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Background: Dysbiosis is associated with colorectal cancer (CRC) and adenomas
(CRA). However, the robustness of diagnostic models based on microbial
signatures in multiple cohorts remains unsatisfactory.

Materials and Methods: In this study, we usedmachine learning models to screen
metagenomic signatures from the respective cross-cohort datasets of CRC and
CRA (selected from CuratedMetagenomicData, each disease included 4 datasets).
Then select a CRC and CRA data set from the CuratedMetagenomicData database
and meet the requirements of having both metagenomic data and clinical data.
This data set will be used to verify the inference that integrating clinical features
can improve the performance of microbial disease prediction models.

Results: After repeated verification, we selected 20 metagenomic features that
performed well and were stably expressed within cross-cohorts to represent the
diagnostic role of bacterial communities in CRC/CRA. The performance of the
selected cross-cohort metagenomic features was stable for multi-regional and
multi-ethnic populations (CRC, AUC: 0.817–0.867; CRA, AUC: 0.766–0.833). After
clinical feature combination, AUC of our integrated CRC diagnostic model
reached 0.939 (95% CI: 0.932–0.947, NRI=30%), and that of the CRA
integrated model reached 0.925 (95%CI: 0.917–0.935, NRI=18%).

Conclusion: In conclusion, the integrated model performed significantly better
than single microbiome or clinical feature models in all cohorts. Integrating cross-
cohort common discriminative microbial features with clinical features could help
construct stable diagnostic models for early non-invasive screening for CRC
and CRA.
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1 Introduction

Colorectal cancer (CRC) ranks as the third most diagnosed
cancer and a leading cause of death in both men and women globally
(Sung et al., 2021). Colonoscopy is now considered the reference
standard for the detection and prevention of CRC (Dekker and Rex,
2018). However, in clinical practice, factors such as unsatisfactory
bowel preparation, invasiveness, long time and high expenses of
examinations and appointments, etc., greatly limited the screening
efficiency and patient adherence (Lee et al., 2012). In addition,
colonoscopy is not suitable for the elderly or patients with
contraindications. Therefore, a non-invasive tool is urgently
needed for effective population-wide screening to optimize CRC
prevention and diagnosis.

Up till today, various novel screening methods have been made
available, including guaiac-based fecal occult blood tests (gFOBTs),
fecal immunochemical tests (FIT), and newer non-invasive tests
(e.g., blood or stool tests for DNA, RNA, and protein organisms’
markers), but their diagnostic performances and clinical value are
yet unsatisfactory (Wong and Yu, 2019). As the precursor of CRC,
colorectal adenomas (CRA) are particularly hard to detect using
non-invasive methods (Imperiale et al., 2014). The research results
of Niedermaier T et al. showed that the predictive sensitivity of FIT
and DNA markers for advanced adenoma hardly exceeds 70%
(Niedermaier et al., 2018).

Emerging evidence shows that CRC and CRA were
accompanied by dysbiosis of the gut microbiome (Yu et al.,
2017). For example, Bacteroides (e.g., Bacteroides fragilis) and a
strain of Escherichia coli are closely related to colorectal

carcinogenesis (Cuevas-Ramos et al., 2010; Arthur et al., 2012).
Therefore, there has been emerging research focusing on the
diagnostic value of gut microbiome for CRC and CRA(10).

However, several challenges still exist in establishing sound
microbiome-based diagnostic models. Firstly, the composition of
the intestinal flora varied among different regions and ethnic groups
(Dwiyanto et al., 2021). To date, most studies are single-centered,
and the integration of data from multiple populations is rare (Kim
et al., 2020; Chen et al., 2022; Coker et al., 2022). Thus, common
cross-cohort microbiome features remain unexplored. Secondly, due
to the high dimensionality and redundancy of microbiome data
generated by high-throughput sequencing methods, improving data
processing pipelines for better utilization of microbiome
information is crucial for model judgment, which requires multi-
disciplinary proficiencies. Thirdly, it should be noted that CRA and
CRC occurrence and development are affected by multiple factors.
While multi-modality models integrating microbiota and serum
metabolites have shown good performance (Chen et al., 2022; Gao
et al., 2022), clinical and demographic data, which are accessible and
have been proven as important risk factors (Song et al., 2020) have
not yet been involved in integrated models for diagnosing CRA
and CRC.

Machine learning (ML) algorithms are valuable candidates for
fast and deep processing of high-throughput data, including
metagenomic data (Cammarota et al., 2020). Additionally, these
models could be trained to explore dynamic trends, such as common
features across different regions and ethnics. In the field of IBD and
liver disease, ML technology has been used to analyze large-scale
data from different settings (e.g., demographic, laboratory and

FIGURE 1
Study design.
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sequencing data), combine them and tap the potential for diagnostic
prediction (Cammarota et al., 2020; Seyed Tabib et al., 2020; Liu
et al., 2022).

Therefore, using multi-modal ML algorithms integrating
demographic, clinical, and microbiome features, this study aims
to screen for stable CRC and CRA-related metagenomic features in
multiple cohorts, and establish robust prediction models for CRC
and CRA (Figure 1).

2 Materials and methods

2.1 Study design and data preparation

Our purpose is to train a stable and reliable CRC or CRA disease
diagnosis model that integrates microbial and clinical indicators, so
we selected some datasets from a publicly available and standardized
microbiome data sourcedatabase which name is MetagenomicData,
and curated through BioConductor (Pasolli et al., 2017) that have
both metagenomic and clinical data(see Table 1 for basic
information on the data sets). Study subjects included stool
samples from patients with colorectal cancer (CRC) or colorectal
adenoma (CRA) and healthy controls (HC).

We first analyzed and discussed the model methods and
metagenomic data input methods in order to find the best way to
maximize the value of multidimensional data. Secondly, we screened
and verified multiple times in cross-cohorts data sets (Hereinafter
referred to as the cross-cohorts data set, for CRC, it refers to: ZellerG_
2014, VogtmannE_2016, ThomasAM_2018, WirbelJ_2018 data set;
for CRA, it refers to HanniganGD_2017, ThomasAM_2018,
YachidaS_2019, ZellerG_2014 data set) from different countries
and races, and selected the 20 most stable and specific
metagenomic features. Finally, the YuJ_2017 and FengQ_

2015 datasets were used to build a diagnostic model integrating
metagenomic and clinical features.

China’s YuJ_2017 (Yu et al., 2017) was selected as the final
dataset for CRC, while Australia’s FengQ_2015 (Feng et al., 2015)
was chosen as the final dataset for CRA. These datasets were chosen
because their clinical data appear to be more relevant to the disease
based on previous studies of traditional risk factors for the disease.

The YuJ_2017 dataset contains metagenomic data of 53 cases of
CRC and 75 healthy subjects, and also records some of their clinical
indicators: age, sexual, body mass index (BMI), triglycerides, high-
density lipoprotein (HDL), low-density lipoprotein (LDL),
cholesterol, creatinine, fasting glucose, Estimated glomerular
filtration rate(eGFR) and alanine transaminase (ALT). Only age,
triglycerides, HDL and fasting glucose were significantly different
between the two groups (p = 0.012; p = 0.020; p < 0.001; p < 0.001).
The FengQ_2015 data set contains metagenomic data of 47 CRA
patients and 61 healthy participants, and also counts age, gender,
BMI, triglycerides, HDL, LDL and co-morbid disease (type
2 diabetes mellitus, hypertension, fatty liver). However, none of
the clinical indicators were significantly different between the two
groups (p > 0.05). Please see Supplementary Table S1 for clinical
data information of other data sets.

Microbiota features with less than 0.01% mean relative
abundance and less than 10% prevalence were excluded. All
clinical data included in this study are routine clinical tests and
have been shown to correlate with disease in previous studies
(Chapelle et al., 2020).

2.2 Selection the optimal model method

Popular ML methods, including Extreme Gradient Boosting
(Xgboost), Lightweight Gradient Boosting Machine (LGB),

TABLE 1 Basic information of the CRC or CRA cross-cohort datasets.

#DEEAF6; "> #DEEAF6; "> #DEEAF6; "> #DEEAF6; ">

Region Sample size Study name in curated MetagenomicData PMID

CRC

Francea HC = 61 CRC = 53 ZellerG_2014 25432777

United Statesa HC = 52 CRC = 58 VogtmannE_2016 27,171,425

Italya HC = 24 CRC = 29 ThomasAM_2018a 30,936,548

Germanya HC = 65 CRC = 60 WirbelJ_2018 30,936,547

Chinab HC = 53 CRC = 75 YuJ_2017 26,408,641

CRA

China and USAc HC = 28 CRA = 26 HanniganGD_2017 30,459,201

Italyc HC = 24 CRA = 27 ThomasAM_2018a 30,936,548

Japanc HC = 251 CRA = 67 YachidaS_2019 31,171,880

Francec HC = 61 CRA = 42 ZellerG_2014 25432777

Australiab HC = 61 CRA = 47 FengQ_2015 25,758,642

aCross-cohort datasets included in the CRC, feature screening process.
bT:he dataset which used in the final integrated model.
cCross-cohort datasets included in the CRA, feature screening process.
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Random Forest (RF), Logistic Regression (LR), Support Vector
Machine (SVM), k-nearest neighbors (KNN) (Greener et al.,
2022), were trialed for CRC/HC and CRA/HC classification. YuJ_
2017 and FQ_2015 datasets were used as the CRC and CRA datasets
to compare the machine learning model efficacie. Models were
optimized by tuning hyperparameters and training.
Hyperparameters are parameters that need to be specified or
tuned by the user in order to train a model for a specific
modeling problem(23) (Figure 2).

All models adopted the hold-out method, in which a dataset was
divided into two mutually exclusive parts, one as the training set and
the other as the test set (Siugzdaite et al., 2020). All models adopted
the hold-out method, in which a dataset was divided into two
mutually exclusive parts, one as the training set and the other as

the test set (Siugzdaite et al., 2020). The ratio of samples in the
training and test sets was 8:2. The ratios of cases and controls were
also kept consistent in training and test sets to avoid biases
introduced by the data partitioning process.

2.3 Selection of metagenomic features from
cross-cohorts

Previous studies have shown that sensitivity and accuracy vary
with the degree of clustering of metagenomic data when training for
ML (Thomas et al., 2019). Therefore, we first input individual levels
of taxonomic data (phylum, order, family, class, genus, species) into
the model and selected the best-performing taxon level according to

FIGURE 2
Compare the performance of different machine learning models:(A) Predictive performances of six machine learning methodologies [Extreme
Gradient Boosting (Xgboost), Lightweight Gradient BoostingMachine (LGB), Random Forest (RF), Logistic Regression (LR), Support VectorMachine (SVM),
k-nearest neighbors (KNN)] in the CRC dataset (YuJ_2017); (B) Predictive performances of single-level taxons (phylum, class, order, family, genus,
species) in the CRC dataset (YuJ_2017); (C) Predictive performances of six machine learning methodologies [Extreme Gradient Boosting (Xgboost),
Lightweight Gradient Boosting Machine (LGB), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), k-nearest neighbors (KNN)]
in the CRC dataset (YuJ_2017); (D) Predictive performances of single-level taxons (phylum, class, order, family, genus, species) in the CRA dataset (FQ_
2015).
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the area-under-the-curve (AUC) value of the model. After
comparison, we found that it is easier to find the intersection of
feature groups between different data sets by inputting all
classification levels into the model for training (Figures 3, 4A,4B).

To improve the diagnositic value of metagenomic features in
multi-regional and multi-ethnic datasets, we performed cross-
cohorts validation during feature screening, and the feature
groups that performed best in cross-cohorts were retained. The
process was divided into two steps.

Firstly, all datasets selected for metagenomic feature screening
(CRC: ZellerG_2014, HC = 61, CRC = 53; VogtmannE_2016, HC =
52, CRC = 52; ThomasAM_2018, HC = 24, CRC = 29; WirbelJ_
2018, HC = 65, CRC = 60; CRA: HanniganGD_2017, HC = 28,
CRA = 26; ThomasAM_2018, HC = 24, CRA = 27; YachidaS_
2019,HC = 251, CRA = 67; ZellerG_2014, HC = 61, CRA = 42) were
trained with disease diagnosis models using the XGboost method,
with a training set and validation set ratio of 8 to 2, and performed
SHAP analysis post hoc. Secondly, based on the results of SHAP
analysis, we take the intersection of the features that contribute to

disease judgment in each dataset (Feature value > 0). And use the
filtered intersection features to verify again in the cross-cohorts data
set. After multiple intersections, selection, and verification, and
combined with previous relevant research bases, we finally
obtained 20 metagenomic features. Their performance is stable in
four cross-cohort data sets, with an average AUC value greater than
0.8 (Figures 4C,D).

The 20 screened metagenomic features of CRC/CRA have good
diagnostic results in the YuJ_2017 and FengQ_2015 data sets
respectively, with AUC values of 0.855 (95%CI: 0.840–0.867) and
0.867 (95%CI: 0.857–0.878) respectively (Figure 5).

2.4 SHapley additive exPlanation (SHAP)
analysis

SHAP analysis evaluates importance of a taxon using
“Information gain (IG)”. That is, the ratio of each individual
feature to the sum of features gets the score, and the average

FIGURE 3
Common CRC/CRA microbial features across cohorts:(A) Species level (CRC); (B) Full taxonomic information (CRA); (C) Species level (CRA); (D) Full
taxonomic information (CRA).
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reduction of loss of the input features when used as a dividing
attribute (the information gain of the features) (Kent, 1983; Wang
et al., 2005; Gao et al., 2017; Lundberg and Lee, 2017).

IG g (Y, X) indicates the reduction of uncertainty as define below

G Y,X( ) � H Y( )–H Y|X( )
where H(Y) denotes the entropy of dataset Y, which quantifies the
uncertainty involved in predicting the value of a random variable,
whereas H(Y|X) denotes the conditional entropy, which represents
the uncertainty based on the known variable X. p denotes probability
distribution. H(Y) and H(Y|X) are defined as follows:

H Y( ) � –∑p y( )logp y( )

H Y|X( ) � ∑
x∈XP

x( )H Y|X � x( )

In this study, we used the Python 3.8 program language, the
compiler version was PyCharm Community Edition 2021.1.1 x64.
Among the ML models used in this paper, the LR, KNN, SVM and
RF models were built using the scikit-learn package, the model
XGboost was built using the Xgboost package, and the LGB model
was built using the lightgbm package.

2.5 Construction of the integrated model of
clinical and metagenomic features

We input the metagenomic and clinical features with stable
performance in cross-cohorts together into the Xgboost model,
and used AUC values for performance evaluation. External
validation of this methodology was performed across multiple
cohorts.

Xgboost can accept predictions in the absence of indicators,
which is more adaptable to complex situations in practical
applications. However, this study still used multiple
imputation to fill in clinical missing values, because it ensured
that subsequent analysis such as shap would be added to facilitate
observation and discussion. Models were optimized by tuning
hyperparameters and training. Hyperparameters are parameters
that need to be specified or tuned by the user in order to train a
model for a specific modeling problem (Topçuoğlu et al., 2020).
In order to evaluate the performance of the model and prevent
overfitting, 10-fold cross validation was introduced when
building the model. The ratio of training set to test set for all
models in this study is 8:2.

FIGURE 4
(A) Comparision of diagnostic efficacy in CRC dataset (YuJ_2017) using species-level information and full taxonomic information in the XGboost
model; (B) Comparision of diagnostic efficacy in CRA dataset (FQ_2015) using species-level information and full taxonomic information in the XGboost
model. Validation inmultiple cohorts for diagnosis of CRC (C) and CRA (D) using all taxanomic information in XGboostmodel. AUC, area under curve. The
dashed line represents AUC for 0.5. [CRC: ThomasAM_2018 (Italy) AUC 95% CI:0.857–0.977; VogtmannE_2016 (United States) AUC 95%CI:
0.802–0.830; WirbelJ_2018(Due) AUC 95% CI:0.831–0.859; ZellerG_2014 (France) AUC 95%CI: 0.826–0.855. CRA:HanniganGD_2017(China) AUC 95%
CI:0.7850.816; ThomasAM_2018(Italy) AUC 95% CI:0.809–0.837].
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2.6 Statistical analysis

Statistical analysis was performed using R Statistical Software
(version 4.1.2). Count data were described by frequency and
composition ratios, while continuous data were expressed as
median ± IQR, Normality was gauged using Kolmogorov-
Smirnov tests. Differences between groups were compared by
Chi-square and Mann-Whitney U tests. Correlations between
groups were assessed using Spearman correlation analysis. A
p-value≤ 0.05 for two-sided test or a p-value ≤0.025 for one-
sided test is considered statistically significant.

3 Results

3.1 Clinical characteristics of participants

The previous section has provided a comprehensive description
of the basic clinical information of each study participant. For
further details, please refer to Supplementary Table S1.

3.2 Selection the optimal model method

XGBoost outperformed other machine learning model, and was
used for model construction in this study (CRC, AUC: 0·875–0·895;
CRA, AUC: 0·790–0·821) (Figures 2A,C).

3.3 Selection of metagenomic features from
cross-cohorts

Species-level data performed best in single-level taxonomic
(CRC, AUC: 0·906–0·922; CRA, AUC: 0·839–0·862) (Figures
2B,D), while all-level taxonomic data performed even better
(CRC, AUC: 0·849–0·872; CRA, AUC: 0·804–0·828) (Figures
4A,B). And as shown in Figure 3, when only species-level
metagenomic data was input, the intersection of feature values
between all data sets in each region is small; if all classification-level
data were input into the model together, the intersection between
feature values of each data set is obviously increased (p < 0.01)
(Figure 3).

FIGURE 5
Comparison of approaches for the prediction of CRC (A) and CRA (B) using only clinical and demographical features, onlymicrobial features, and the
integrated method.

TABLE 2 Comparison of the performance of CRC/CRA single data model and integrated model.

Model AUC 95% CI Sensitivity Accuracy

CRC

Only clinical data 0·812 0·798–0·825 0·776 0·769

Only metagenomic data 0·855 0·840–0·867 0·855 0·846

Integrated clinical and metagenomic features 0·939 0·932–0·947 0·888 0·885

CRA

Only clinical data 0·833 0·917–0·935 0·858 0·864

Only metagenomic data 0·867 0·857–0·878 0·783 0·773

Integrated clinical and metagenomic features 0·925 0·917–0·935 0·876 0·864
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The final 20 metagenomic features were selected to be stable and
efficient in the cross-chorts cohort: CRC, AUC: 0·817–0·867; CRA,
AUC: 0·760–0·833]. CRC: ThomasAM_2018 (Italy) AUC = 0.867, 95%

CI:0.857–0.977; VogtmannE_2016 (USA) AUC = 0.817, 95%CI:
0.802–0.830; WirbelJ_2018(Due) AUC = 0.846,95% CI:0.831–0.859;
ZellerG_2014 (France) AUC = 0.841 95%CI: 0.826–0.855. CRA:
HanniganGD_2017(China) AUC = 0.800, 95%CI:0.785–0.816;
ThomasAM_2018(Italy) AUC = 0.833, 95% CI:0.809–0.837;
YachidaS_2019 (Japanese) AUC = 0.766, 95%CI:0.740–0789;
ZellerG_2014 (France) AUC = 0.824 95%CI: 0.809–0.837
(Figures 4C,D).

The 20 screened metagenomic features of CRC/CRA also have
good diagnostic results in the YuJ_2017 and FengQ_2015 data sets
respectively, with AUC values of 0.855 (95%CI: 0.840–0.867) and
0.867 (95%CI: 0.857–0.878) respectively (Figure 5).

3.4 Multi-modal diagnostic model
integrating metagenomic and clinical
features

The performance of the model integrating the metagenomic and
clinical features was significantly better than models including only
clinical or metagenomic data for both CRC (metagenomic data, AUC:
0.855, 95%CI: 0.840–0.867; clinical data, AUC: 0.812, 95%CI:

TABLE 3 Comparison of the cross-cohort performances of models constructed
based on clinical data and the integrated models.

Dataset AUC 95% CI Sensitivity Accuracy

CRC

ThomasAM_2018a 0·900 0·891–0·906 0·727 0·717

VogtmannE_2016 0·883 0·874–0·894 0·825 0·818

WirbelJ_2018 0·878 0·866–0·891 0·766 0·760

ZellerG_2014 0·924 0·916–0·932 0·826 0·826

CRA

HanniganGD_2017 0·900 0·891–0·911 0·733 0·727

ThomasAM_2018a 0·867 0·854–0·879 0·833 0·818

YachidaS_2019 0·774 0·756–0·794 0·567 0·812

ZellerG_2014 0·889 0·878–0·901 0·694 0·714

FIGURE 6
Differential functional pathways in CRC vs. HC (A) and CRA vs. HC (B).
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0.798–0.825; combined, AUC: 0.939, 95%CI: 0.932–0.947) and CRA
(metagenomic data, AUC: 0.867, 95%CI: 0.857–0.878; clinical data,
AUC: 0·833, 95%CI: 0.917–0.935; combined, AUC: 0.925, 95%CI:
0.917–0.935) (Figure 5). An net reclassification improvement (NRI)
value greater than 0 means that the added feature values contribute to
model judgment. For CRC (YuJ_2017), the NRI value of the model
integrating clinical indicators was 30% compared with the model built
using only metagenomic features. For CRA (FengQ_2015), the NRI
value of the model integrating clinical indicators was 18% compared
with the model built using only metagenomic features (He et al., 2022).
Table 2 presents detailed model results.

Improvement of model performance by adding clinical features
was also demonstrated in validation datasets (Supplementary Figure
S1). More details are shown in Table 3.

3.5 Factors underlying the prediction of
CRC/CRA

Among the CRC and CRA top20 metagenomic feature groups.
There is only one commonmetagenomic feature was identified, which
is Prevotellaceae (Figure 6). We further performed separate
differential analysis of functional pathways for CRC and CRA
microbiome data, and the analysis showed that the differential
pathways of CRC and CRA did not have any intersections (Figure 7).

For CRC patients, the 5 most important features were
Peptostreptococcus, HDL, Eubacterium eligens, Bacteroides dorei,
and Acidaminococcales; among which HDL and E. eligens
negatively contributed to CRC risk (Figure 8A).

However, for CRA patients, the 5 most important features were
BMI, age, low-density lipoprotein (LDL), Eubacteriaceae,

Ruminococcus torques, and Coprococcus catus. Age, LDL,
Eubacteriacease, C. catus, Agathobaculum and Corobacteria
negatively contributed to CRA risk (Figure 8B). Correlations
between gut microbiota and clinical features shown in Figure 9.

4 Discussion

In this study, we used gut metagenomic and clinical features to
develop diagnostic models for CRC and CRA. Ourmodel exhibited a
better performance than clinically-used tests (e.g., gFOBTs, multi-
target stool DNA, FIT, Methylated septin 9 gene, etc.) (Ladabaum
et al., 2020). More importantly, we included data from 6 regions,
including China, Germany, Italy, USA, Japan, and France, to address
existing limitations regarding varied human gut microbiota
compositions across populations with different environmental
and genetic backgrounds. Through data mining optimization,
feature selection, multi-omics analysis and other processes, stable
CRC/CRA risk prediction models with generalizability were
established, which could provide valuable insights for early CRC
screening.

Several breakthroughs were made in this study. Firstly,
previous disease diagnosis models based on gut microbiome
nearly always performed poorly in external validations (Wong
and Yu, 2019; Cammarota et al., 2020). However, we innovatively
found that inputting full taxon data and adding cross-cohort
tests simultaneously with features screening can help keep the
balance between model performance and stability. Furthermore,
the ML approach, instead of the traditional statistical models, is
capable of taking the microbial community as a whole and
determine the association between the structure of the

FIGURE 7
SHAP analysis results. Top 20 features of importance for prediction of CRC according to SHAP values in the integrated model (A). Top 20 features of
importance for prediction of CRA according to SHAP values in the integrated model (B). Each dot in SHAP plot represents a patient, with x-axis location
representing the SHAP value of the predicator. Dot color indicates the measured value of the predicator, assigned color red meant positive contribution
and blue meant negative contribution. Features are ranked along the y-axis according to their contribution to model prediction.
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community and the disease state (Handelman et al., 2018;
Topçuoğlu et al., 2020; Stahlschmidt et al., 2022), yielding
robust results. Secondly, we demonstrated that integrating
clinical features in gut microbiome-based model significanlt
improved model efficacy, especially for CRA. This holds clinical
significance because accessing clinical indicators is convenient and
inexpensive, and common features among regions could further
enhance the stability and generalizability of model predictions.
Furthermore, metagenomic features reflect the microenvironment of
a localized lesion (Wong and Yu, 2019), while demographic and clinical
features could reflect the overall disease states. A combination of these
two aspects could provide a wholistic view of disease status, which could
explain the reason that our integrated model outperformed existing
models based only on microbiome in terms of stability and
generalizability (Thomas et al., 2019; Wong and Yu, 2019).

Up to date, the current research on microbial integration
models is still in its infancy, and most of the research focuses
on integrating complex and expensive big data (e.g., exfoliated cells
DNA sequencing data, microbe-associated metabolites, etc.),
rather than obtaining convenient and affordable routine

demographic and clinical data (Coker et al., 2022; Gao et al.,
2022). However, this study showed that using clinical data for
integration could exhibit comparable accuracy and sensitivity
compared with other data. Compared with the model
integrating metagenomic and metabolomics data by Coker and
colleagues (Coker et al., 2022), our models’ efficacy was
comparable to theirs regarding CRC diagnosis (Coker, AUC
95%CI: 91·5% −96·8%; This study, AUC 95%CI: 93·2%-94·7%),
while outperforming the existing model regarding CRA diagnosis
(Coker, AUC 95%CI: 83·6%-91·6%; This study, AUC 95%CI:
91·7%-93·5%).

Additionally, our results show that FOBT and clinical indicators
related to lipid metabolism (HDL, LDL, etc.) were more critical for
the diagnosis of CRC, while BMI and age contributed more to the
CRA model.

Prevotellaceae, generally considered as probiotic for humans,
was identified as the only overlapping microbial signature for CRC
and CRA, and no overlapping functional pathway was found
between the 2 disease states Figure 6. This suggests that CRC
and CRA are two completely different disease states with

FIGURE 8
Relative abundances of the top 20 discriminative microbiota in CRC (A) and CRA (B).
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different gut microbial environment, which is consistent with
Casimiro-Soriguer’s view (Casimiro-Soriguer et al., 2022).
However, there were certain feature similarities. For example,
10 taxonomic features found adversely contribute to CRC risk
and 9 to CRA belonged to order Clostridiales, while 5 taxonomic
features contributing to CRC risk and 6 to CRA belonged to order
Bacteroidales. These findings are in line with a previous study
(Baxter et al., 2014) that Bacteroidales is currently considered to
be tumorigenic, while Clostridiales has been shown to be associated
with colonic health. Hence, we suggest that in future clinical
practices, monitoring changes in the levels of these two taxa
could be beneficial for disease detection.

Moreover, nearly four-fifths of the top 20 features in the SHAP
summary plot were from the metagenomic data, which could
mean that the gut microbiome is crucial for the prediction of
localized tumors or lesions such as CRC/CRA. The overabundance
of Peptostreptococcus in CRC fecal samples has been found in
multiple studies, and Peptostreptococcus anaerobius could
enhance pro-inflammatory responses, cholesterol synthesis and
cell proliferation (Karpiński et al., 2022). Bacteroids dorei was
previously identidied as a CRC-infiltrating bacteria from a novel
whole genome sequencing method of CRC tissue (Guo et al.,
2019). Here, we can also infer that the dynamic between anti- and
pro-inflammatory factors is crucial in CRC tumorigenesis,
especially low-grade inflammation associated with metabolic
disorders, as HDL (Rohatgi et al., 2021) and the anti-
inflammatory species E. eligens negatively predicted CRC risk
(Montilla and Villamiel, 2022), while increased abundance of
Acidaminococcales was found in T2DM patients (Wang et al.,
2020). BMI and age were the top 2 discriminating features

identified in the diagnostic model for CRA, while
Eubacteriaceae, generally considered to have anti-inflammatory
properties (González-Mercado et al., 2020), protected against
CRA. In conclusion, both microbiome and clinical features
could help diagnose CRC and CRA.

The correlation between some metagenomic features and
clinical indicators is also worthy of attention, which may
suggest the mechanism behind the disease. For example, the
correlation analysis results of YuJ_2017 data show (Figure 9A),
LDL has a significant positive correlation with both S_Bacteroides
clarus and S_Bacteroides dorei (p < 0.05). This may be related to the
presence of cholesterol-reactive sulfotransferase in Bacteroides
bacteria (Le et al., 2022). G_Butyricimonas is considered to be a
beneficial bacteria that can improve human metabolism (Lee et al.,
2022) and is inversely related to BMI. However, some bacterial
species whose functions are not yet known to humans are also
correlated with clinical indicators. For example, gender is
significantly correlated with S_Oscillibacter_sp_CAG_241 (p <
0.05). The results of this study also provide a direction for
exploring bacterial species with unknown functions.

However, the main limitation of this study is that all data are
from the publicly available databases, and the specificity of
clinical data to CRC and CRA are dubious. Future modeling
studies should adopt a prospective study design to include
specific demographic and clinical risk factors to optimize
prediction power. And due to the limitations of the current
data, we lack time-series data to support our conclusions. In
the future, we will work tirelessly to improve these issues.

In conclusion, we successfully constructed a cross-cohort
and stable CRC and CRA diagnostic model integrating

FIGURE 9
Spearman correlations between the abundances of top 20 discriminative gutmicrobiotaand clinical features in CRC (A) and CRA (B). BMI, BodyMass
Index; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; ALT, Alanine aminotransferase; eGFR, estimated glomerular filtration rate. *,
statistically significant after Bonferonni correction.
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metagenomic and clinical features for early non-invasive
screening of CRC and CRA. Compared with other CRC and
CRA screening methods available, this model is more stable and
generalizable. We also emphasize the importance of often
overlooked demographic and clinical parameters in disease
diagnosis and prediction models.
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