show the distribution of pre-
transplant T2DM and non-diabetes patients across the quintiles of both
the ‘non-genetic risk score’ and the PRS respectively. There was a
significant association with pre-transplant T2DM and the quintiles for
the non-genetic risk score (p < 0.0001, Figure 1A), where a higher
proportion with pre-transplant T2DM were found in the highest
quintiles. This was also confirmed in the univariable logistic
regression modelling in Table 2, where patients in the third quintile
(Odds Ratio (OR): 2.87, 95% confidence interval (CI): 1.49–5.54),
fourth (OR: 4.33, 95% CI: 2.28–8.20) and fifth quintiles (OR: 6.59,
95% CI: 3.50–12.37) had significantly higher odds of having T2DM
than patients in the first quintile.

The same trend was identified for the PRS, when assessing the
proportion with pre-transplant T2DM across the quintiles
(Figure 1B) despite a non-significant p-value (p = 0.09). Patients
in the highest quintile of the PRS category were found to have higher
odds of pre-transplant T2DM (OR: 2.08, 95% CI: 1.21–3.57, p =
0.007) when compared to those in the first quintile using univariable
logistic regression (Table 3).

Figure 2 illustrates the distribution of pre-transplant T2DM and
non-diabetes patients in quintiles for the combined model of non-
genetic risk factor and PRS, where a higher proportion of individuals
with T2DM pre-transplant are observed in the highest quintile.
Table 4 shows the AUC and the AUPRC for models including the

TABLE 1 Characteristics of non-diabetes and diabetes patients at baseline.

Characteristics Non-diabetes (N = 521) Pre-transplant diabetes (N = 184) p-value

Type of Transplant - N (%)

Kidney 250 (71.0) 102 (29.0) 0.001

Liver 143 (86.7) 22 (13.3)

Lung 99 (76.7) 30 (23.3)

Heart 29 (49.1) 30 (50.9)

Sex- N (%)

Male 305 (73.0) 113 (27.0) 0.49

Female 216 (75.3) 71 (24.7)

BMI categories -N (%)

BMI<25.0 211 (73.5) 76 (26.5) 0.002

BMI≥25.0 151 (67.1) 74 (32.9)

Missing 159 (82.4) 34 (17.6)

Age in years (Median and IQR) 49.4 (40.1–58.3) 54.9 (46.7–62.1) 0.001

CCI in points (Median and IQR) 2.0 (2.0–3.0) 2.0 (1.0–3.0) 0.27
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non-genetic risk scores and models with both PRS and non-genetic
risks scores for the prediction of pre-transplant T2DM. The addition
of the PRS to the non-genetic risk scores model did not significantly
improve the fit of the model (p = 0.10), although higher odds of pre-
transplant T2DM were still observed among participants in the fifth
quintile of PRS (adjusted OR: 1.94, 95% CI: 1.10–3.40, p = 0.02)
when compared to the first quintile. Sensitivity analysis only
defining T2DM using an ICD10 diagnosis code for T2DM prior
transplant showed consistent results (Supplementary Table S3).

Post-transplant diabetes (PTDM)

At 0–45 days after transplant, 60 (11.5%) of the 521 non-
diabetes patients had EL-PTDM.

For the period of 46–365 days post-transplant, a total of eight
patients were excluded from the analysis (four died and four

censored at the end of follow-up). None of the eight were
classified as EL-PTDM. This resulted in a total of 513 patients
being assessed in the 46–365 days post-transplant period. A total of
127 (24.8%) patients were defined as having PTDM in this period
(48 that also had EL-PTDM, and 79 newly diagnosed).

In the last period (>365 days post-transplant), a further 26 patients
were excluded from the analysis (25 who had died in the year following
transplant and one who had less than a year’s follow-up). Thirteen of
the 26 patients excluded had PTDM in the earlier period. Thus
487 patients were assessed for PDTM >365 days after transplant of
which 106 (21.8%) met our definition of PTDM (65 who also had
PTDM in the early period and 41 newly classified).

During the 46–365 and >365 days post-transplant period, the
highest quintile of the non-genetic risk scores was associated with an
increased odds of PTDM (OR: 1.92, 95% CI: 1.04–3.53, p = 0.03, and
OR: 2.78, 95%CI: 1.44–5.34, p = 0.002, respectively) compared to the
lowest quintile. An increased odds of EL-PTDM (OR: 1.86, 95% CI:

FIGURE 1
Distribution of patients prior to transplant, split into quintiles (x-axis) and categorized into those that are classified as having diabetes (orange) and
non-diabetes (blue). The y-axis illustrates percentage distribution with each set of quintiles being based on (A) non-genetic risk factors and on (B) PRS.
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0.84–4.15, p = 0.12) was also observed in the highest quintile
however this difference was not statistically significant (Table 2).
No significant associations were observed between the odds of
developing EL-PTDM or PTDM and the PRS, in any of the
time-periods in univariable analysis (Table 3).

Comparison between the AUC of the non-genetic risk scores
model and the AUC with the addition of the PRS is shown in
Table 4. Overall, the AUC was lower for all the models in the post-
transplant periods when compared to the models for pre-transplant
T2DM. Additionally, no significant improvement in the AUC was
observed in any of the time-periods for predicting EL-PTDM or
PTDM when the PRS was added to the model.

Sensitivity analysis using Poisson regression

513 patients were included in the sensitivity analysis using
Poisson regression analysis to account for the different follow-up
times. Individuals in this analysis were included from day 46-post

transplant and followed until the first time a patient met our
definition for PTDM, at a minimum of 46 days after transplant.
Patients in the fifth quintile of non-genetic risk score had higher rate
of PTDM (incidence rate ratio (IRR) 1.68, 95% CI: 0.98–2.89, p =
0.05) during follow-up (from day 46 post-transplant), compared to
patients in the first quintile. However, similar to the main analysis,
there was no significant association identified between the PRS and
PTDM when it was included in the model with the non-genetic risk
score (global p-value = 0.23). However, patients in the fifth quintile
of PRS were observed to have a two times higher rate of PTDM
(adjusted IRR 2.00, 95% CI: 1.07–3.75, p = 0.02) when compared to
patients in the first quintile (see Supplementary Table S4).

Discussion

The aim of this study was to assess whether a PRS for T2DMwas
associated with pre-transplant T2DM and whether the additional
information from a PRS could improve the prediction of PTDM

TABLE 2 Univariable logistic regression models with the non-genetic risk scores split into quintiles for the development of pre-transplant diabetes, EL-PTDM and
PTDM in each study period.

Non-genetic risk scores No. of patients OR 95% CI p-value AUC AUPRC No. of events

Pre-transplant 705 184

1st quintile 1 (ref) 1 (ref) 0.67 0.26 15

2nd quintile 1.63 0.81–3.28 0.16 23

3rd quintile 2.87 1.49–5.54 0.001 36

4th quintile 4.33 2.28–8.20 <0.0001 48

5th quintile 6.59 3.50–12.37 <0.0001 62

0–45 days post-transplant (EL-PTDM) 521 60

1st quintile 1 (ref) 1 (ref) 0.61 0.11 11

2nd quintile 1.31 0.56–3.05 0.52 14

3rd quintile 0.51 0.18–1.45 0.21 6

4th quintile 0.89 0.36–2.21 0.81 10

5th quintile 1.86 0.84–4.15 0.12 19

46–365 days post-transplant 513 127

1st quintile 1 (ref) 1 (ref) 0.58 0.24 24

2nd quintile 1.00 0.52–1.90 1.00 24

3rd quintile 0.075 0.38–1.48 0.41 19

4th quintile 0.90 0.46–1.74 0.76 22

5th quintile 1.92 1.04–3.53 0.03 38

>365 days post-transplant 487 106

1st quintile 1 (ref) 1 (ref) 0.61 0.21 18

2nd quintile 0.98 0.47–2.03 0.97 18

3rd quintile 0.74 0.34–1.58 0.44 14

4th quintile 1.00 0.48–2.06 1.00 18

5th quintile 2.78 1.44–5.34 0.0022 38
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among SOT recipients compared to one with non-genetic scores
alone. While we found that a high PRS was associated with increased
odds of pre-transplant T2DM, including the PRS in a model with
non-genetic risk scores, did not significantly improve prediction of
T2DM compared to the model with non-genetic risk scores alone.
Further, when considering EL-PTDM and PTDM in various time-
periods, neither the non-genetic risk scores nor the PRS were
strongly associated with the outcome.

For the pre-transplant period, patients in the highest quintile of the
PRS and patients in the third, fourth and fifth quintiles of the non-genetic
risk were found to have had higher odds of having T2DM. The addition
of the PRS did not significantly improve themodel compared to the non-
genetic information alone. Sensitivity analysis including only patients
with ICD-10 diagnosis codes for T2DM prior to transplant also had
similar results. Our results are consistent with some of the previous
studies assessing PRS to predict T2DM which also did not show a
significant improvement of T2DM prediction when the PRS was added
to amodel with non-genetic risk scores (Lango et al., 2008; Lyssenko et al.,
2008). A systematic review including studies that assessed PRS to predict

T2DM (Padilla-Martínez et al., 2020) through comparing AUC of
different models with and/or without the genetic information showed
inmost of the cases, the addition of the PRS to the non-genetic risk scores
had a modest effect on the ability to predict T2DM (Lango et al., 2008;
Lyssenko et al., 2008; Chikowore et al., 2016) at the best case scenario.

Some studies recorded better results when incorporating the genetic
information with the clinical risk factors, but this improvement on
T2DM prediction was small. While this could be due to the small
number of SNPs when generating the PRS, it also suggests that clinical
risk factors play a larger role than genetic factors alone. For example, in
a study conducted by Meigs et al., (Meigs et al., 2008), using 18 SNP
PRS, the AUC for T2DM prediction adjusted for age, sex and family
history overall showed minor improvements. In our study, over six
million SNPs from a PRS generated to predict T2DM (Lambert et al.,
2021) were mapped to over three million SNPs of the MATCH cohort.
Yet similarly, minor improvements were observed on only a certain
portion of the data. Thus, our findings further extend the idea that PRS
has a small effect when used in addition to non-genetic factors in the
prediction of T2DM.

TABLE 3 Univariable logistic regression models with the PRS split into quintiles for the development of pre-transplant diabetes, EL-PTDM and PTDM in each study
period.

PRS No. of patients OR 95% CI p-value AUC AUPRC No. of events

Pre-transplant 705 184

1st quintile 1 (ref) 1 (ref) 0.56 0.26 28

2nd quintile 1.38 0.79–2.42 0.25 36

3rd quintile 1.28 0.72–2.25 0.38 34

4th quintile 1.48 0.85–2.59 0.16 38

5th quintile 2.08 1.21–3.57 0.007 48

0–45 days post-transplant (EL-PTDM) 521 60

1st quintile 1 (ref) 1 (ref) 0.60 0.11 12

2nd quintile 0.39 0.13–1.15 0.08 5

3rd quintile 1.62 0.73–3.56 0.22 18

4th quintile 0.91 0.38–2.18 0.84 11

5th quintile 1.2 0.52–2.74 0.65 14

46–365 days post-transplant 513 127

1st quintile 1 (ref) 1 (ref) 0.53 0.24 25

2nd quintile 0.89 0.47–1.71 0.74 23

3rd quintile 1.23 0.66–2.31 0.49 29

4th quintile 0.84 0.44–1.62 0.61 22

5th quintile 1.18 0.63–2.20 0.60 28

>365 days post-transplant 487 106

1st quintile 1 (ref) 1 (ref) 0.55 0.21 18

2nd quintile 1.22 0.60–2.48 0.56 21

3rd quintile 1.44 0.72–2.86 0.29 24

4th quintile 0.94 0.45–1.96 0.87 17

5th quintile 1.62 0.82–3.21 0.16 26
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PTDM was considered at three different periods, EL-PTDM which
was assessed from day 0 to day 45 post-transplant, then PTDM assessed
at both 46–365 days post-transplant with the last period at >365 days
post-transplant. No significant association was observed between PRS
and a diagnosis of PTDM in any of the time-periods considered. Shaked
et al. performed the only study which examined PTDM and PRS in liver
and kidney recipients. Their study demonstrated that recipient T2DM
PRS were independently associated with PTDM risk between 6 and

12 months after transplantation in both liver and kidney transplant
recipients. This significantly improved PTDMprediction comparedwith
a model that included only non-genetic risk scores for PTDM (Shaked
et al., 2022). They also reported that T2DM PRS in liver donors, but not
in kidney donors, was an independent risk factor for PTDM
development. In our cohort, we did not have genetic information for
the donors, thus it was not possible to generate a PRS for them and assess
if the addition of this informationwould improve the performance of the

FIGURE 2
Distribution of patients prior to transplant, split into quintiles (x-axis) and categorized into those that are classified as having diabetes (orange) and
non-diabetes (blue). The y-axis illustrates percentage distribution with each set of quintiles being based on the combined non-genetic risk factors
and PRS.

TABLE 4 Area under the curve (AUC) for multivariable models including the non-genetic risk scores*, and combined PRS and non-genetic risks factors for the
prediction of pre-transplant diabetes, EL-PTDM and PTDM.

Time period AUC AUPRC p-valuea

Pre-transplant diabetes

Model including non-genetic risk scores alone 0.67 0.26 0.10

Model including non-genetic risk scores + PRS 0.68 0.26

0–45 days post-transplant

Model including non-genetic risk scores alone 0.61 0.11 0.09

Model including non-genetic risk scores + PRS 0.65 0.11

46–365 days post-transplant

Model including non-genetic risk scores alone 0.58 0.24 0.25

Model including non-genetic risk scores + PRS 0.60 0.24

>365 days post-transplant

Model including non-genetic risk scores alone 0.61 0.21 0.53

Model including non-genetic risk scores + PRS 0.62 0.21

a - p-values generated using χ2 test comparing AUC.

* - Multivariable models included the PRS, and the non-genetic risk score, both stratified into quintiles and fitted as categorical variables. Quintiles were recalculated for each time-period. The

logistic regression model used to generate the non-genetic risk score is given in Supplementary Table S1
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model in terms of PTDM prediction. Furthermore, we had insufficient
power to consider the transplant types individually.

Interestingly, the clinical model alone did not appear to be as good
at predicting EL-PTDM or PTDMwhen compared to predicting pre-
transplant T2DM. Individuals who met our definition of PTDM,
particularly in the earlier periods post-transplant may contain a
mixture of those who were already at an increased risk for T2DM
and those where it was a consequence of the transplant regimen. As
we only considered clinical factors measured prior to transplant there
may be other treatment related clinical factors such as
immunosuppressive regimen including steroid use that are more
important for the development of PTDM following a SOT.
Additionally, it is important to note this may also be a potential
explanation for the lack of association between the PRS and PTDM, as
individuals with a high genetic risk for T2DMmay have already been
diagnosed prior to their transplant and thus were excluded from this
part of our analysis. After the removal of the group with T2DM prior
to transplant, the interplay between genetic risk, and clinical risk
factors following transplant maybe very different.

The limitations of this study should be highlighted. Firstly, this
study did not include patient self-report of diabetes status but relied
on a definition to identify T2DM patients used in a previous study
(Dos Santos et al., 2022). However, several studies (Miller et al.,
2004; Dos Santos et al., 2022) have adopted definitions to identify
patients with T2DM based on similar criteria and they all performed
quite well. Additionally, validation can also be derived from our
finding that the highest quintile of the PRS score was significantly
associated with pre-transplant T2DM. Secondly, the risk scores used
in this study was generated based on a PRS for T2DM in a general
European population. This is different to post-transplant patients
where some other factors, such as stress from surgery and
medication, can have an impact in the genetic information
(Shaked et al., 2022). One additional limitation is the lack of
information about the immunosuppressive medication. It is well
known that immunosuppressive medication has great influence on
glucose metabolism (Boloori et al., 2015), so this would be an
important adjustment variable for our analyses if it had been
available. Additionally, our results were based on a cohort of
SOT recipients from one hospital in Denmark, validation in an
independent cohort would add strength to the generalisability of our
findings.

Strengths of this study are also worth mentioning. This was the
first study that proposed the use of T2DMPRS to predict PTDM in a
large andmore varied cohort, including heart, liver, kidney, and lung
recipients and in different time-periods after transplant (0–45 days
after transplant, 46–365 days and >365 days after transplant). To our
knowledge, there is only one study assessing the use of T2DM
polygenic score to predict PTDM in liver and kidney recipients at
6–12 months after transplant (Shaked et al., 2022).

In summary, this study demonstrated that among SOT
recipients, PRS could, help in the identification of patients at
risk for T2DM prior to transplant. However, traditional non-
genetic risk scores were just as good at predicting T2DM prior
to transplant and the PRS did not provide any improvement in
identification of high-risk individuals indicating its limited
potential clinical utility Furthermore, the same predictive ability
of PRS was not observed for PTDM, suggesting that non-genetic or
different genetic factors, possibly related to the transplant itself,

may contribute to the development of PTDM. Future studies
assessing prediction of PTDM with the use of polygenic scores
for T2DM are needed.
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