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Background: Endometriosis (EM) is a long-lasting inflammatory disease that is
difficult to treat and prevent. Existing research indicates the significance of
immune infiltration in the progression of EM. Efferocytosis has an important
immunomodulatory function. However, research on the identification and
clinical significance of efferocytosis-related genes (EFRGs) in EM is sparse.

Methods: The EFRDEGs (differentially expressed efferocytosis-related genes)
linked to datasets associated with endometriosis were thoroughly examined
utilizing the Gene Expression Omnibus (GEO) and GeneCards databases. The
construction of the protein-protein interaction (PPI) and transcription factor (TF)
regulatory network of EFRDEGs ensued. Subsequently, machine learning
techniques including Univariate logistic regression, LASSO, and SVM
classification were applied to filter and pinpoint diagnostic biomarkers. To
establish and assess the diagnostic model, ROC analysis, multivariate
regression analysis, nomogram, and calibration curve were employed. The
CIBERSORT algorithm and single-cell RNA sequencing (scRNA-seq) were
employed to explore immune cell infiltration, while the Comparative
Toxicogenomics Database (CTD) was utilized for the identification of potential
therapeutic drugs for endometriosis. Finally, immunohistochemistry (IHC) and
reverse transcription quantitative polymerase chain reaction (RT-qPCR) were
utilized to quantify the expression levels of biomarkers in clinical samples of
endometriosis.

Results:Our findings revealed 13 EFRDEGs associatedwith EM, and the LASSO and
SVM regression model identified six hub genes (ARG2, GAS6, C3, PROS1, CLU, and
FGL2). Among these, ARG2, GAS6, and C3 were confirmed as diagnostic
biomarkers through multivariate logistic regression analysis. The ROC curve
analysis of GSE37837 (AUC = 0.627) and GSE6374 (AUC = 0.635), along with
calibration and DCA curve assessments, demonstrated that the nomogram built
on these three biomarkers exhibited a commendable predictive capacity for the
disease. Notably, the ratio of nine immune cell types exhibited significant
differences between eutopic and ectopic endometrial samples, with scRNA-
seq highlighting M0 Macrophages, Fibroblasts, and CD8 Tex cells as the cell
populations undergoing the most substantial changes in the three biomarkers.
Additionally, our study predicted seven potential medications for EM. Finally, the
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expression levels of the three biomarkers in clinical samples were validated through
RT-qPCR and IHC, consistently aligning with the results obtained from the public
database.

Conclusion:we identified three biomarkers and constructed a diagnosticmodel for
EM in this study, these findings provide valuable insights for subsequent
mechanistic research and clinical applications in the field of endometriosis.
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1 Introduction

Endometriosis (EM) is a long-lasting inflammatory condition
reliant on estrogen, impacting around 10% of women globally
during their reproductive years (Sun et al., 2022). The pathology
of EM is marked by the emergence and proliferation of the
endometrium outside the uterine cavity, with infiltration and
recurrent bleeding, resulting in a local chronic inflammatory
response (Ruiz-Alonso et al., 2017). EM then progresses to
nodules or masses, pain, and infertility. Nevertheless, the
advancement of the condition tends to be gradual, often
requiring 7–10 years for noticeable clinical symptoms to manifest.
This prolonged timeline contributes to delays in both diagnosing
and administering optimal treatment for EM (Bakhtiarizadeh et al.,
2018). The pathogenesis of EM has not been clarified, and the most
controversial explanation is based on the theory of menstrual reflux
proposed by Sampson in 1921. While 90% of women undergo
menstrual reflux, only 10% contend with EM, indicating that the
disease involves a more intricate pathogenesis (He et al., 2023).
Recently, an increasing body of research has emphasized the
significance of immune irregularities in the development of EM.
For instance, studies have revealed immune cell infiltration at
ectopic lesions and elevated production of pro-inflammatory
cytokines and chemokines (Matarese et al., 2003; Meng-Hsing
et al., 2005; Lauren et al., 2009; Capobianco and Rovere-Querini,
2013; Ahn et al., 2016). Therefore, it is necessary to further
clarification of the regulatory mechanisms of immune infiltration
in EM and screen more accurate specific biomarkers for EM. These
biomarkers can also be used for the early diagnosis and effective
therapeutic targets for EM.

Efferocytosis plays an essential role in immunomodulation and
serves as a central mechanism in removing aberrant cells, pathogens,
and cellular debris (Morioka et al., 2019). Efferocytosis is a
consecutive process involving phagocyte recognition,
phagocytosis, and the subsequent breakdown of apoptotic cells.
This intricate process is intricately governed by a dynamic
interplay of molecular signaling and cellular receptors. This
contributes to the efficient and effective removal of apoptotic
cells while minimizing the potential for autoimmune reactions
(Doran et al., 2020). Efficient efferocytosis prevents the
occurrence of secondary necrosis and the shed of inflammatory
factors and poisonous molecules from deceased cells, thus, it is
crucial for maintaining tissue homeostasis and promoting
inflammation repair or injury response (Doran et al., 2020).
Recent studies have suggested that efferocytosis has a profound
impact on the inflammatory microenvironment and that defective
efferocytosis represents a keymechanism driving the occurrence and

progression of chronic phlogistic diseases, comprising
atherosclerosis, systemic lupus erythematosus, cancer, and
chronic obstructive pulmonary disease (Asseldonk et al., 2008;
Tajbakhsh et al., 2021; Doddapattar et al., 2022; Zhang et al., 2022).

Early detection and prevention in the clinical management of
EM are challenging. Due to the disease being characterized by local
chronic inflammation and immune infiltration, the mechanisms
underlying such phenomenon might be explained from the
perspective of efferocytosis. Earlier investigations have unveiled
connections between genes linked to ferroptosis, cuproptosis, and
autophagy, and the identification of EM (Li et al., 2021; Ji et al.,
2022), but the association between efferocytosis and EM has fewer
reported. Bioinformatics can identify potential new biomarkers of
disease and their diagnostic role, it represents an emerging
technology in the current biomedical field, which uses modern
information tools (Jäger, 2022; Ji et al., 2022; Wei et al., 2023).
Hence, conducting a thorough analysis of the regulatory functions of
pivotal genes of efferocytosis and the correlation with immune
infiltration in EM using bioinformatics and machine learning
techniques to represent a novel direction for the diagnosis,
prophylaxis, and therapy of EM patients. In addition, our
findings were validated by RT-qPCR and IHC analyses of real-
world EM tissues.

2 Material and methods

2.1 Data source and preprocessing

2.1.1 Microarray data
The Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/geo) contains genetic data related to various
physiological and pathological states uploaded by research sites
worldwide. To obtain gene expression matrix data related to EM,
we searched the database using the following terms: “endometriosis”
[Title] AND “Homo sapiens” [porgn] AND “expression profiling by
array” [Filter]. The following samples were included: mRNA
expression profiles obtained by high-throughput sequencing, and
the selected datasets to include both ovarian endometriosis lesions
(ectopic endometria) and eutopic endometria. Eutopic and ectopic
endometrial samples were procured from identical patients, with the
eutopic endometria serving as the control for the corresponding
ectopic endometrial sample in each patient. The outcomes of the
inquiry were verified by two researchers before inclusion in the
study.

We retrieved GSE7305 (GPL570, Affymetrix Human Genome
U133 Plus 2.0 Array) (Hever et al., 2007), GSE11619 (GPL96,
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Affymetrix Human Genome U133 Plus 2.0 Array) (Hull et al.,
2008), and GSE25628 (GPL571, Affymetrix Human Genome
U133 Plus 2.0 Array) (Crispi et al., 2013) datasets from the
GEO database. The GSE7305 dataset comprised 10 pairs of
endometrial samples, the GSE11619 dataset encompassed 9 pairs
of endometrial samples, and the GSE25628 dataset involved 8 pairs
of endometrial samples. The original “CEL” files for the mentioned
datasets were acquired from the GEO database. as the training
cohort, which was adjusted for the background and normalized
with “affy” and “simpleaffy” R packages (Gautier et al., 2004;
Wilson and Miller, 2005). Based on the probe annotation file
for each dataset, the probes were converted into gene symbols.
Probes lacking expression values were excluded, and for those
instances where different probes mapped to the same gene, the
mean expression value was computed. To mitigate batch effects, the
“sva” R package was utilized (Leek et al., 2012). Moreover, principal
component analysis (PCA) was employed to appraise the
distribution patterns among EM and normal samples in the
microarray datasets. GSE37837 (GPL6480, Agilent-014850
Whole Human Genome Microarray 4 × 44 K G4112F) (Khan
et al., 2012) contained 8 pairs of endometria and GSE6364
(GPL570 Affymetrix Human Genome U133 Plus 2.0 Array)
(Burney et al., 2007) contained 16 normal endometria and
19 ectopic endometria were used as the test cohorts. Agilent
data were normalized using the “normalizeBetweenArrays” and
“backgroundCorrect” functions in the “limma” R package (Ritchie
et al., 2015), and the duplicate probes associated with the same gene
in each dataset were averaged using the “avereps” function within
the “limma” R package. The details of the endometriosis-related
gene datasets downloaded from the GEO database are presented in
Table 1.

2.1.2 Selection of efferocytosis-related genes
GeneCards databases (https://www.genecards.org/) is an extensive

bioinformatics database offering concise information on genomes,
proteomes, and associated human genetic data. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) database is a
comprehensive biological information database. In addition to the
KEGG pathway, the database also contains data from many other
modules, including genome information. The keyword “Efferocytosis”
was used to select the efferocytosis-related genes (EFRGs) from
GeneCards databases and the KEGG databases.

2.2 Selection of differentially expressed
efferocytosis-related genes

The “limma” R package was employed to filter the differentially
expressed genes (DEGs) between eutopic and ectopic endometrial
specimens in the processed training set (Leek et al., 2012). The
criteria for the output included absolute values of the |log2-FC|>
1 and a p < 0.05. Here, logFC >0 and logFC <0 denoted upregulated
and downregulated genes, respectively. Volcano plots and heatmaps
illustrating the DEGs were created using the “ggplot2” and
“heatmap” R packages. Then, we identified differentially
expressed efferocytosis-related genes (EFRDEGs) via the
“VennDiagram” R package.

2.3 Construction of EFRDEGs PPI and TF
network

The STRING database (https://string-db.org/) is an online
resource for analyzing protein-protein interactions. To reveal the
interactions of EFRDEGs in EM, a network of protein-protein
interactions (PPI) was set up utilizing the STRING database, and
a composite score of ≥0.15 was used as the output condition to
facilitate the identification of crux genes for efferocytosis in EM. To
investigate the molecular mechanism of efferocytosis in EM, the
ChEA3 (https://amp.pharm.mssm.edu/ChEA3), a transcription
factor (TF) enrichment analysis database that identifies TF-target
gene interaction pairs, was utilized to identify between the target
gene and efferocytosis regulation, a p < 0.05 was deemed statistically
noteworthy and visualized using Cytoscape (V 3.9.1), which is a
bioinformatics statistical tool for visualizing data results.

2.4 Selection of diagnostic biomarkers
related to efferocytosis in endometriosis

2.4.1 Logistic regression model
Univariate logistic regression represents a generalized linear

regression analysis model applicable to the automated diagnosis
of diseases. In our study, logistic regression employing two response
variables denoting the Ectopic and Eutopic samples was employed.
A 3-fold cross-validation (CV) approach was relevant to facilitate

TABLE 1 Summary of the primary studies encompassed in the integrated analysis of genome-wide expression studies for EM.

Dataset GEO accession No Sample size Eutopic Ectopic Platform

Training set (n = 54) GSE7305 20 10 (tissues adjacent to EMs) 10 GPL570 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

GSE11691 18 9 (tissues adjacent to EMs) 9 GPL96 [HG-U133A] Affymetrix Human Genome
U133A Array [HG-U133A_2] Affymetrix Human
Genome U133A 2.0 Array

GSE25628 16 8 (tissues adjacent to EMs) 8 GPL96 [HG-U133A] Affymetrix Human Genome
U133A Array

Test set 1 (n = 16) GSE37837 16 8 (tissues adjacent to EMs) 8 Agilent-014850 Whole Human Genome Microarray
4 × 44 K G4112F (Probe Name version)

Test set 2 (n = 35) GSE6364 35 16 (tissues from healthy people) 19 GPL570 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array
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the grouping and cross-validation of logistic regression models. An
initial application of multivariate stepwise logistic regression
analysis was employed to eliminate factors deemed insignificant
for the response variable. Receiver operating characteristic (ROC)
analyses were conducted to identify EFRDEGs with elevated
diagnostic values in EM. ROC for threshold selection and model
comparison. The EM disease prediction model is constructed based
on Univariate logistic regression analysis. The region under the ROC
curve (AUC) > 0.5 proves that these tests or models have certain
diagnostic values. Only those p-values <0.05 and AUC >0.8 were
retained to analyze in the next step.

2.4.2 Screening diagnostic biomarkers by machine
learning models

Following that, the least absolute shrinkage and selection
operator (LASSO) and support vector machine (SVM) regression
models were employed to filter and determine diagnostic markers,
establishing a predictive model for disease diagnosis (Gentleman
et al., 2005). Utilizing the LASSO regression algorithm, the trajectory
of each variable’s alteration was examined, and the λ value was
established through 3-fold cross-validation. The selection of the λ

value followed the principle of minimizing the mean square error of
the Lasso model, with the “glmnet” R package employed to mitigate
the risk of overfitting. Additionally, our study incorporated the SVM
machine-learning technique, widely utilized for category or
regression. To prevent overfitting, a recursive feature elimination
(RFE) algorithm was applied to pick the relevant genes.

The candidate diagnostic markers of EM were identified based
on the outcomes derived from LASSO and SVM analyses.
Subsequently, multivariate stepwise logistic regression analysis
was conducted on the potential diagnostic markers to further
refine the selection of diagnostic biomarkers. Finally, for
assessing the model’s predictive accuracy, GSE37837 and
GSE6364 were utilized as test cohorts, and the ROC curve was
generated with the assistance of the “pROC” R package.

2.5 Construction and evaluation of a
nomogram

A nomogram is built based on multivariate logistic regression,
according to the degree of contribution of each influencing factor to
the dependent variable in the model (represented by the regression
coefficient), integrating multiple predictors, assigning a score to each
influencing factor, and then use a line segment with a scale to plot
the graph according to a certain proportion. Nomograms transform
complex multivariate logistic models into visual graphics, making
the results of the prediction model more readable and facilitating
patient evaluation. Hence, we created a nomogram model for
diagnosing EM built on the outcomes of multivariate logistic
regression, utilizing the “rms” R package. Decision curve analyses
(DCAs) were generated to assess the clinical utility of the
nomogram. Additionally, GSE37837 and GSE6364 were utilized
as the validation set, and the ROC curve was generated to
validate the model’s reliability. An AUC >0.5 is indicative of a
well-modeled performance. For a more thorough assessment of the
predictive capacity of the nomogram model, the calibration curve
was generated using the Horslem test. This test compares the

disparities between the forecasted values and the observed values,
with a p > 0.05 indicating a well-fitting model.

2.6 Immune infiltration and correlation
between diagnostic biomarkers and immune
cells

The CIBERSORT algorithm (https://cibersort.stanford.edu/)
was utilized to forecast and quantify the composition and
abundance of 22 distinct types of immune cells. CIBERSORT is
an online tool that predicts the abundance of 22 immune cell types
using gene expression data (Wang et al., 2022). The gene expression
matrix of the training test was uploaded to CIBERSORT and we
measured the presence of immune cells in each sample and
compared them between groups using the Wilcoxon rank-sum
test (Newman et al., 2015). A histogram and Violin Plot
depicting the layout of immune cell infiltrates in every sample
were generated using the “ggplot2″ and “vioplot” R packages.
The “Corrplot” R package was employed to illustrate the
correlations among immune cells in ectopic endometrial samples.
To probe the conjunction between diagnostic biomarkers and the
levels of immune cell infiltration, we conducted a Spearman
correlation analysis to appraise the association between immune
infiltration abundance and the expression of diagnostic biomarkers
(Liu et al., 2022) and visualized using the “corheatmap” R package.
Then, a scatter plot with a significant correlation between the two
was plotted using the “ggplot2” R package.

2.7 Single-cell RNA sequencing of immune
infiltration in EM

To explore deeper into the immune microenvironment of EM,
we dissected the Single-cell RNA Sequencing (scRNA-seq) dataset to
examine the distinct expression profiles of immune cells in the
ectopic endometria of EM patients. scRNA-seq affords a
comprehensive insight into gene expression across diverse cell
types within the same sample, aiding in the certification of
crucial cellular subtypes. The GSE213216 matrices were retrieved
from the GEO database (Fonseca et al., 2023), which contain
31 ectopic and 10 eutopic endometria samples, and GPL24676
(Illumina NovaSeq 6000, H. sapiens) was used as the sequencing
platform. We integrated data from multiple samples and performed
standardization, dimensionality reduction, and clustering to identify
cell types or subpopulations in the data. Loads the “Seurat” R
package for scRNA-seq data analysis and employs “RunTFIDF”
and “`RunSVD” for data normalization. “Harmony” is used for
integrating and reducing dimensions of data. The FindNeighbors
(dims = 1:30), and FindClusters (resolution = 0.6) parameters were
set and used to identify different immune cell clusters. Loads the
Seurat object and performs various transformations on the RNA
expression data, “tidyverse,” “dplyr,” and “patchwork” R packages
for data manipulation and plotting. Uniform manifold
approximation and projection (UMAP) clustering is performed,
and clusters are visualized taking advantage of the “clustree” R
package. This is useful for understanding the structure and
relationships in the data.
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2.8 Gene set enrichment analysis for the
single gene and kyoto encyclopedia of
genes and genomes analysis

Next, Gene Set Enrichment Analysis (GSEA) and KEGG pathway
analysis were employed to unveil the potential biological functions of the
diagnostic biomarkers (Subramanian et al., 2005). Apart from that, the
gene set variation analysis (GSVA) algorithmwas utilised tomeasure the
GSVA score for the top 20 significantly gene set of theMSigDbHallmark
collection using the “GSVA” package. Samples were categorized into two
groups per the median values of hub gene expression levels, comprising
the high and the low expression groups. Genes were arranged in
descending order based on log2FC, and the background gene sets
were obtained from the Molecular Signatures Database (MSigDB,
http://www.gsea-msigdb.org/gsea/msigdb) (Liberzon et al., 2015). All
these analyses were performed using the “clusterProfiler,” “org.Hs.e.g.
,db,” “DOSE,” and “enrichplot” R packages (Yu et al., 2012), and the
screening condition was p < 0.05.

2.9 Potential drugs targeting the diagnostic
biomarkers

Grounded on the diagnostic biomarkers of EM, the Comparative
Toxicogenomics Database (CTD; https://ctdbase.org) was employed to
anticipate potential drugs for EM therapy. The network demonstrating
biomarker-compound pairs was visualized using Cytoscape.

2.10 Verification of the diagnostic
biomarkers results

Immunohistochemistry (IHC) and real-time quantitative
polymerase chain reaction (RT-qPCR) analysis in the present study
was executed on 10 ectopic and eutopic endometrial samples from
ovarian EMpatients who underwent surgery, stored inwax blocks by the
Pathology Department of the First Affiliated Hospital of Guangzhou
University of Chinese Medicine (GZUCM). The participants, aged
between 25 and 49 years, had no other significant illnesses and
refrained from using any hormonal medications in the 3 months
preceding the surgery. The project was affirmed by the Ethics
Committee of The First Affiliated Hospital of GZUCM number: NO.
K [2021]053. The pathological results of all samples were identified by
two experienced pathologists at our hospital.

About 20 mg of tissue was scraped from the paraffin block using a
sterilizing scalpel. The Tissue RNA Extraction Kit (G3640-100T,
Servicebio, China) was then utilized to extract total RNA following
the manufacturer’s instructions. Subsequently, the SweScript All-in-One
RT SuperMix for qPCR (G3337-50, Servicebio, China) was employed to
reversely transcribe the RNA into complementary DNAwithin the PCR
instrument (ETC811, EASTWIN, China). The qPCR was performed
using 2 × Universal Blue SYBR Green qPCR Master Mix (G3326-05,
Servicebio, China), We used 2 × Universal Blue SYBR Green qPCR
Master Mix (G3326-05, Servicebio, China) (Ma et al., 2022), and the
program was executed with the following parameters: pre-denaturation
at 95°C for 30 s, denaturation at 95°C for 15 s, annealing at 60°C for 30 s,
and extension at 60°C for 30 s, for a total of 40 cycles. We selected
GAPDH as the internal reference, and the relative mRNA expression

levels were computed using the 2−ΔΔCt method. The primer details can be
found in Table 2.

For IHC staining, the paraffin sections were immersed in xylene for
dewaxing, hydrated with an alcohol gradient, and repaired using EDTA
solution in a microwave oven. To block nonspecific antibody binding,
paraffin sections were incubated with normal goat serum for 90min, and
then the primary antibodies of GAS6 (Abcam, ab264098, 1:200), C3
(Abcam, ab200999, 1:200), andARG2 (Affinity Biosciences, AF0738-200,
1:200) were added dropwise and incubated overnight at 4°C. The
following day, after rewarming, the tissue sections were soaked in 3%
hydrogen peroxide J for 8 min and then rinsed with PBS. After
rewarming, the tissue sections were soaked in 3% hydrogen peroxide
J for 8 min and then rinsed with PBS. The sections underwent incubation
with secondary antibodies (1:200) at room temperature for 1 h, followed
by staining with diaminobenzidine solution (DAB Sigma, United States).
Subsequently, the sections were counterstained with hematoxylin. The
stained tissue sectionswere visualized and captured using a 3DHISTECH
digital slice scanner. Protein expressions within the colored tissue sections
were dissected utilizing Image-Pro Plus 6.0 software.

2.11 Statistical analysis

All bioinformatics analyses were performed using R 4.2.1 software.
ROC analyses were carried out using GraphPad Prism 9.0, with AUC
values computed to appraise the forecast capability of each characteristic
gene. Image-Pro Plus 6.0 (Media Cybernetics, United States) was utilized
for the analysis and interpretation of IHC findings. Comparisons between
the two groups concerning independent variables were conducted
utilizing the Paired Mann-Whitney (SPSS 29.0), The Wilcoxon rank-
sum test and Spearman correlation were employed to investigate the
correlation between EFRDEGs and diagnostic biomarkers, as well as the
infiltration standard of immune cells. The findings of the study with p <
0.05 were deliberated statistically significant.

3 Results

3.1 Identification of EFRDEGs in
endometriosis

The analysis process of this study is shown in Figure 1.

TABLE 2 qPCR primers.

Gene Primer Sequence (5′-3′) Size

GAPDH Forward GGAAGCTTGTCATCAATGGAAATC 168bp

Reverse TGATGACCCTTTTGGCTCCC

C3 Forward GTGAGCCAGGAGTGGACTATGTG 131bp

Reverse CATATAAAGCCCGCAAGCAT

ARG2 Forward CTGTTGTCGGGGGACTAACCTAT 138bp

Reverse CTGTAGTCTTCGCCTCTTCCTCT

GAS6 Forward ACCATCCAGGAAACGGTGAAAG 106bp

Reverse AGTCCAGGCTGTAGAAGGCGAA
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The PCA results are shown in Figure 2, with A, B, and C
representing different batch effects, demonstrating substantial
removal of batch effects post-correction. A clear distinction was
observed between samples from patients with EM and the control

group (Figure 2C), indicating the suitability of the expression matrix
for subsequent analysis.

A thorough set of 141 EFRGs was sourced from the GeneCards
databases, and an additional 150 EFRGs were retrieved from the

FIGURE 1
Flowchart depicting the stepwise screening strategy applied to bioinformatics data.
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KEGG databases (https://www.genome.jp/entry/
pathway+hsa04148). After removing duplicates, a total of
193 EFRG genes were obtained. (Supplementary Material S1
provides detailed gene information). The clustered heatmap of
DEGs unveiled the identification of a total of 561 DEGs from
datasets related to endometriosis-related genes. We overlapped
EFRGs with the DEGs and 13 EFRDEGs were discovered
utilizing the “VennDiagram” R package, as depicted in a Venn
diagram (Figure 3A), namely, Growth Arrest Specific 6 (Gas6),
Complement C3 (C3), Clusterin (CLU), Protein S (PROS1),
Fibrinogen Like 2 (FGL2), CD14 Molecule (CD14), Engulfment
And Cell Motility 1 (ELMO1), Complement C1g A Chain (C1QA),
Platelet And Endothelial CellAdhesion Molecule 1 (PECAM1),
Complement C1g B Chain (C1QB), CD24 Molecule (CD24),
Arginase 2 (ARG2), and Uncoupling Protein 2 (UCP2). The
13 EFRDEGs were visualized using a volcano map (Figure 3B)
and heatmap (Figure 3C), of which Gas6, C3, CLU, PROS1, FGL2,
CD14, ELMO1, C1QA, PECAM1, and C1QB were upregulated and
CD24, ARG2, and UCP2 were downregulated. Furthermore,
Figure 3D displays the Chromosome region of these EFRDEGs
using circus v.0.69 to facilitate the recognition and analysis of
similarities and differences generated in genomic intercomparisons.

3.2 Construction of PPI and TF networks for
EFRDEGs

The interactions among these identified EFRDEGs were scrutinized
through the PPI network, comprising 13 nodes and 47 edges, as
depicted in Figure 4A. Highly connected proteins may have the
same or similar functions, sorted nodes by degree, then, PECAM1,
C3, C1QA, GAS6, C1QB, CLU, PROS1, ARG2, CD14, and FGL2 were
selected according to the degree>5, which may be key factors affecting
the entire metabolic or signal transduction pathway of efferocytosis
defects related to EM. The analysis of the core molecule interaction
network is shown in Figure 4B. In the TF-mRNA regulatory network,
there are 16 TFs were found, and the yellow and blue circle represents
EFRDEGs, red circle represents upstream transcription factors.

3.3 Machine learning-based selection of
diagnostic biomarkers

To further understand the role of the 13 EFRDEGs in the
diagnosis and prophecy of EM, we aim to identify hub genes
from the 13 EFRDEGs for constructing a diagnostic prediction
model. Initially, we conducted univariate analysis of the
13 EFRDEGs, the ROC curves for the 13 ERDEGs are shown in
Figure 5A. With an AUC >0.8 as the cut-off value, eight genes were
screened for further analysis. They are CLU, C3, CLU, FGL2,
PROS1, GAS6, C1QA, ARG2, and PECAM1. Among them, CLU
(AUC = 0.959%, 95%CI: 0.913–1.000) had the highest AUC value. A
boxplot of the eight genes was plotted in Figure 5B.

Subsequently, we employed LASSO regression analysis and SVM
classification to further refine and recognize diagnostic markers. The
outcomes from Lasso regression revealed that the six genes (ARG2,
GAS6, C3, PROS1, CLU, and FGL2) had an ideal fit whose coefficients
were not 0 when λ = 0.037 (the optimal sparsity parameter λ was 0.037,
Figure 6A). The SVM classification algorithm recognized that seven
genes (ARG2, GAS6, C3, PROS1, CLU, FGL2, and PECAM1) had
significant classification effects (Figure 6B). The results of that
intersection of LASSO regression analysis and SVM classification
indicated that ARG2, GAS6, C3, PROS1, CLU, and FGL2 are
potential markers for the diagnosis of EM. Ultimately, multivariate
stepwise logistic regression analysis was performed for the six genes, and
three genes (C3, GAS6, and ARG2) were screened, the p-values of the
C3 were less than 0.05, result shown in Table 3.

3.4 Establishment and evaluation of
diagnostic prediction model

Using the training cohort, a nomogram model for the
diagnosis and prediction of EM was constructed based on the
C3, GAS6, and ARG2 genes (Figure 7A). Each predictor in the
nomogram corresponds to a specific score, and the “total score”
is the cumulative sum of the scores from the aforementioned
predictors, and we can predict the risk of suffering from EM

FIGURE 2
Principal component analysis (PCA) illustrates gene expression patterns across datasets. In the scatter plots, each point represents a sample based
on the top two principal components (PC1 and PC2) of gene expression profiles. (A) The batch effect is obvious. (B) The removal of batch effect. (C) Batch
effects are removed for ectopic and eutopic samples after correction. Colors represent corresponding samples across three distinct datasets.
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FIGURE 3
EFRDEGs in endometriosis: (A) Venn diagram illustrating the overlapping genes among DEGs, Efferocytosis-related genes, and EFRDEGs in EMs. In
the representation, red demonstrates differentially upregulated genes, blue signifies differentially downregulated genes, and yellow represents
efferocytosis-related genes. (B) Volcano plot displaying the 13 identified EFRDEGs in EMs. Red displays upregulated genes while blue displays
downregulated genes. (C)Heatmap visualizing the expression levels of the 13 EFRDEGs. Red shows high expression, and blue shows low expression.
(D) Chromosome region of the 13 ERDEGs. Gene names shown in red represent upregulated genes in the disease group while blue represents
downregulated genes.

Frontiers in Molecular Biosciences frontiersin.org08

Pei et al. 10.3389/fmolb.2023.1298457

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1298457


based on the “total points”. The DCA curves (Figure 7B)
determined by 3-fold cross-validation showed that the model
curves are all above the high-risk threshold curves, and the valid
intervals of the nomogram were 4.35%–94.31%, which suggests
that our nomogram model exhibits high accuracy and can serve
as a foundation for clinical decision-making. After
1000 samplings, the calibration curve in the training and test

cohort (Figure 7C) was close to the reference line, and the
p-value was 0.1014, which indicates that the combined model
overfitting was minimized, and the discrepancy between the
actual EM clusters risk and the predicted risk was very small.
The AUC of the nomogram model was 0.970 (95% CI:
0.898–1.000), demonstrating high feasibility for the
nomogram diagnosis model. ROC curves depicted the

FIGURE 4
Construction of protein–protein interaction (PPI) and transcription factor (TF) for EFRDEGs: (A) Different nodes represent distinct proteins, and the
color of the node represents the enriched pathway. The red node represents the enrichment of related proteins into the complement and coagulation
cascade pathways. The color intensity around the node reflects the log2FC magnitude, with red representing downregulated EFRDEGs and blue
representing upregulated. The color intensity around the node reflects the log2FC magnitude, with red representing downregulated EFRDEGs and
blue representing upregulated EFRDEGs. (B)Green circles represent TF candidates predicted from the database. Only results with p < 0.05 were retained.
Blue circles illustrate downregulated EFRDEGs, while orange circles illustrate upregulated EFRDEGs.
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satisfactory capability of the three-gene prediction model, with
an AUC value of 0.627 (95% CI: 0.437–0.816) in the
GSE37837 dataset and 0.635 (95% CI: 0.449–0.821) in the
GSE6374 dataset (Figure 7D). These results indicate the
efficacy of our diagnostic model in distinguishing EM from
normal individuals.

3.5 Immune infiltration analysis results

In this investigation, the CIBERSORT algorithm was employed
to estimate the proportion of 22 immune cells in 26 eutopic and
26 ectopic endometrial samples, as illustrated in the histogram in
Figure 8A. A violin plot in Figure 8B compares the immune cell

FIGURE 5
diagnostic markers selection: (A) Receiver operating characteristic (ROC) curves for the 8 EFRDEGs are displayed. The x-axis denotes the false-
positive rate, while the y-axis represents the true-positive rate, quantified by sensitivity. The area under the ROC curve (AUC) measures the intensity of
connection between the gene and the disease, with a higher AUC indicating a pretty association. (B) Box plots depict the expression levels of the eight
chosen genes (CLU, C3, CLU, FGL2, PROS1, GAS6, C1QA, ARG2, and PECAM1) in both eutopic and ectopic endometrial tissues. Green represents
eutopic endometria, while red represents ectopic endometria. ***p < 0.001 signifies a statistically great difference in gene expression between the two
types of endometria.
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infiltration in eutopic and ectopic endometrial samples.
Compared with the eutopic endometria, the ectopic
endometria showed a significant increase in the proportions of
M2 macrophages (p < 0.001), plasma cells (p < 0.001), CD4+

memory T cells (p < 0.01), and dendritic cells (DC, p < 0.05). In
contrast, the proportions of T follicular helper cells (Tfh, p <
0.001), activated natural killer (NK) cells (p < 0.001), resting NK
cells (p < 0.05), and activated dendritic cells (DCs) (p < 0.05) were

dramatically reduced. In Figure 8C, the conjunction between
various types of immune cells are depicted, illustrating the close
interconnection among these immune compositions, with CD4+

memory T cells notably associated with most immune
compositions. Next, the correlation between diagnostic
biomarkers and the infiltration levels of immune cells was
further analyzed. The outcomes presented that hub genes
correlate with the function of one or more cells in immune

FIGURE 6
Diagnostic biomarkers selection using two machine learning methods. (A) The least absolute shrinkage and selection operator (LASSO) algorithm
results are presented in two plots. In the left plot, the horizontal axis symbolizes log(λ) values and the vertical axis symbolizes regression cross-validation
errors. The right plot displays the ln-transformed minimum log(λ) values along the horizontal axis and the corresponding coefficients on the vertical axis.
Six genes whose coefficients were not 0 when lambda = 0.037 were screened out. (B) Support vector machine recursive feature elimination (SVM-
RFE) regression model algorithm identified seven diagnostic biomarkers. The right plot illustrates the ranking of these seven feature genes according to
their importance from highest to lowest as follows: PECAM1, GLU, GAS6, ARG2, PROS1, FGL2, and C3.

TABLE 3 Multivariate stepwise logistic regression.

Hub gene β SE Wald OR 95% CI P

C3* 1.391 0.566 2.459 4.019 [1.665–16.851] 0.0139

ARG2 −1.348 0.880 −1.532 0.260 [0.033–1.157] 0.1255

GAS6 1.056 0.903 1.170 2.875 [0.464–19.732] 0.2421

*p < 0.05, the result has statistical significance. Illustration: AIC, is the basis for stepwise regression screening, in the training test, the multi-factor AUC, was greater than 0.7 and at least one gene

was significant, which indicates the results are meaningful.
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FIGURE 7
Establishment and assessment of diagnostic predictionmodel: (A) A nomogramof diagnostic biomarkers, where “Point” represents individual scores
on the scale; ARG2, GAS6, and C3 correspond to the scores of each gene; “Total Point” represents the combined score of the three hub genes. (B)
Decision curve analyses (DCAs) for the nomogram, show that themodel curves are above the high-risk threshold curve. (C)Calibration curves of the hub
genes, demonstrating good calibration of the combined model after bias correction. (D) ROC curve of the nomogrammodel with an AUC of 0.978,
and the test sets GSE37837 and GSE6364, with an AUC of 0.627 and 0.635, respectively.
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infiltration in Figure 8D, which indicates that the diagnostic
biomarkers may have a significant impact on the immune
microenvironment. Among them, there was a greatly negative
correlation between C3 and Tfh cells, while ARG2 exhibited a
significant positive correlation with NK cells (Figures 8E,F).

3.6 Single-cell RNA sequencing analysis of
immune infiltration in endometriosis

To acquire a more abstruse comprehension of the variations in
expression levels of diagnostic biomarkers across distinct immune cell

FIGURE 8
(Continued).
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populations, we opted for single-cell analysis in the GSE213216 cohort.
We visualized the data and classified the cells into 15 cell
subpopulations by UMAP (Figure 9A). Eight immune cell
subpopulations were identified: macrophages, monocytes, endothelial
cells, fibroblasts, CD8+ T cells, CD8+ Tex, naive B cells, and resting
memory CD4+ T cells (Figure 9B). The relative immunological
abundance of these 8 cell subpopulations is presented in the circular
chart (Figure 9C), with fibroblasts being themost abundant, followed by
monocytes. Then, We analyzed the diagnostic biomarkers in 8 cell
subpopulations. The violin plot reflects the diagnostic biomarkers
expression distribution of each cell in the subpopulation (Figures
9D–F). In the macrophages and fibroblasts subpopulation, C3 and
GAS6 have higher expression levels, but are insensitive to low-expressed
genes, for example, The distribution of ARG2 expression is unclear. The
bubble chart can reflect the average expression level and cell proportion
of hub genes in the subpopulation, at the same time, there is a certain
detection rate for low-expression genes. C3 exhibits the highest
expression level in CD8 Tex cells, whereas GAS6 demonstrates the
highest average expression level in macrophages.

3.7 Functional enrichment analysis and
potential drugs targeting for the diagnostic
biomarkers

Then, we performed GSEA analysis for genes with p-value <
0.05 in logistic bidirectional elimination regression to understand
the potential biological roles. Figure 10A illustrates the bubble chart
of GSEA of C3 has shown that genes exhibiting elevated expression
were enriched in the allograft rejection, TNFA signaling via NFkB,
and KRAS signaling up pathways, conversely, genes with reduced
expression were notably enriched in pathways associated with E2F
targets, G2M checkpoint, andMYC targets V1. Figure 10B illustrates
the extent of pathway enrichment in individual samples using the
“GSVA” R package. In high-level expression of the C3 group, the

P53 pathway, Apoptosis, and TNFA signaling via NFkB pathways
were significantly enriched. Subsequently, we downloaded the
human “KEGGpathway” R data and excluded EM-related
pathways. According to the KEGG categories, the outcomes of
the C3 single-gene enrichment analysis were clustered using
“clusterProfiler,” and “enrichplot” R package to find the
commonality of the related pathways and calculated the mean
and standard deviation of each cluster, P value<0.05 are
statistically significant. As illustrated in Figure 10C, the central
pathways within the cluster were Th1 and Th2 cell
differentiation, TNF signaling, and viral protein interaction with
cytokines and cytokine receptors.

Furthermore, with the application of the CTD chemicals database,
we appraised potential therapeutic drugs for the therapy of EM by
scrutinizing the diagnostic biomarkers we found. The result revealed
that 7 drugs, namely, Ibuprofen, Danazol, Indomethacin, Mifepristone,
Progesterone, Resveratrol, and Rofecoxib were filtered, among them, six
drugs targeting C3, three drugs targeting GAS6, and two drugs targeting
ARG2. Presumably, they can either reverse or induce the expression of
hub genes, thereby influencing the state of EM, as depicted in
Figure 10D.

3.8 RT-qPCR and immunohistochemistry
analysis

qRT-PCR and IHC were carried out on 10 pairs of matched
eutopic and ectopic endometrial tissue samples to verify the
expression levels of three diagnostic biomarkers. IHC staining of
EM tissues using anti-C3, anti-GAS6, and anti-ARG2 showed higher
expressions of C3 and GAS6 and lower expressions of ARG2 in
ectopic endometria relative to eutopic endometria, the difference
was statistically significant (Figure 11A). Simultaneously, qRT-PCR
was performed using total RNA extracted from 10 pairs of eutopic
endometria and EM tissues. The results revealed higher expressions

FIGURE 8
(Continued). Immune infiltration analysis results: (A) Proportions of different immune cells in individual samples. (B) Heatmap depicting the
differential immune cell infiltration between eutopic and ectopic endometria. Red represents the ectopic endometria group, and blue represents the
eutopic endometria group. *p < 0.05, **p < 0.01, and ***p < 0.001. (C)Correlations between the different types of immune cells. (D) The correlation score
plot illustrates the relevance between diagnostic biomarkers and immune cells and functions. Green denotes a positive correlation, while blue
signifies a negative correlation. The intensity of the color reflects the significance of the correlation. (E, F) Scatter plot displaying the relevance between
diagnostic biomarkers and the infiltration of immune cells .
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of C3 and GAS6, and lower expressions of ARG2 in ectopic
endometria compared to eutopic endometria, and the difference
was statistically significant (Figure 11B).

4 Discussion

EM is highly prevalent in Females in their reproductive years
and represents an important cause of failure to conceive and

preserve, decreased fertility, severe dysmenorrhea, and chronic
pelvic pain; moreover, it increases the likelihood of developing
epithelial ovarian cancer and cardiovascular disease (Mortlock
et al., 2021; Fonseca et al., 2023). Surgery followed by
postoperative pathological inspection is considered the gold
standard for diagnosing EM, because the development of EM is
usually slow, and the clinical diagnosis of EM is frequently delayed.
The globally accepted definition of delayed diagnosis in EM is the
duration between the initiation of pain signs or the emergence of

FIGURE 9
Single-cell RNA sequencing analysis (scRNA-seq) of immune infiltration: (A) Uniformmanifold approximation and projection (UMAP) clustering plot
showing a total of 15 distinct cell clusters. (B) Annotation of the main 8 immune infiltrating cell subtypes obtained from clustering. (C) Circular chart
representing different cell clusters, with the values indicating the relative immune infiltration abundance. (D–F) Violin plots illustrate the immune
infiltration abundance of the three diagnostic biomarkers. Each dot represents a single cell, with the x-axis indicating different cell clusters and the
y-axis representing the expression levels.
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endometriotic cysts and the surgical confirmation of EM (Ballard
et al., 2006; Hudelist et al., 2012). A significant clinical challenge is
the delay in diagnosis, not only does it result in the potential
oversight of optimal treatment opportunities, but it also
contributes to the progressive advancement of EM stages,
heightened risks of infertility, and heightened surgical complexity
and trauma. With the rapid upgrowth of bioinformatics technology
and high-throughput sequencing, the integration of molecular
biology and network science holds the promise of uncovering the
origins of human diseases, potentially revolutionizing the diagnosis
and treatment approaches for various medical conditions
(Silverman et al., 2020). EM patients have an altered
transcriptome, and variations in gene expression contribute to
the non-surgical clinical diagnosis of EM has been emphasized.
An expanding body of research indicates that the immune response
significantly contributes to the pelvic microenvironment in EM. The

proliferation of endometrial cells, enhancement of invasion, and
local angiogenesis of the ectopic endometria are associated with
alterations in the local immune microenvironment. In recent years,
more and more researchers have been looking for novel EM
diagnostic biomarkers and investigating the constituents of
immune cell infiltrates in EM, which could potentially positively
influence the clinical of patients with EM. Akter et al., 2019
evaluated the performance of different supervised machine
learning methods in distinguishing ectopic endometria from EM
patients and control endometrial samples, utilizing both
transcriptomics and methylomics data. The study illustrated that
machine learning methods utilizing transcriptomics or methylomics
data provide a dependable channel for classifying EM. Moreover,
numerous bioinformatics investigations on EM have revealed a close
association between various immune cell subtypes and the biological
processes of EM. These studies have also identified diverse

FIGURE 10
Functional enrichment analysis of C3 and potential drugs targeting diagnostic biomarkers. (A)Dot plot depicted the 20most relevant Hall mark term
with a p-value less than 0.05 ranked by gene ratio. Dot size is proportional to the number of overlapping genes. P-values are colour-coded according to
the colour scale. (B) Heatmap plots of gene set variation analysis (GSVA) scores of the mSigDb Hallmark gene sets for the training set are shown for the
TOP 20 sets with the highest significance in high-risk score level vs. low-risk score level comparison of C3. (C) Clustering network of significantly
enriched KEGG pathways in the GSEA analysis, which deletes pathways related to disease types. The nodes represent the significant KEGG pathways and
the edges represent the similarity between them and are coloured by normalised enrichment score (NES). The lines connected to similar pathways are
coloured by similarity. (D) Protein-drug interaction network. Circle represent the hub dysregulated genes, while squares indicate the interacting drugs
molecules. Node size is proportional to the degree (number of coincident edges).
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biomarker genes implicated in EM, such as CCR5, MRC1, SYK,
NOTCH3, SNAPC2, and PTOV1(Akter et al., 2019; Wang et al.,
2022). Xie et al., 2022 suggested that the overexpression levels of

DZWINT and AQP1 on endometriotic tissue mediated underlying
immune system-associated pathology between M2 macrophages,
activated mast cells, memory B cells, and activated NK cells, etc.

FIGURE 11
RT-qPCR and Immunohistochemical Analysis for diagnostic biomarkers. (A) Relative protein expressions of three diagnostic biomarkers in the
ectopic and eutopic endometria, as determined by IHC techniques. (B) Relative expressions of three diagnostic biomarkers in the ectopic and eutopic
endometria, as decided by qRT-PCR analysis. (*p < 0.05, **p < 0.01, ***p < 0.001).
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We employed CIBERSORT to assess the composition of
immune cell infiltrates in matched eutopic and ectopic
endometrial samples. The findings point to a latent association
between the pathogenesis of EM and an elevated presence of
M2 macrophages, plasma cells, CD4+ memory T cells, and
activated dendritic cells, along with reduced infiltration of T
follicular helper cells, NK cells, and activated mast cells. Studies
conducted earlier have indicated the pivotal role of macrophages in
the onset and progression of EM (Vallvé-Juanico et al., 2019). In EM
samples, there is a heightened presence and activation of
macrophages, primarily attributed to their phagocytic activity in
clearing red blood cells and damaged tissue fragments. Research
indicates that the pro-inflammatory immune population becomes
activated in the early stages of EM development, leading to the
prevalence of M1 macrophages trying to clear the ectopic
endometria. (Mei et al., 2022). As the disease progressed, the
proportion of M1 macrophages gradually decreased and the
proportion of M2 macrophages increased. This shift is more
pronounced in later stages (stages I–IV), thereby creating an
immune microenvironment dominated by M2 macrophages,
which promote local vascular growth and adhesion formation,
and inhibit the clearance of endometriotic cells by other immune
cells (Rakhila et al., 2016; Miller et al., 2020). Up to now, the specific
characteristics of macrophages in the peritoneal fluid of EM patients
remain a subject of debate (Guo et al., 2020). In the present study,
the analysis of immune infiltration illustrated an increased presence
of both M1 and M2 macrophages in ectopic endometrial tissue
competed with eutopic endometrial tissue, with a predominant
elevation in M2, suggesting a more significant involvement of
M2 macrophages in the pathogenesis of EM. Studies have shown
that in peritoneal fluid, in addition to macrophages, which represent
the largest immune population, T cells and DCs also dominate (Guo
et al., 2020). Our findings indicated an elevation in CD4+ resting
memory T cells and DCs in ectopic endometrial tissue, suggesting
the initiation of a prolonged immune response in individuals with
heterotopic disease. Increased DCs possess potent antigen-
presenting capabilities and are indispensable for T-cell activation
(Lai et al., 2022). Furthermore, we found that Tfh cells are increased
in eutopic endometria. Tfh cells, a CD4+ T-cell subset, are crucial for
B-cell differentiation, memory B-cell generation, and high-affinity
antibody production. The abnormal number or function of Tfh
plays a crucial role in the development of autoimmune disorders
such as rheumatoid arthritis (RA) and systemic lupus erythematosus
(SLE). (Qi et al., 2023). This may indicate that EM may be closely
related to autoimmune diseases. Besides, the analysis of immune
infiltration indicated that the proportion of both activated, and NK
cells was reduced in ectopic lesions. NK cells are essential to the
innate immune system and denote a type of lymphocyte that clears
ectopic endometrial cells. Dysfunction or diminished cytotoxicity of
NK cells can lead to the development of EM (Lai et al., 2022). This
was also sustained by Drury et al., 2018, who showed that in contrast
to normal endometria, a notable reduction in uterine NK cells was
observed in ectopic endometria. This decline in NK cells may be
associated with the persistence of ectopic endometrial cells, resulting
in the early development of lesions. Delving deeper into the
pathogenesis of EM from an immunological standpoint can
provide valuable insights, potentially offering novel avenues for
early, non-invasive diagnosis, and therapy of the condition.

Efferocytosis, a crucial mechanism within the immune system, is
liable for clearing up apoptotic cells in the body, contributing
substantially to the maintenance of internal environment
homeostasis and influencing various physiological and
pathological processes (Doran et al., 2020). Apoptotic cells are
recognized, engulfed, and digested by phagocytes to prevent
undergoing further necrosis and releasing substantial amounts of
inflammatory mediators. Efferocytosis can be carried out by
professional phagocytic cells, such as macrophages and DCs, and
on a smaller scale by non-professional phagocytic cells, such as
endothelial cells (Siamon and Annette, 2018). Highly efficient
efferocytosis within the organism is a fundamental element in
preserving immune system homeostasis. Studies have shown that
the role of efferocytosis in atherosclerosis is only approximately 1/
20th of the physiological levels for a variety of reasons, such as
macrophage recognition of apoptotic cells or macrophage
dysfunction (Liao et al., 2018). Furthermore, studies have
demonstrated that malignant cells can exploit the efferocytosis
process to present molecular signals on their cell membranes,
evading immune detection and surveillance by altering
macrophage polarization and abundance (Werfel and Cook,
2018). There is currently a lack of research on efferocytosis in
EM, the research of efferocytosis may conduce to the further
understanding of the immune system’s role in the pathogenesis
of EM. Therefore, investigating the correlation between efferocytosis
and EM could uncover novel markers for diagnosing EM and
identify fresh targets for treatment.

In our research, we associated the DEGs in the GSE7305,
GSE11691, and GSE25628 datasets with genes engaged in the
development of efferocytosis, and a cumulative 13 EFRDEGs
were found in ectopic and eutopic endometria samples. Then, a
univariate analysis was employed to pinpoint eight genes with close
associations to EM. Among these genes, six hub genes (ARG2,
GAS6, C3, PROS1, CLU, and FGL2) were further filtered and
recognized as diagnostic biomarkers through the implementation
of LASSO regression and SVM-RFE algorithms. Subsequently,
multivariate stepwise logistic regression analysis and a nomogram
model were employed for constructing a diagnostic prediction
model comprising three genes (C3, GAS6, and ARG2). The ROC
curve of the nomogram model with an AUC of 0.978, and the test
sets GSE37837 and GSE6364, with an AUC of 0.627 and 0.635. The
calibration and decision curves demonstrate that the model exhibits
excellent predictive capability. Furthermore, in our study, we delved
into the analysis of correlations between the three diagnostic
markers and various immune cell infiltrations. Eventually, we
validated the expression levels of three diagnostic biomarkers in
our investigation of ectopic and eutopic endometrial issues from EM
patients, and the outcomes were in concordance with the
bioinformatics analysis. In contrast to the control group, the
ectopic endometria group exhibited upregulated expressions of
C3 and GAS6, along with downregulated expressions of ARG2.

Growth Arrest Specific 6 (GAS6) is a protein-coding gene, which
was early explored to be upregulated in growth-arrested fibroblasts. This
gene is commonly upregulated in miscellaneous cancers and has been
attached to an unfavorable prognostic outlook (Ammoun et al., 2014;
Chiu et al., 2015; Mullen et al., 2022). Increased protein levels are also
linked to several health conditions, such as systemic lupus
erythematosus, venous thromboembolic disease, and chronic renal
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failure (Lee et al., 2012; Kim et al., 2013; Schnegg-Kaufmann et al.,
2019). Research has shown that Gas6 is expressed in host stromal cells,
including fibroblasts, macrophages, and DCs within the tumor
microenvironment (Tanaka and Siemann, 2020). Apart from
neoplastic cells, Gas6 is detected in both luminal and basal
mammary epithelial cells throughout puberty and adulthood and
plays a role in the procedure of bone formation (Shiozawa et al.,
2010;Mills et al., 2018). It is thought that beGas6/Axl signaling pathway
mediates the crosstalk between tumor and immune cells, thereby
contributing to immune suppression and evasion within the tumor
microenvironment to facilitate the growth of tumors, survival, and
metastasis (Wu et al., 2018). Zdżalik-Bielecka et al., 2021 proposed that
activation of Axl by GAS6 prompted actin remodeling, which further
promoted micropinocytosis and contributed to cancer-cell invasion.
Sun et al., 2003 investigated Gas6 and its receptors Axl in normal,
eutopic, and ectopic endometria and revealed the expression of
Gas6 and Axl mRNA in all the samples. However, Gas6 and Axl
mRNA levels were markedly elevated in the ectopic endometria than
the normal endometria (p < 0.05). This suggests that Gas6 and Axl
signaling is dysregulated in EM and potentially contributes to abnormal
growth. This aligns with the findings from our bioinformatics analysis.

As the predominant element in the complement system, C3 and
its protein hydrolysis derivatives (C3b and C3c) play a pivotal role in
initiating the complement system’s activation (Geisbrecht et al., 2022).
The complement system constitutes a vital immune mechanism
engaged in eliminating ectopic endometrial tissues and
inflammatory response in the abdominal cavity (Yu et al., 2021).
Tao et al. (Ricklin et al., 2010) contrasted the gene expression profiles
of C3 in the ectopic and eutopic endometria of EM patients and
discovered that C3 mRNA expression was notably higher in the
ectopic endometria. Sayegh et al., 1996 demonstrated that
C3 expression in individuals with EM was significantly elevated
compared to those without EM. C3b can attach to pathogens,
labeling their absorption and degradation through C3b receptors
on immune cells (Yu and Zhang, 2021). In addition to producing
cytotoxic effects, C3 induces other effects on the immune response,
including modulatory effects, inflammatory mediators, and immune
adhesion. Liszewski et al., 2013 found that the T cell-expressed
protease cathepsin L (CTSL) was responsible for processing
C3 into biologically active C3a and C3b. T cells derived from
patients with autoimmune arthritis exhibited elevated intracellular
C3a generation, mTOR activity, and proinflammatory cytokine
production. Notably, the pharmacological inhibition of intracellular
CTSL activity reversed these effects, underscoring the crucial role of
intracellular C3 activation in regulating T-cell activity. In our study,
we discovered that C3 was significantly negatively associated with the
Tfh cells, this suggests a role between C3 and T cells in the
pathogenesis of EM, and the precise potential mechanism requires
further investigation. Moreover, GSEA and KEGG analyses
uncovered the involvement of C3 in modulating immune-related
signaling pathways, such as Th1 and th2 cell differentiation and
Allograft rejection. Arginase is an enzyme liable for converting
L-arginine into L-ornithine and urea and plays a crucial role in
regulating arginine metabolism outside the urea cycle and in
suppressing the synthesis of nitric oxide (Caldwell et al., 2015).
Arginase 2 (ARG2), one of the isozymes of arginase in mammals,
is primarily located in the mitochondria and is highly expressed in the
small intestine, prostate, kidney, and lactating mammary gland

(Pandey et al., 2014). ARG2 regulates various cellular functions
and processes, including senescence, apoptosis, autophagy, and
inflammatory responses in an arginase activity-dependent or
independent manner (Ming et al., 2012; Xiong et al., 2013; Xiong
et al., 2014). Abnormal expression of ARG2 has been increasingly
associated with various diseases, particularly cardiovascular diseases
(Polis and Samson, 2018; Grzywa et al., 2020). Xiong et al., 2013
established in mouse studies that Arg-II promotes mitochondrial
dysfunction leading to vascular smooth muscle cell senescence, and
induction of apoptosis occurs through intricate positive crosstalk
involving S6K1-JNK, ERK, and p53, leading to atherosclerotic
vulnerability phenotypes. Yepuri et al., 2012 showed in their
research that senescent endothelial cells exhibit heightened
expression of ARG2 and adhesion molecules. Silencing ARG2 in
senescent endothelial cells enhances endothelial function and reduces
adhesion molecule expression. There is limited research on ARG2 in
EM. In this investigation, we identified that ARG2 was decreased in
ectopic endometria than in eutopic endometria, which demonstrated
a notable positive correlation with the reduction of NK cells, therefore,
we surmise that low expression of ARG2 may reduce the senescence,
apoptosis, and adhesion of epithelial cells in ectopic endometria,
allowing the lesions to migrate and persist in the abdominal cavity.

Wewere interested in the influence of immune cell infiltration in the
microenvironment of EM. Therefore, we took the single-cell
transcriptional sequencing dataset of Fonseca to compare the changes
in expression levels of EFRDEGs among various immune cellular
components between ectopic and endometria samples. Fonseca et al.,
2023 profiled transcriptome sequencing of individual cells in eutopic and
ectopic endometria fromEMcreating a cellular atlas of endometrial-type
epithelial cells, stromal cells, and microenvironmental cell populations
across tissue sites. They found that lymphatic endothelial cell enrichment
and endothelial cell compartment reorganization have been linked to
somatic ARID1A mutation in epithelial cells. In our study, the findings
showed that M0 Macrophages, Fibroblasts, and CD8 Tex cells were
evaluated as the cell populations exhibiting the most significant changes
in C3 and GAS6 expression levels, indicating that they could be major
genes that affect how well immune cells perform efferocytosis in EM.
Hull et al., 2008 suggest that molecular interactions between fibroblasts
and endothelial cellsmay be the basis for ectopic lesion formation in EM.
α-SMA (ACTA2), one of the myofibroblast-associated transcripts, was
present in human EM tissue microarray gene lists. Attracted to areas of
inflammation, myofibroblasts deposit collagen and other extracellular
matrix (ECM) proteins, which provide growing stromal and epithelial
cell shape. Fibroblasts were the most abundant subpopulation of
immune cells in the ectopic endometria in our findings as well.
Recent research has revealed that fibroblasts are not only structural
components of tissues and organs but also dynamic participants in
immune processes. They can coordinate immune responses by
influencing the signaling pathways of relevant cytokines and
chemokines as well as affecting immune cell differentiation and
movement (Correa-Gallegos et al., 2021). Ma et al., 2021 confirmed
that fibroblasts in ectopic endometria revealed distinct genetic variances
when compared to eutopic and normal endometrial samples. In
addition, high expression of estrogen receptor-b (ERb) was found in
fibroblasts of the ectopic endometria, which is believed to facilitate the
growth of ectopic lesions by enhancing the proliferative activity of the
ectopic endometria and reducing apoptotic signaling. In conclusion,
efferocytosis defects influence the immunemicroenvironmentwithin the
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peritoneal cavity and at the local EM lesion site, allowing for increased
resistance to the non-apoptotic programmed cell death of ectopic
endometrial cells, which may enable the cells to spread and survive
in the peritoneal cavity and then implant to form an endometrial lesion.

By analyzing the dataset retrieved from the GEO database, we
identified three efferocytosis-related immune biomarkers in EM,
presenting potential targets for pharmacological intervention. We
utilized the CTD database to predict potential therapeutics for EM.
The relationship between diagnostic markers and drug pairs was
depicted through a network visualization using Cytoscape software.
Certain drugs identified in our study have already been employed in
clinical settings, such as Ibuprofen and indomethacin, which belong to
NSAIDs, and are currently considered the preferred medication for
managing pain associated with EM (Chen et al., 2021). Currently known
hormonal drug treatments for EM recommended in China include
commonly prescribed progesterone formulations, oral contraceptives,
and gonadotropin-releasing hormone agonists (GnRHa). These
medications can suppress ovarian function and urge low estrogen
levels, thereby achieving the purpose of treatment. Danazol and
Mifepristone can also treat EM through different mechanisms, but
they are not commonly used clinically at present. Resveratrol is a
physical polyphenolic compound known for its antiproliferative and
anti-inflammatory properties, the study showed that it has beneficial
effects on EMvia anti-inflammatory and anti-angiogenic pathways (Dull
et al., 2019). It is necessary to determine the mechanisms of Resveratrol
in EM in future clinical studies.

5 Conclusion

In this study, we obtained three diagnostic biomarkers from the
perspective of efferocytosis in EM and constructed a diagnostic model
by bioinformatics technology andmachine learningmethod,Moreover,
the identification of a relation between the three diagnostic markers and
immune cells has inaugurated a novel field for themechanism studies of
EM. This provides a novel thinking for the diagnosis, obstruction, and
therapy of EM and lays the foundation for subsequent investigations.
The inadequacy of our work is that the sample size might have been
inadequate, given the constraints of the screening criteria. Validation
with an expanded sample size is necessary. The study only found the
relationship between the three diagnostic biomarkers and immune cells,
but the concrete regulatory mechanism is not elucidated. Therefore,
further in-depth research is needed to explore how efferocytosis-related
genes canmodulate immune cell infiltration and provide a reference for
the clinical management of EM.
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