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Machine learning-enhanced
Insights into sphingolipid-based
prognostication: revealing the
Immunological landscape and
predictive proficiency for
Immunomotherapy and
chemotherapy responses in
pancreatic carcinoma

Ting Shi, Minmin Li* and Yabin Yu*

Department of Hepatobiliary Surgery, The Affiliated Huaian No 1 People’s Hospital of Nanjing Medical
University, Huaian, China

Background: With a poor prognosis for affected individuals, pancreatic
adenocarcinoma (PAAD) is known as a complicated and diverse illness.
Immunocytes have become essential elements in the development of PAAD.
Notably, sphingolipid metabolism has a dual function in the development of
tumors and the invasion of the immune system. Despite these implications,
research on the predictive ability of sphingolipid variables for PAAD prognosis
is strikingly lacking, and itis yet unclear how they can affect PAAD immunotherapy
and targeted pharmacotherapy.

Methods: The investigation process included SPG detection while also being
pertinent to the prognosis for PAAD. Both the analytical capability of CIBERSORT
and the prognostic capability of the pRRophetic R package were used to evaluate
the immunological environments of the various HCC subtypes. In addition, CCK-8
experiments on PAAD cell lines were carried out to confirm the accuracy of drug
sensitivity estimates. The results of these trials, which also evaluated cell survival
and migratory patterns, confirmed the usefulness of sphingolipid-associated
genes (SPGs).

Results: As a result of this thorough investigation, 32 SPGs were identified, each of
which had a measurable influence on the dynamics of overall survival. This
collection of genes served as the conceptual framework for the development
of a prognostic model, which was carefully assembled from 10 chosen genes. It
should be noted that this grouping of patients into cohorts with high and low risk
was a sign of different immune profiles and therapy responses. The increased
abundance of SPGs was identified as a possible sign of inadequate responses to
immune-based treatment approaches. The careful CCK-8 testing carried out on
PAAD cell lines was of the highest importance for providing clear confirmation of
drug sensitivity estimates.

Conclusion: The significance of Sphingolipid metabolism in the complex web of
PAAD development is brought home by this study. The novel risk model, built on
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the complexity of sphingolipid-associated genes, advances our understanding of
PAAD and offers doctors a powerful tool for developing personalised treatment
plans that are specifically suited to the unique characteristics of each patient.
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1 Introduction

Pancreatic adenocarcinoma is recognized as one of the most
prevalent forms of primary malignancies globally (Huang C. et al.,
2023; Huang X. et al., 2023). Notably, the complex interaction of
inflammatory cascades plays a crucial role in the development of
PAAD. This cancer develops from dysplastic nodules and progresses
through a range of histopathological phases, each with unique
molecular and cellular characteristics (Chi et al., 2023a). Despite
sincere efforts to remove the tumor surgically (Li C. et al., 2023),
PAAD patients typically experience poor prognosis results (Zhang
B.etal, 2022; Zhang et al., 2023a; Cui et al., 2023). This bleak reality
can be attributed to the PAAD’s substantial intratumoral and
interpatient heterogeneity, which inexorably encourages the
development of drug resistance events and disease recurrence
(Baek and Lee, 2020; Chi et al., 2022a; Wen et al, 2023; Yu
et al, 2023). Checkpoint inhibitor immunotherapy is a cutting-
edge cancer treatment (Zhang L. et al, 2022; Su et al, 2022).
Checkpoint inhibitors have emerged as pivotal agents in the
management of PAAD, colorectal malignancies, and various
other neoplastic diseases (Zhang P. et al, 2022; Zhang et al,
2023b; Zhang L. et al, 2023). Furthermore, PAAD’s complex
interaction with the immunological environment has gained
The tailored RNA neoantigen
vaccines treatment strategy for pancreatic cancer has received

attention from researchers.
attention from recent clinical studies (Rojas et al., 2023).
However, the need for accurate identification and validation of
reliable prognostic biomarkers poses a significant obstacle to the
efficient translation of checkpoint immunotherapy to the PAAD
scenario. This need stems from the urgent need to improve
therapeutic ~ strategies and, ultimately, patient outcomes.
Therefore, there is still a need for novel biomolecular markers
that predict patient prognoses, and their discovery might help
PAAD enter a new age of individualized medication.
Sphingolipids, essential structural elements of cellular membranes,
play a crucial and multidimensional function in the complex control of
a variety of biological processes (Chi et al., 2022b). These include and go
beyond processes cellular

proliferation, directed migration, invasion, and even the metastatic

important including development,
cascade, particularly in the setting of malignancy (Ogretmen, 2018;
Yuan et al,, 2022a). As secondary messengers, they go beyond their
structural function to exert control on cellular differentiation,
senescence, programmed cell death, and general growth dynamics.
Sphingomyelin, ceramide, sphingosine-1-phosphate, a substance
reviewed in its name, and glycosphingolipids are among the
fundamental components supporting the field of sphingolipids (Xiao
et al, 2019; Sasset and Di Lorenzo, 2022). Dynamic changes in the
complex sphingolipid biosynthesis pathway have the potential to
delicately modify a variety of signaling cascades, dramatically
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affecting the course of carcinogenesis either as a promoter or an
inhibitor (Guri et al., 2017; Muthusamy et al,, 2020; Qi et al.,, 2021;
Thayyullathil et al., 2021). In recent years, research on the role of
sphingolipids in oncology has garnered significant attention,
particularly in the context of tumor immunotherapy and
chemotherapy (Zhang X. et al,, 2023; Machy et al,, 2023; Su et al,
2023). Studies have indicated that certain sphingolipids can modulate
the immunogenicity of tumor cells, rendering them more susceptible to
recognition and elimination by the immune system (Kozbor, 2010;
Zhong et al, 2022). Furthermore, the alteration of sphingolipid
composition on the membranes of immune cells has been
demonstrated to enhance their activity, thereby augmenting their
anti-tumor potential (Kue et al., 2012). These investigations provide
robust support for the development of novel tumor immunotherapies.
Sphingolipids also play a pivotal role in chemotherapy (Brachtendorf
et al, 2019). Some studies have suggested that sphingolipids can
influence the sensitivity of tumor cells to chemotherapeutic agents
(Sousa et al., 2023). By regulating the levels of sphingolipids on cell
membranes, it is possible to either increase or decrease the resistance of
tumor cells to these drugs (Chiu et al., 2022). Recent studies have shown
a significant correlation between some sphingolipid cohort members
and the development of PAAD, providing predictive information about
the course of the illness (Horejsi et al., 2023; Wilson et al., 2023).
Despite the well-established importance of sphingolipids in the field of
PAAD, there has been a noticeable lack of thorough investigations into
the latent predictive value held by the SPGs, or short for sphingolipid
orchestration genes, genes. A deeper and more thorough understanding
of these genetic components has the potential to improve patient
survival rates and increase response to treatment plans.

The evolution of bioinformatics has found extensive utility in
the identification of biological markers and the diagnosis of diseases
(Jin et al., 2021a; Jin et al., 2021b; Yan et al., 2021; Liu G. et al., 2022;
Li et al,, 2022). Nevertheless, exploration of genes associated with
lipid bilayers remains notably limited. By using SPGs derived from
the TCGA-PAAD cohort, our research aims to develop a reliable
predictive model. Following the integration of this genetic data with
essential clinicopathological factors, a nomogram is created that is
designed to improve prognosis accuracy and provide customized
therapeutic care methods. We meticulously validated the proposed
nomogram using rigorous studies, such as time-dependent Receiver
Operating Characteristic (ROC) and Decision Curve Analysis
(DCA), to determine its clinical prognostic usefulness. These
analytical methods allow for a thorough assessment of the
nomogram’s performance, demonstrating its reliability for clinical
settings. Our empirical findings suggest that sphingolipid-associated
genes have the latent ability to predict the future course of
individuals with PAAD. Additionally, the found genes provide up
fresh possibilities as empirically confirmed indicators, hence
increasing the pool of targets for targeted therapy approaches.
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Constructing a prognostic model based on sphingolipid-related genes in PAAD. (A) Differential gene screening was conducted to identify SPGs
associated with PAAD. (B) 13 genes of prognostic significance, which we refer to as SPGs, were identified from the differential gene screening analysis.
These SPGs demonstrated an association with survivalin PAAD patients. (C) Utilizing the Lasso method, a prognostic model was constructed based on the
identified SPGs. (D) The risk scores, survival status, and expression levels of the top 10-SPGs were plotted to visualize the distribution of prognostic
risk. (E) Kaplan-Meier (KM) analysis was performed to further investigate the prognostic significance of the 10-SPGs in different PAAD subtypes. (F) The
predictive efficiency of the prognostic model was evaluated using ROC analysis.
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FIGURE 2

Expression levels of 10-SPGs. (A) Expression levels of 10-SPGs in PAAD tumor tissues and adjacent tissues. (B) Expression levels of 10-SPGs in PAAD

risk subgroups. (*p < 0.05, **p < 0.01, ***p < 0.001).

2 Materials and methods
2.1 Data procurement

Four samples of normal pancreatic tissue and 179 cases of PAAD
from the TCGA-PAAD cohort’s transcriptomic data were obtained from
the TCGA repository (Zhai et al.,, 2020; Wang X. et al,, 2022). Additionally,
179 PAAD tumor patients’ clinical data were gathered, a total of
179 PAAD patients were further filtered based on the completeness of
survival time and age, as well as their survival status (Leck et al, 2012).

2.2 The acquisition of genes related to
sphingolipids

InnateDB stands as a publicly accessible repository, encompassing
genes, proteins, experimentally validated interactions, and signaling
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pathways pertinent to the innate immune responses to microbial
infections in humans. This repository augments the scope of innate
immune interaction networks by amalgamating known interactions
and pathways from major public databases with meticulously curated
datasets into a centralized resource. Through the use of the InnateDB
gateway (https://www.innatedb.com/index.jsp), 97 SPGs

assembled (Breuer et al., 2013).

were

2.3 The LASSO regression test

In the context of this study, univariate Cox regression analysis was
used to identify 32 SPGs that showed associations with PAAD
patients’ survival rates. The “glmnet” R package (Song et al,
2022a) then made it easier to do LASSO regression analysis (Chi
et al,, 2023b; Ren et al., 2023), where the parameter was found using
tenfold cross-validation (Zhao et al, 2023a). A multivariate Cox
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Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (A) Volcano map screening for differential genes. (B) Mountain

map showing the enriched KEGG pathway. (C-E) GO enrichment analysis.

regression model was ultimately used to identify a group of ten key
genes (Guan et al, 2023). Ten SPGs were used to create a risk
signature by utilizing the best lambda scores and coefficients.
Riskscore = SPTLC3%0.4708+
S$TS*0.1031+KDSR*0.2274+SPHK1*0.1951+ARSJ*0.1008-
ARSG*0.9889-CERS3*
2.8795-CERS4*0.1164-SPHK2*0.3553-SMPD2*0.0189.

2.4 Evaluation of immune cell invasion
Utilizing the CIBERSORT and ssGSEA R scripts (Newman
etal., 2015; Zhao S. et al., 2022; Song et al., 2022b; Ren et al., 2022)

allowed for the measurement of infiltrating immune cell numbers.
Immune cell type scores were calculated for individual samples

Frontiers in Molecular Biosciences

05

using the CIBERSORT method (Zhao et al., 2023b). As a result, the
predicted immune cell type scores were used to determine the
scores for each sample. Furthermore, Spearman correlation
analysis was used to look at the relationship between immune
cell profiles and risk scores. The immune cell profiles of PAAD
patients were used to inform the ssGSEA approach, which was
then used to identify various risk categories for different people
(Chi et al., 2023c).

2.5 Predicting the therapeutic response to
chemotherapy

The R package “pRRophetic” serves as a valuable tool for the
application of gene expression data in predicting drug responses

frontiersin.org
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(Shen et al., 2022; Wang Z. et al.,, 2023). Its underlying principle
relies on training models using established drug response data and
subsequently employing these models to map new gene expression
data onto predictions of drug responses. This approach contributes
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significantly to the realm of personalized medicine and the
formulation of tailored pharmaceutical treatment strategies
(Yuan et al,, 2022b). The “pRRophetic” R program was used to
calculate the IC50 of small molecule medicines.
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2.6 Cell culture

The PAAD cell lines AsPC-1 and Panc-10.05, which were grown
at 37 “C in a 5% CO2 atmosphere, were supplied by the ATCC firm.
The culture media used was PRIM 1640 from Thermo Scientific,
with 15% fetal bovine serum from Gibco as an addition (Song et al.,
2021; Zhai et al., 2023).

2.7 Assay for cell viability

The Cell Count Kit-8 (Dojindo, Japan) was utilized to determine
the cell viability of AsPC-1 and Panc-10.05 cells. Cells were cultured
at 37 °C with 5% CO?2 for a period of 2 h after the addition of 10 L of
CCK-8 reagent to each well. The subsequent measurement of optical
density (OD) values at 450 nm ensued (Cai et al,, 2022; Zhang Y.
et al, 2023). Assessment of migration capability for AsPC-1 and
Panc-10.05 cells was performed after a seeding interval of 48 h.
Following that, the values of optical density (OD) at 450 nm were
measured. After a 48-h seeding period, the capacity of AsPC-1 and
Panc-10.05 cells to migrate was evaluated.

2.8 Statistical analysis

R version 4.1.3 was used to conduct all data analysis. The Student’s
t-test was used to variables with a normal distribution, and Pearson’s
correlation coefficient was used to evaluate inter-variable relationships.
Statistical analysis of cellular experiments was conducted using
GraphPad Prism 8 and SPSS Statistics v.27 software, with statistical
analysis performed utilizing t-tests. The thresholds for statistical
significance were p < 0.05%, p < 0.01**, and p < 0.001***, respectively.

3 Results

3.1 Development of the sphingolipid gene
signature

The acquisition of a thorough set of 97 genes strongly associated
with sphingolipid metabolism, painstakingly extracted from the
prestigious InnateDB platform, served as the basis for our
investigation. We obtained the necessary dataset from the TCGA
database to provide a solid basis for our following studies as our
investigation narrowed in on the complex landscape of PAAD. The
“limma” R program was used to carefully go through the
transcriptome data, finding genes within the sphingolipid
pathway that had distinct expression patterns across the PAAD
tumor samples and their corresponding surrounding normal tissues.

A thoughtful statistical methodology was used to identify a
group of 35 SPGs that were associated to sphingolipids and
1A). The
investigation of these SPGs went beyond simple expression

showed notable expression difference (Figure
alterations to include the critically important area of patient
survival. Utilizing a comprehensive strategy, we evaluated the
complex interactions between SPGs and the survival outcomes of
PAAD patients using the analytical power of the “survival” and

“survminer” R packages. A group of 32 SPGs that were closely linked
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to patient survival developed from the initial 35 SPGs (Figure 1B).
Notably, a sizeable group of SPGs deviated from this general pattern
and were negatively linked with good prognosis. These contrasts
served as the foundation for the future creation of a PAAD
prognostication prediction model. A model with possible
therapeutic value was revealed by a careful Lasso analysis built
around the 32 survival-associated SPGs (Figure 1C). It was crucial to
confirm the predicted precision of this model. The model’s
predictive accuracy was evaluated using time-dependent ROC
curve analysis over many temporal horizons, including 1, 2, 3,
all of which highlighted its dependability
(Figure 1F). By using a dichotomization technique to divide the

and 5 years,

cohort of 179 PAAD patients into high- and low-risk categories
based on median riskscore, the practical implications of this model
were further highlighted. This line of demarcation clearly showed a
perceptible survival disparity, with the high-risk group showing
noticeably reduced survival (Figure 1E), where median survival
durations of 1.3 and 2.8 years were recorded, respectively. Last
but not least, we created a heatmap depicting the expression patterns
of the top 10 SPGs across multiple riskscore groups to provide a
visual summary of the expression trends within the context of
riskscore stratification (Figure 1D).

3.2 SPG expression differentiation across
subtypes

We conducted a thorough analysis of the transcriptional
patterns of the ten SPGs in both normal and tumorous tissues
using mRNA expression levels as a quantitative measure
(Figure 2A). When compared to their nearby non-neoplastic
counterparts, all 10 SPGs were evidently expressed differently in
tumor tissues (p < 0.05), with SPHKI particularly showing the
highest level of expression. We subsequently examined the
expression levels of these 10 SPGs among high-risk and low-risk
subgroups in an effort to understand the underlying biological
consequences of these observed patterns. We noticed a
fascinating discrepancy between the ten SPGs in this subgroup’s
expression pattern and the trend shown in Figure 1A, which is
striking (Figure 2B). In order to get a deeper understanding, we used
Kaplan-Meier survival curves to outline the relationship between
each important SPG gene and the prognosis of PAAD patients. All
10 SPGs were shown to be statistically significantly correlated with
patient prognosis according to this thorough research (p < 0.05).
This highlights both their clinical importance and their potential to
serve as prognostic indicators in PAAD, in addition to their clinical

significance.

3.3 GO and KEGG enrichment analysis

In this part, we systematically examined the effects of several
signaling pathway activations on the complex dynamics driving
tumor cell proliferation and development, as well as their complex
interaction within the tumor microenvironment. A systematic
comparison of gene expression levels was carried out in order to
identify genes with differential expression patterns that could be
used to identify cohorts with high-risk and low-risk profiles
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FIGURE 5

Correlation Coefficient

Correlation between immune cells and 10-SPGS. (A) Heatmap was used to show the correlation between immune cells and 10-sphingolipid genes
(10-SPGs). (B, C) Bar plots were used to illustrate the relationship between CERS4 and KDSR with immune cell infiltration.

(Figure 3A). A constellation of pathways with notable enrichment
found among the group of individuals who showed increased
vulnerability to PAAD. These pathways, which are individually
highlighted by their significant enrichment coefficients
(Figure 3B), include but are not limited to those of major
relevance, such as Cancer Immunotherapy. As we dug further,
the interesting details of the high-risk subgroup’s transcriptional
landscape were revealed by our investigation of Gene Ontology
enrichment. Conspicuously elevated were the processes that control
cell-cell junctions, which are essential for cellular adhesion and
communication. On the other hand, there was a noticeable
downregulation of pathways involved in the negative regulation
of immune effectors. This subtle modulation, seen in Figure 3C,
points to a well planned interaction between tumor cells and their
immune environment. Additionally, a concentrated investigation
into the genes that differed the most between the high-risk and low-
risk groupings made it possible to identify crucial Gene Ontology
pathways. The connections between these pathways and the
underlying genetics of risk stratification were clearly shown in
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(Figures on proposed molecular

3D,E), shedding light

mechanisms controlling various risk traits.

3.4 Patients with PAAD have varying degrees
of immunological infiltration

Tumor growth is heavily influenced by the microenvironment of
a tumor, particularly the immune system. Tumor cells can avoid
immune surveillance when the immune system is not working
correctly (Zhao Y. et al,, 2022; Chi et al., 2022c). We performed
dimensionality reduction and clustering using the Lasso method on
a particular collection of 10-SPGs selected for PAAD patients. Our
study’ results confirm the effectiveness of these 10-SPGs in
differentiating between PAAD patients with different risk
propensities (Figure 4A). The complicated patterns of immune
infiltration among PAAD patients, stratified by various
prognostic factors, were further investigated (Figures 4B-D). The

ordering of risk score values, which reflects the proportionate
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Immunotherapy response prediction. (A, B) Prediction of immune therapy response to anti-PD-1/CTLA-4 treatment in PAAD patients based on 10-

SPGS.

distribution of various immune cell subtypes, in ascending order is
an interesting finding (Figure 4B). Importantly, our research reveals
that among PAAD patients categorized as high-risk, there is a
noticeable infiltration of certain immune cell types, including
CD4 memory resting T-cell and dormant Mast cells. The
CD8 T-cell and Tregs within this subgroup, on the other hand,
show a noticeable drop (Figures 4C,D). Comparing high-risk PAAD
patients to those with low risk reveals that there is less immune cell
infiltration, which may be a sign of a weaker response to ICB

Frontiers in Molecular Biosciences

further and looks at the
relationship between the 10-SPGs and immune cell populations
(Figure 5) in order to further understand this discovery. Multiple
immune cell types’ expression patterns of 3 SPGs were shown to be
significantly correlated (Figure 5A). Notably, the infiltration of
CD8 T-cell is strongly positively correlated with CERS3 and
KDSR (Figures 5B,C). This link raises the possibility of a
relationship between the immune milieu and the expression of
these sphingolipid genes in PAAD patients.

treatments. Our analysis goes
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3.5 Analysis of the relationship between
immunotherapeutic effectiveness and SPG

expression

According to our analysis’s preliminary findings, there are
observable differences in the immunological milieu across cohorts

Frontiers in Molecular Biosciences

at high and low risk. Particularly, there is a notable decrease in the
infiltration of both Tregs and CD8 T-cell within the high-risk
population. A milieu that is immunologically quiescent is
produced by the convergence of these changed immune
components, and this microenvironment in turn has differential
effects on the effectiveness of the two different immunotherapeutic
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Drug sensitivity prediction.

methods under review. It is significant to note that individuals with
decreased 10-SPG cluster expression levels have a propensity for
good responses to both PD-L1 and PD-1 blocking therapy
(Figure 6). It is interesting to note that the 10-SPG cluster also
shows promise as a prognosis tool, providing the capacity to
prognosticate the accuracy of ICB therapy in the population of
patients with PAAD (Figures 6A,B). When we focus on the
molecular environment, a striking indication that predicts a
poorer prognosis for PAAD patients is the increase in KDSR
expression inside high-risk PAAD cancer tissues. This poor
prognosis is thought to be caused by the concurrent increase in
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immune response activity (Figure 1B, 2B), a theory supported by the
elevated immune response shown in this subgroup (Figure 7A). We
used a comprehensive strategy to try to understand the differences in
ICB responses between high-risk and low-risk PAAD patients. We
connected KDSR expression levels with the complex dynamics of
alcohol exposure using the Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm (Figure 7B). Surprisingly, this
combination of factors showed that increased KDSR expression is
still a reliable indicator of elevated immune response scores,
unaffected by the subtleties of alcohol use. We looked further
into the molecular factors after being intrigued by the effect of
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KDSR on immune response score. We also looked at the immune
checkpoint expression patterns within the group that had been
divided up by various SPG risk ratings. Surprisingly, a recurrent
pattern showed that CD274, and CTLA4 were among the critical
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immunological checkpoints that were significantly upregulated in
the high KDSR expression subgroup (Figures 7C,D). Finally, we
utilized the computational capability of Cibersort analysis to fully
assess the immunological milieu. Using this analytical method, we
were able to compare the immune cell infiltration rates between the
normal, low-risk, and high-risk PAAD tissue specimens (Figures
7E,F). The results of this research highlighted clear differences in
immune cell infiltration across the various groups, providing better
understandings of the complex interactions between immunological
profiles and disease risk.

3.6 Forecasting and verification of drug
responsiveness

Poor outcomes in cancer are significantly influenced by the
recurrence of the disease through metastasis (Chen et al., 2019). We
investigated the differences in drug response to chemotherapeutic
drugs among subgroups distinguished by increased and lowered risk
scores in the search for customized treatments for PAAD patients.
Our study compared the IC50 values different
chemotherapeutic drugs in the high-risk and low-risk clusters,

of five

two clearly defined subpopulations with different risk ratings
(Figure 8, Supplementary Table SI). The findings of our
the
IC50 measurements for a few drugs, including Axitinib. This

investigation ~ revealed  significant  differences  in
finding suggests that those with high riskscores might potentially
show increased vulnerability to this particular chemotherapy
regimen.

We evaluated other PAAD cell lines’ risk scores based on the
mRNA expression of each SPGs (Figure 9), in order to support our
findings and provide another layer of validation. The Panc 10.05 and
AsPC-1 cell lines were chosen to adequately reflect the two
dichotomous groups of PAAD patients, defined by their high-risk
and low-risk scores, respectively, in the context of drug
responsiveness tests. Our CCK-8 test findings showed that AsPC-
1 cells, a representative of the low-risk population, displayed a more
pronounced sensitivity to Bicalutamide as compared to their Panc
10.05 counterparts, which was consistent with the predictions about
drug responsiveness (Figure 10A). In contrast, Panc 10.05 cells were
more sensitive to Axitinib compared with AsPC-1 cells (Figure 10B).
This agreement supports the idea that Bicalutamide and Axitinib
could develop into a good candidate for targeted, precision-oriented

treatment approaches for PAAD patients (Figures 9C,D).

3.7 The capacity of diverse-risk PAAD cell
lines to induce T-cell proliferation

The work that came before it highlights the elevated

immunoreactivity that high-risk PAAD patients show in
comparison to their low-risk peers. We suggest that identifying
high-risk PAAD cells based on genes associated to sphingolipids
might result in a more robust stimulation of T-cell maturation. To
test this hypothesis, we co-cultured T-cell with Panc 10.05 cells,
which had a high riskscore, and AsPC-1 cells, which had a low risk
score, for a period of 14 days. We then observed the level of T-cell
activation Our demonstrate a

and proliferation. findings
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proliferation induced by pancreatic cancer cells.

significantly higher rate of T-cell proliferation in Panc 10.05 cells
with a high risk score compared to AsPC-1 cells (Figures 10E,F),
suggesting a potential relationship between Sphingolipid-related
genes and the expression of surface-mutated proteins and, in
turn, inducing a higher response to T-cell proliferation.

4 Discussion

The onset of diseases is frequently influenced by a multitude of
factors, encompassing hormones (Luo et al, 2021), metabolic
byproducts (Liu J. et al., 2023; Zhang et al., 2023f), inflammatory
states (Xiao et al., 2020; Ni et al,, 2021; Zhang et al., 2023g). Notably,
certain determinants can precipitate the genesis of neoplasms. For
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instance, epigenetics is intricately intertwined with tumorigenesis
(Wang]J. etal., 2022; Zhang et al., 2023h), while microorganisms and
immune cells play pivotal roles in shaping the course of neoplastic
developments (Gong et al., 2023; Xia et al., 2023). Furthermore, the
migratory propensity of tumor cells is closely associated with
adverse prognoses and recurrent occurrences (Li Z. et al., 2023).
A dangerous cancer known as pancreatic adenocarcinoma poses a
serious threat to human life (Yuan et al., 2022¢; Liu X. et al., 2023;
Zhang et al., 20231). The improvement of prognosis is a challenging
endeavor because to the complex molecular pathways underlying
PAAD. Single pharmacological therapies or single-targeted pathway
interventions are ineffective in improving the prognosis of PAAD
(Halbrook et al., 2023; Qi et al., 2023; Vahabi et al., 2023). As a result,
using a wide variety of genes to build prognostic models turns out to
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be a more effective tactic. However, there are currently not enough
effective biomarkers designed to achieve this goal. The need for
further biomarkers is urgently needed to improve prognostic model
accuracy and enable preventative actions against PAAD in its early
stages.

Sphingolipids, a family of lipids, have a significant role in the
maintenance of structural integrity and the sensitive management of
membrane fluidity, as previously noted in studies (Zhang et al,
2023a). Cellular membranes are complex assemblages of various
lipids. In particular, tumor cells’ metabolic needs are essential for
their continued growth and survival inside the intricate tumor
(Soltani 2021).
recognized as bioactive molecules in the lipid repertory, have a

microenvironment et al, Sphingolipids,
diverse role in a variety of key cellular functions, acting not only as
structural elements but also as essential mediators in cell signaling
pathways (Gault et al, 2010). The thorough characterization and
subsequent cloning of the essential metabolic enzymes controlling
the complex homeostasis of sphingolipid components have been the
focus of recent research endeavors. Their considerable influence on
the molecular environment of cancer formation and the subtleties of
therapy responses have been shown by this investigation (Snider
et al, 2019). Recent research has illustrated the significance of
sphingolipid metabolism in both lung cancer and breast cancer.
Moreover, pivotal molecular targets associated with these
malignancies have been pinpointed (Pei et al, 2023). In this
setting, it is becoming clear that sphingolipid homeostasis
disruption may play a role in the etiology of a variety of cancer
the

adenocarcinoma. The tumor microenvironment (TME), which

morphologies, including mysterious pancreatic
extends beyond the boundaries of specific cell populations,
appears as a dynamic ecological niche and includes a variety of
cellular and extracellular elements (Huang et al.,, 2023c¢), including
tumor-associated macrophages (TAMs) (Wu et al., 2023), T-cell,
and B-cell, each of which has a specific impact on the neoplastic
milieu (Bejarano et al., 2021; Gong et al., 2022; Ch et al., 2023; Xiong
et al, 2023). The TME is orchestrated by this complex interaction,
which has a profound impact on the course of carcinogenesis and
the effectiveness of treatments (Huan et al., 2023; Zhang et al,
2023j). A growing body of research has shown that the extraordinary
variety within the TME supports the diverse responses seen in the
context of different treatment approaches (Jin and Jin, 2020; Ng
et al,, 2020; Xiang et al., 2021; Chen et al., 2022).

Enrichment analyses, both using Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG), have
unveiled the involvement of sphingolipids in modulating the
PI3K-AKT signaling pathway and T-cell proliferation pathways
in the progression of PAAD. It is noteworthy that ongoing
the
sphingolipids and their associated enzymes in mediating the
PI3K/AKT pathway’s influence on the growth of non-small cell
lung cancer (NSCLC) cells (Gulhane and Singh, 2022). T-cell,
pivotal actors in the context of NSCLC, play a vital role (Wang

research has underscored significant  participation of

J. et al,, 2023). These observations suggest that sphingolipids may
exert their influence on the progression of PAAD by modulating the
PI3K/AKT pathway and regulating T-cell activity.

Sphingolipids have been found to have a substantial role in
cancer, intricately interacting with a variety of carcinogenic
pathways (Ordonez et al, 2015; Liu et al., 2017; Cheng et al,
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2018; Chi et al,, 2022b; Liu C. et al,, 2022; Kawai et al., 2022).
Despite this acknowledgment, our knowledge of several genes
involved in the regulation of sphingolipids is still limited,
necessitating thorough exploration, particularly in light of their
potential as therapeutic targets in clinical settings (Zhong et al,
2022; Zhang et al,, 2023k). The cornerstone of a strong risk score
signature in this study has been revealed to be a cohort of 10 genes,
offering insight on their possible ramifications. In order to confirm
these results, transwell tests and a wound-healing assay were carried
out (Figures 9A,C,E). Given the likely function of increased SPGs
expression in promoting the migratory potential of PAAD cells, our
findings support the idea that sphingolipids could in fact constitute a
feasible therapeutic approach for treating PAAD. The future
importance of sphingolipid-focused treatments in the treatment
of PAAD is thus highlighted by this study.

Changes in myelin metabolism have a significant impact on how
chemosensitive neoplastic cells are, according to earlier studies.
Axitinib sensitivity in people with PAAD who have elevated risk
scores has been found to be particularly sensitive in the current
study’s assessment of medication responsiveness (Figure 8). Using
the CCK-8 test, as shown in Figure 10B, it was possible to verify the
accuracy of drug predictions. The resulting results particularly
highlights Axitinib’s potential eligibility as an effective treatment
approach for people suffering from PAAD, particularly those who
show an overexpression of SPGs (Figure 10D).

In earlier research projects, the use of gene expression profiling
to classify tumor samples has been thoroughly verified (Brown and
Elenitoba-Johnson, 2020; Jin et al., 2021c¢; Sirinukunwattana et al.,
2021; Chi et al, 2022d; Jin et al, 2022). On the basis of the
transcriptional levels displayed by 10 important sphingolipid-
associated genes, we have attempted to classify a clinical cohort
made up of PAAD patients against this scientific background.
Through this methodical stratification, we have revealed striking
differences in prognostic outcomes, highlighting in a profound way
the strong predictive ability inherent to our genomic model, both in
terms of prognosticating patient outcomes and in terms of
prognosticating their responsiveness to therapeutic protocols
across the spectrum from immunotherapeutic interventions to
the
chemotherapeutic techniques to immunotherapeutic treatments.

chemotherapeutic modalities. ~Covering gamut from
The quantity of knowledge so acquired has the potential to

provide significant clinical guidance, enabling healthcare
professionals to make well-informed therapy decisions for the
cohort suffering from PAAD.

This study exhibits certain limitations. Despite the construction of
a prognostic model based on sphingolipid-associated genes, the
restricted size of the PAAD cohort hinders the extensive clinical
application of this model. Furthermore, comprehensive in vitro
experiments are imperative, whether for validating drug sensitivity
or enriching the results concerning GO and KEGG signaling
pathways. Predictions pertaining to immunotherapy necessitate a

larger cohort of immunotherapy cases to substantiate their precision.

5 Conclusion

Our research efforts have resulted in the creation of a unique
combination of 10 genes that make up a prognostic model. This
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development has the potential to help medical professionals
precisely customize therapy regimens to each patient’s unique
needs who has PAAD. In a related discovery, our research has
shown a hitherto unknown connection between the complex
environment of the immune system and the genes controlling
sphingolipid metabolism. This paradigm-shifting relationship not
only broadens our understanding at a fundamental level but also
ushers in a new approach to immunotherapy. By focusing on the
crucial sphingolipid genes, the possibility of making PAAD more
susceptible to specific anti-tumor therapies emerges as an intriguing
possibility deserving of future investigation.
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