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Recent years have seen an uptick in the use of computational applications in
antibody engineering. These tools have enhanced our ability to predict
interactions with antigens and immunogenicity, facilitate humanization, and
serve other critical functions. However, several studies highlight the concern of
potential trade-offs between antibody affinity and stability in antibody
engineering. In this study, we analyzed anti-measles virus antibodies as a case
study, to examine the relationship between binding affinity and stability, upon
identifying the binding hotspots. We leverage in silico tools like Rosetta and FoldX,
along with molecular dynamics (MD) simulations, offering a cost-effective
alternative to traditional in vitro mutagenesis. We introduced a pattern in
identifying key residues in pairs, shedding light on hotspots identification.
Experimental physicochemical analysis validated the predicted key residues by
confirming significant decrease in binding affinity for the high-affinity antibodies
to measles virus hemagglutinin. Through the nature of the identified pairs, which
represented the relative hydropathy of amino acid side chain, a connection was
proposed between affinity and stability. The findings of the study enhance our
understanding of the interactions between antibody and measles virus
hemagglutinin. Moreover, the implications of the observed correlation between
binding affinity and stability extend beyond the field of anti-measles virus
antibodies, thereby opening doors for advancements in antibody research.
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1 Introduction

In recent years, the application of computational methods has expanded significantly in
the field of antibody engineering (Kuroda et al., 2012; Fischman and Ofran, 2018; Kuroda
and Tsumoto, 2018; 2020; Akbar et al., 2022a; Wilman et al., 2022). The potential
applications are vast; however, predicting biophysical properties can be still challenging
when crystal structures of neither the antibody itself nor the antigen-antibody complex are
available. This lack of binding information further complicates the task of guiding in silico
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antibody engineering. Numerous computational protocols have
been developed to facilitate tasks such as affinity maturation,
protein aggregation prediction, and stability enhancement. These
aim to create biologically superior antibodies and often rely on initial
structure predictions through techniques like homology modelling
and molecular docking (Weitzner et al., 2017; Cannon et al., 2019;
Liang et al., 2021).

Artificial intelligence (AI) technologies have made significant
strides in tackling challenges within protein engineering. The
advancements in machine learning (ML) and deep learning (DL)
have revolutionized antibody research, particularly in areas such as
structure prediction, antibody design, and epitope mapping (Jumper
et al., 2021; Ripoll et al., 2021; Akbar et al., 2022b; Prihoda et al.,
2022; Ruffolo et al., 2022; 2023). The integration of data-driven AI
approaches holds immense promise for drug discovery. However,
the accuracy and reliability of these AI predictions heavily rely on
the quality of the training data. One significant advancement in
developing more robust prediction models is the availability of
comprehensive antibody libraries, such as the Observed Antibody
Space (OAS) (Marks et al., 2021). OAS has played a crucial role in
addressing challenges in antibody engineering, such as
humanization and immunogenicity prediction (Olsen et al., 2022;
Prihoda et al., 2022). Despite these advancements, certain problems,
like trade-offs between antibody affinity and stability remains a
challenge as it necessitates large-scale experimental data.

Several studies highlight the same concern of potential trade-offs
between antibody affinity and stability in antibody engineering
(Rabia et al., 2018). However, current approaches have not
specifically addressed the exploration of this relationship. Seizing
this opportunity, we followed a knowledge-based computational
approach that can identify key residues, thereby revealing the
intricate interplay between the affinity and stability of an
antibody. This approach utilizes standard in silico protein
engineering tools and focuses on the importance of residues in
the complementarity determining regions (CDRs). CDR3 in the
heavy and light chains is widely recognized for its critical role in
antigen recognition and binding (Kuroda et al., 2008; Kuroda et al.,
2009; Weitzner et al., 2015; D’Angelo et al., 2018). In general, other
regions such as framework regions (FRs) in variable domain (Fv)
and constant domains primarily contribute to antibody stability
(Ionescu et al., 2008; Zabetakis et al., 2013). Nevertheless, we
hypothesize that CDR3 residues also contribute to stability and
could impact both affinity and stability. To substantiate this, we
identified hotspots as sequential pair located within CDRs
(particularly focusing on CDR3), by integrating MD simulations
to in silico alanine scanning. These hotspots are capable of
modulating both affinity and stability based on their local or
relative hydropathy (Di Rienzo et al., 2021). Relative hydropathy
is based on the surroundings of an amino acid side chain, which
plays a crucial role in antigen binding and stability.

As a model system, we choose antibodies against the measles
virus hemagglutinin (MVH). Measles is an infectious and highly
contagious disease that continues to thrive in developing countries,
despite the availability of an effective vaccine for decades (Suvvari
et al., 2023). To fully eradicate the disease, there is an urgent need for
advanced measles therapy. Although researchers have been
developing antibodies against measles virus for epitope
identification and other research purposes, none of these

antibodies have yet entered clinical trials. Remarkably, no crystal
structures for anti-measles virus antibodies or antibody-antigen
complexes are available in the Protein Data Bank (PDB) (Berman
et al., 2007). This lack of structural data is a significant hurdle to the
development of antibody-based treatments against the measles
virus. On the other hand, the crystal structures of the MVH
(Hashiguchi et al., 2007) and a fusion protein, two glycoproteins
present in the virus’s envelope, are available in PDB in both apo and
holo forms with cellular receptors such as signaling lymphocytic
activation molecule (SLAM) (PDB ID: 3ALW, 3ALZ, 3ALX),
Nectin-4 (PDB ID: 4GJT), and CD46 (PDB ID: 3INB) (Santiago
et al., 2010; Hashiguchi et al., 2011; Zhang et al., 2013). This disparity
makes antibodies against measles virus an intriguing subject for
further research. In this context, Tadokoro and colleagues
(Tadokoro et al., 2020) have extensively analyzed biophysical
parameters such as equilibrium dissociation constant (KD) or
binding affinity, melting point Tm or thermal stability, and
thermodynamic parameters for an anti-MVH antibody 2F4. The
reported binding affinity for antibody 2F4 Fab at 25 °C was 18 nM,
which is about 10 and 37-fold higher affinity than SLAM (KD =
170 nM) and Nectin-4 (KD = 670 nM), respectively. Neutralization
of the virus by the antibody 2F4 has also been reported, along with
three other antibodies, namely, 7C6, 8F6, and 10B5 (Sato et al.,
2018). All the antibodies obtained from mouse immunization can
neutralize the antigen MVH, differing to some extent in the
neutralizing capability. These four antibodies have different
germline origins (Supplementary Table S1).

In this study, based on homology modeling, docking
simulations, MD simulations, and in silico alanine scanning, we
computationally predicted residues that potentially coupled both
stability and binding affinity, and experimentally analyzed
physicochemical properties of anti-MVH antibodies. The
antibodies we employed demonstrated high binding affinities less
than 1 nM to MVH, but they differed in stability. Pairwise point
mutational analysis offered insights into these differences and
suggested a potential relationship between affinity and stability of
anti-MVH antibodies.

2 Results

2.1 Experimental characterization of anti-
measles virus neutralizing antibodies

We first performed physicochemical analysis of the four wild
type (WT) antibodies: 2F4, 7C6, 8F6, and 10B5. These antibodies
were previously obtained through mouse immunization (Sato et al.,
2018) and, except for 2F4 (Tadokoro et al., 2020), they had not been
biophysically characterized until this study. Ideally, antibodies
should demonstrate a rapid association and a slow dissociation
with antigens. Our SPR measurements confirmed that antibodies
7C6 and 8F6 exhibited these characteristics, resulting in an affinity
of 0.4 ± 0.2 and 0.9 ± 0.2 nM, respectively, toward MVH (Table 1).
On the other hand, 2F4 and 10B5 demonstrated a slower association
and a faster dissociation, resulting in lower binding affinity of 54.1 ±
0.1 and 60.3 ± 19.4 nM, respectively.

The KD of 2F4 antibody reported in a previous study
(Tadokoro et al., 2020) was lower than our observed value
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(Table 1; Supplementary Figure S1). Despite this discrepancy, all
four antibodies exhibited better binding affinity than the
receptors, particularly 7C6 and 8F6. Although the reported
thermal stability of the 2F4 Fab was 76°C (Tadokoro et al.,
2020), our DSC measurements revealed a decrease in melting
temperature (Tm = 72.7°C ± 0.1°C). Antibodies 7C6 and
10B5 demonstrated higher stability with melting temperatures
of 73.9°C ± 0.3°C and 73.9°C ± 0.1°C, respectively, while
8F6 exhibited lower thermal stability of 68.0°C ± 0.1°C
(Table 1; Supplementary Figure S2).

Based on these observations, we classified the antibodies into
two affinity groups (Table 1). Subsequently, we focused on the high
binding affinity (<1 nM) antibodies 7C6 and 8F6, which showed a
significant difference in thermal stability (ΔTm, ~6°C). Analyzing
these characteristics may provide insights into the relationship
between binding affinity and thermal stability in anti-MVH
antibodies.

2.2 Homology modeling and antibody-
antigen local docking

As the crystal structure of the antibodies are unavailable at
the time of this writing, we performed antibody structure
modeling with the RosettaAntibody protocol (Weitzner et al.,
2017). The variable fragment of the antibody was modeled from
the amino acid sequences (Figures 1A, B), and the best scored
model was selected for docking with the MVH crystal structure
(PDB ID: 2ZB6). While there was no prior binding information
available for the high-affinity antibodies (7C6 and 8F6), it was
available for the receptors. The head domain of the MVH has 6-
bladed β-propeller folds (β1–6). It is the main target of
neutralizing antibodies (Tahara et al., 2016). Among them,
the receptor binding epitope, which is a group of amino acids
in the receptor binding site, stands out because, as the name
suggests, it is also recognized by the three receptors to MVH, as
well as by antibody 2F4. It is worth noting that several other
antibodies, which were not included in this study, have also been
reported to target this epitope (Tahara et al., 2016). The receptor
binding epitope is located primarily within β5 with some
extension in β4 and β6. Since 2F4 is reported to interact with
the receptor binding epitope (Tahara et al., 2016), we first
constructed a putative structure of the 2F4 with MVH by
placing the antibody within 7 Å of the MVH near the
receptor binding epitope, so that the CDRs and the receptor

binding epitope roughly face each other. Next, we performed a
Monte Carlo-based rigid body docking using RosettaDock
(Chaudhury et al., 2011), that predicted favorable binding
modes of 2F4 with MVH. The best docking score obtained
was −26.9 Rosetta Energy Unit (REU). The visual inspection
of this docked model showed that amino acids 190, 533 and 541,
which reported to recognize 2F4 is within 5 Å, in agreement with
the reported experimental data (Tahara et al., 2013; 2016). The
2F4 docked model helped in our knowledge-based docking
approach and we used it as a reference to construct the
putative model for 7C6 and 8F6 followed by flexible
antibody-antigen docking (Weitzner et al., 2017). The “core
epitope” utilized in this study encompasses the following
amino acids in the receptor binding site of MVH: 187,
190–200 and 571–579 in β6, 483 in β4, 505–552 in β5
(Figure 1C). Binding of antibodies to this core epitope could
identify key interacting residues.

Subsequently, with the SnugDock algorithm (Sircar and Gray,
2010), we obtained the best docking scores of −41 REU
and −39.5 REU for 7C6 and 8F6 antibodies, respectively. The
order of these docking scores aligns with the experimental KD

values (0.4 ± 0.2 and 0.9 ± 0.2 nM for 7C6 and 8F6,
respectively). We also employed docking local refinement in
Rosetta to compute the docking score for the available crystal
structure of the receptor-antigen complex as a positive control.
The best docking scores for receptors SLAM (PDB ID: 3ALZ)
(Hashiguchi et al., 2011), CD46 (PDB ID: 3INB) (Santiago et al.,
2010) and Necin-4 (PDB ID: 4GJT) (Zhang et al., 2013)
were −38.9, −33.7 and −30.9 REU, respectively. These docking
scores are aligned well with the reported experimental binding
affinity (KD 170, 200 and 670 nM for SLAM, CD46 and Nectin-
4, respectively) (Hashiguchi et al., 2007; Santiago et al., 2010). The
resulting models for antibodies, representing the predicted holo
form, were then further evaluated through in silico and in vitro
assessments. The workflow for the in silico assessments is depicted
in Figure 2.

2.3 Visual inspection and MD simulations to
identify interacting residues in predicted
complex structures

In line with our proposed workflow for hotspot prediction
(Figure 2), our initial step involves identifying the interface
residues contributing to binding between the antibody and

TABLE 1 Physicochemical analysis of the wild type anti-MVH antibodies. Kinetic parametersa and melting temperature (Tm) are shown.

Physicochemical analysis (wild type) < 1 nM affinity group > 50 nM affinity group

7C6 8F6 2F4 10B5

Binding affinity kon (×105 M−1s−1) 11.4 ± 4.8 3.4 ± 2.9 1.2 ± 0.5 0.1 ± 0.1

koff (×10
−4 s−1) 4.1 ± 1.7 2.8 ± 1.7 65.8 ± 29.1 8.6 ± 0.4

KD at 25°C (nM) 0.4 ± 0.2 0.9 ± 0.2 54.1 ± 0.1 60.3 ± 19.4

Thermal stability Tm (°C) 73.9 ± 0.3 68.0 ± 0.1 72.7 ± 0.1 73.9 ± 0.1

aThe simple 1:1 Langmuir binding model was used to fit and calculate the kinetic parameters of the binding.
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the core epitope. To achieve this, we performed interface
analysis of the predicted holo form using UCSF Chimera
(Pettersen et al., 2004). We considered residues within a 5 Å
distance from both the core epitope and the antibody as interface
residues. Among the interface residues identified for 7C6,

46 residues were found in MVH, with 62.8% of them
belonging to the core epitope region. In contrast, a total of
31 residues were identified in the antibody as interacting
residues (13 and 18 residues in the heavy and light chains,
respectively). Notably, all of the identified interface residues

FIGURE 1
Antibody sequence and epitope of MVH. (A) and (B) display the antibody sequence of the heavy and light chains, respectively. (C) illustrates the head
domain of the measles hemagglutinin, showcasing the epitope used in this study represented as a mesh-like surface. The non-epitope region is
colored gray.
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in the heavy chain and 77.8% in the light chain were located
within the CDRs. Throughout this study, we followed Chothia
numbering scheme (Chothia and Lesk, 1987; Al-Lazikani et al.,
1997) to define CDRs (Figures 1A, B). Moving on to the
8F6 antibody, we identified 36 interacting residues in MVH,
with 74.4% of them belonging to the core epitope region.
Additionally, we found 27 interacting residues in the
8F6 antibody, out of which 18 were in the heavy chain, and
all of them situated within the CDRs. From this analysis, we
deduced that the CDRs of the heavy chain exhibited a reasonable
number of interacting residues in the antibodies, particularly in
the case of 8F6. Notably, the light chain of 7C6 exhibited a higher
presence of interfacial residues than the heavy chain,
emphasizing its importance in the interactions.

To computationally assess the validity of the predicted
interacting residues of the antibody-antigen complexes, we
employed MD simulations. In MD simulations, model
structures are refined as they interact with surrounding
explicit water molecules. This makes MD simulations a
common tool for refining model structures (Heo et al., 2021).
To confirm the quality of the simulations we first checked
convergence of the three independent MD simulations for
each antibody-antigen complex. The convergence of the
predicted complex is difficult to achieve since the crystal
structure of the MVH (PDB ID: 2ZB6) we used in our

docking simulations has missing residues (167–183 and
240–246) in the non-epitope region (Figure 1C). Therefore, we
trimmed the terminals of MVH and repaired the missing residues
240–246 through Modeller (Fiser et al., 2000; Webb and Sali,
2016) before the MD simulations. In addition, we modeled the
constant regions of the antibody to mimic the Fab format used in
experiments. The contribution of the modeled regions was
evident in the simulation runs which caused the higher
structural deviations in the trajectories. Given that our above
interface analysis of the docked models indicated that the
interacting residues were primarily located in the core epitope,
we focused our attention on verifying the potential interactions
within the core epitope and Fv of antibody. Therefore, we
checked the convergence using the root mean square deviation
(RMSD) of the Cα atoms for these regions, which remained quite
stable after 170 ns (Supplementary Figure S3). We used the last
70 ns of the trajectories after achieving convergence in the
analyses below.

To identify the residue-wise contributions of interactions
between antibody CDRs and the core epitope more
quantitatively, we computed the interaction energies
(comprising van der Waals and coulomb energy) based on
the MD trajectories (Figure 3). The probability distribution
function of the non-bonded energy components for both
antibodies showed strong interaction energies toward the core

FIGURE 2
Workflow of hotspots identification pipeline. (A, B) display the steps for hotspots identification and their link to affinity-stability trade-offs. (A)
presents the workflow of the in silico experiments, which involves checking the interaction energies of the complex structure by using MD simulations.
We identify the residue N exerting strongest interaction energy (total non-bonded interaction energy (ETot)). We then perform in silico alanine scan (Ala
scan) on the structures (both apo and holo forms). After averaging the ΔΔG from both apo and holo structures, we check whether residue N shares a
high-low ΔΔG pattern with its neighbor residues N-1 and N+1. If it does, we pair the residues and predict the pair as hotspots. Finally, we check the relative
hydropathy of the pair by calculating spatial aggregation propensity (SAP). This step helps in understanding the interplay between affinity-stability trade-
offs. (B) illustrates the workflow shown in (A). The residues are displayed as atoms in sphere style, with color coding based on the IMGT-defined
hydropathy and SAP score.
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epitope. The well-defined peaks observed in Figure 3A suggest
the system was in stable configurations during the interactions.
We also calculated the energy contribution from residues in all
six CDRs (Figure 3BC). The total interaction energy observed for
CDRs of 7C6 was −488.5 kJ/mol (H-CDRs: −285.4 kJ/mol and
L-CDRs: −203.1 kJ/mol), which was stronger than the
interaction energy of 8F6 CDRs at −409.6 kJ/mol (H-CDRs:
−294.7 kJ/mol and L-CDRs: −114.9 kJ/mol), in agreement
with our experimental results of SPR (Table 1). On a residue-

wise basis, a few L-CDR residues contributed significantly to the
interaction energy (Figure 3B), whereas multiple heavy chain
residues made notable contributions. For 8F6, a similar energy
contribution profile was observed for its H-CDR residues
(Figure 3C). It is worth noting that all six CDRs contributed
to the interaction energies observed in 7C6. In contrast, for 8F6,
L-CDRs appeared to make no discernible contribution to the
interaction energies except for CDR-L2. We further calculated
the interaction energies between the core epitope residues and

FIGURE 3
Identifying interacting residues by MD simulations. (A) probability distribution functions for interaction energies between antibody and epitope. The
data shown for the average of three independent MD simulations. The total non-bonded interaction energy (ETot) shown in kJ/mol, ETot = Coulombic
energy (Coul) + Lennard-Jones (LJ) energy. (B, C) display the heatmaps of residue-wise ETot between the epitope and CDRs of 7C6 and 8F6, respectively.
Interaction energies for heavy chain and light chain CDR residues are shown. (D, E) present heatmaps of residue-wise ETot between the CDR and the
epitope. These figures illustrate a quasi-epitope mapping for CDR-L and CDR-H residues with largest interaction energies shown in Figure 3BC,
respectively.
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the selected CDR residues that exhibited significant interaction
energies, as seen in Figures 3A, B. Residue L-R53 in the L-CDR2
of both antibodies demonstrated a pronounced interaction
energy with residue E535 of the core epitope (Figure 3D).
More core epitope residues interacted with H-CDR residues

(Figure 3E) than with L-CDR residues (Figure 3D). Figures
3D, E illustrate a quasi-epitope mapping of the MVH for
7C6 and 8F6 antibodies. The possible binding site of 7C6 and
8F6 could be within β6 (187–195) and β5 (529–535, 541,
and 546–552).

FIGURE 4
In silico alanine scanning and relative hydropathy analysis. (A, B) show the results of in silico alanine scanning using the FoldX AlaScan command. The
results are depicted as an orange line. The ΔΔG cut-off = 1 kcal/mol is represented by dashed line. These plots highlight the four identified residue pairs for
antibodies 7C6 (illustrated in (C) and 8F6 (illustrated in (D). (C), D) display the holo forms of the 7C6 and 8F6 antibodies, respectively. The epitope is
represented as a golden mesh-like surface, the non-epitope region is colored in gray, and the heavy and light chains are shown in purple and green,
respectively. TheCDR3 region is highlightedwith amesh-like surface. The identified residue pairs are displayed as atoms in sphere style, with color coding
based on the SAP score. The corresponding SAP scale used for both antibodies is also depicted in the image. The molecular representations were
visualized using UCSF ChimeraX.
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2.4 In silico alanine scanning to identify
hotspots for thermal stability and
binding affinity

The next step in our proposed workflow (Figure 2) entails
confirming the key residues for binding. To achieve this, we
performed in silico Ala scanning (hereafter Ala scan) using FoldX
(Schymkowitz et al., 2005). We employed Ala scan on both apo
(antibodies only) and holo (antibody-antigen complexes) forms. We
included apo forms in this analysis because the loss of binding may
originate from the collapse of the antibody structure itself. Hereafter,
we referred to ΔΔG as the average value estimated from the ΔΔG of
both the apo and holo forms. We utilized the standard cut-off of
ΔΔG ≥ 1 kcal/mol for hotspot prediction in protein engineering (Liu
et al., 2011; Peng et al., 2014). Positions with ΔΔG above the cut-off
are identified as predicted hotspots. From the ΔΔG profile, we first
noticed that hydrophobic residues tend to exhibit higher ΔΔG
(Supplementary Figure S4, 5). This is likely because they were
buried in the antibody structures or at the antibody-antigen
interfaces and mutating such a buried residue to Ala would lead
to an unstable structure in the apo and holo forms, respectively.

Second, we also observed a distinct visualization of the high-low
ΔΔG pattern (Figure 2; Supplementary Figure S4, 5), which
prompted us to further focus on a subset of 2 residues or “pair”.
Together with the MD results (Figure 3), we inferred that certain
residues paired with its sequential adjacent residues. The sequential
pairs for 7C6 were L-R53/L-L54, L-V55/L-D56, L-Y91/L-D92 and
H-D96/H-W97 (Supplementary Figure S4). For 8F6, the sequential
pairs were L-R53/L-L54, H-I98/H-Y99 and H-Y100c/H-R100d
(Supplementary Figure S5). Since our focus of this study is to
understand the intricate interplay between binding affinity and
stability, we decided to focus on the sequential pairs found in
CDR3: L-Y91/L-D92 in 7C6 CDR-L3, H-D96/H-W97 in
7C6 CDR-H3 and H-I98/H-Y99 and H-Y100c/H-R100d in
8F6 CDR-H3 (Figure 4AB). We hypothesized that focusing on
the CDR3 region would provide insights into affinity-related
trade-offs since, among the CDRs, CDR3 contributes primarily to
the binding affinity.

Interestingly, considering the amino acid types, Tyr exhibited a
duality nature in the Ala scan depending on the partner residues.
When the partner residue is hydrophilic, i.e., Asp (7C6 L-D92) or
Arg (8F6 H-R100d), Tyr showed high ΔΔG. On the other hand,
when the partner residue is hydrophobic (8F6 H-I98), Tyr showed
low ΔΔG. Despite being an aromatic residue, Tyr falls under the
“neutral” class of IMGT-defined hydropathy (Pommié et al., 2004),
which may explain this duality in the ΔΔG profile.

Thus, from the above analysis, it was suggested that a pattern
of high-low ΔΔG observed in this study (Figure 4AB) may be
utilized to identify residues in subset or pair that potentially
contribute both thermal stability and binding affinity. MD
simulation helped in drawing our attention to the residues in
CDRs where the pattern is distinct. Even though more favorable
interaction energies were observed for L-R53, we chose to focus
on the residues in CDR3 that matched our criteria of selection. A
high-low ΔΔG pattern shared by the pairs suggested that the
hydrophobic partner residues likely aid in interactions by
stabilizing the conformation of the partner residues tailored
for binding.

2.5 Relative hydropathy analysis

The dual hydropathic nature of Tyr prompts questions about its
relative hydropathy and its contribution to affinity and stability. To
explore this, we investigated the factors that influence change in
amino acid hydropathy. We observed non-bonded interactions (van
der Waals and coulomb) between antibody and antigen with
Coulombic interactions playing a dominant role (Figure 3A).
Antibody 7C6 exhibited stronger attractive forces compared to
8F6. The surrounding environment, including water molecules
(hydration) in a biological system, influences these interactions.
Changes in the environment can alter the chemical nature of an
amino acid, affecting the hydrophobic or hydrophilic nature of the
amino acid side chain. Recently, Rienzo et al. characterized the
hydropathy profiles of amino acid side chains at the protein-solvent
interface (Di Rienzo et al., 2021). Inspired by their work, we were
prompted to calculate the relative hydropathy of the identified pairs
based on their surroundings.

We computed the relative hydropathy on the holo form
(Figure 4CD) using spatial aggregation propensity (SAP)
(Chennamsetty et al., 2009). SAP identifies hydrophobic patches
on a protein’s surface based on a defined radius (R) called SAP
radius. Chennamsetty and colleagues (Chennamsetty et al., 2009)
reported that hydrophobic interaction plays a key role in protein
aggregation, thus impacting stability. A SAP radius of 5 Å could
identify the aggregation-prone patches with detailed view.
Conversely, a SAP radius of 15 or 20 Å tends to eliminate the
hydrophobic patches and favor the hydrophilic patches
(Chennamsetty et al., 2010). Thus, to identify the true nature of
the amino acid pairs, we employed a SAP radius of 10 Å that could
favor both hydrophobic and hydrophilic patches, maintaining a
balance between them. We provided a schematic illustration of the
alterations in hydropathy in Figure 2B. Upon analyzing the residue
pairs in CDR3, we observed pair L-Y91/L-D92 in CDR-L3 of 7C6
(Figure 4C), have a balanced hydrophobic and hydrophilic nature
respectively, while the other pairs H-D96/H-W97 in CDR-H3 of
7C6, and H-I98/H-Y99 and H-Y100c/H-R100d in CDR-H3 of
8F6 contributed to the hydrophobic gradient (Figure 4CD). The
observation that an IMGT-defined hydrophilic Asp and Arg
experiences a distinct change in its hydropathic nature (such as
7C6 H-D96 and 8F6 H-R100d becoming hydrophobic, while
7C6 L-D92 remains hydrophilic) may provide valuable insights
into their connection with stability. This is particularly relevant
since charged residues are typically not buried without neutralizing
their charge, often by forming salt bridges with other residues.
Without such compensation, buried charged residues could lead to
unstable protein structures. This emphasizes the critical role of the
protein environment in considerations of residue hydropathy and its
impact on the trade-off between stability and binding affinity.

To further explore the relationship between affinity and stability,
and to validate our computational predictions, we subjected the
identified paired residues to in vitro alanine scanning experiments.
This in vitro validation is particularly critical given the limited scope
of our dataset, comprising only four pairs. Drawing broad
conclusions from such a small dataset can be precarious. With
this in mind, our experimental validations were designed to assess
whether mutations at these positions could alter the characteristics
of these pairs, thereby affecting both binding affinity and thermal
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stability. For the pairs identified in 7C6, which has two types of pairs
within CDR3 (Figure 4C), in addition to introducing alanine, we also
predicted other amino acid substitutions at the same positions using
standard in silico tools.

We employed two methods to predict new mutations based on
the high-low ΔΔG pattern derived from Ala scan analysis of FoldX.
For residues with high ΔΔG values (such as 7C6 L-Y91 and H-W97),
which we hypothesized have an impact on stability, we utilized

TABLE 2 Kinetic and thermal stability parameters of the 7C6 and 8F6 mutants.

kon (×105 M−1s−1) koff (×10–4 s−1) KD at 25°C (nM) Tm (°C) ΔTm (°C)

7C6 WT 11.4 ± 4.8 4.1 ± 1.7 0.4 ± 0.2 73.9 ± 0.9

L-Y91A 1.8 ± 0.5 168.8 ± 35.0 97.5 ± 8.2 71.3 ± 0.7 −2.6

L-D92A 7 ± 0.4 4.6 ± 0.4 0.7 ± 0 73.7 ± 1.7 −0.3

H-D96A 14.2 ± 0.3 90.8 ± 0.2 6.4 ± 0.1 75 ± 1.7 1.0

H-W97A 43.6 ± 5.1 37.6 ± 1.6 0.9 ± 0.1 72.9 ± 0.3 −1.0

L-Y91F 27.0 ± 1.0 13.2 ± 0.3 0.5 ± 0 71.7 ± 1.1 −2.2

L-D92F 14.4 ± 0.2 4.4 ± 0.2 0.3 ± 0 72.7a −1.2

H-D96F 14.4 ± 1.3 363.1 ± 27.3 25.2 ± 0.4 72.8 ± 0.8 −1.1

8F6 WT 3.4 ± 2.9 2.8 ± 1.7 0.9 ± 0.2 68.4 ± 0.9

H-I98A 2.2 ± 0.8 153.3 ± 48.8 70.5 ± 2.4 69.1 ± 1.0 0.7

H-Y99A 0.1 ± 0 8.9 ± 0.2 99.5 ± 2.8 68.6 ± 0.4 0.2

H-Y100cA - - - - N.D. 69.7 ± 0.7 1.3

H-R100dA 0.1 ± 0 40.5 ± 0.3 284.0 ± 0.9 70.2 ± 0.4 1.8

N.D., not determined as kinetic fitting was not applicable.
aTm measurements for 7C6 L-D92F were conducted only once due to insufficient protein quantity.

FIGURE 5
Effect of mutations on binding affinity. Binding affinity is measured by SPR. Effect on binding affinity was measured in terms of KD ratio = KD of
mutant/KD of wild type. The wild type (WT) 7C6 and 8F6 antibodies served as the baseline (i.e 0), indicating no change in binding affinity. Error bars were
calculated from three independent measurements, and asterisks denote mutants that exhibit a significant change in binding affinity, which corresponds
with the > 30-fold decrease in binding affinity (Akiba and Tsumoto, 2015).
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Rosetta’s Cartesian_ddg application on the apo form to predict
potential mutations. We chose to use two different methods for ΔΔG
calculations–FoldX and Rosetta–because they are orthogonal
methods. They utilize distinct rotamer libraries and scoring
functions, capturing different aspects of the underlying physics.
On the other hand, residues with low ΔΔG values (7C6 L-D92 and
H-D96A) suggested that the effects of mutations at these positions
are minimal. Therefore, we continued to use FoldX to predict
mutations for these residues in both apo and holo forms.
Mutations with values below the cut-off (−1 kcal/mol) from the
in silicomutational analysis were chosen for the in vitromutagenesis
study (Supplementary Figure S6). The only exception was for
7C6 H-W97, which did not meet the cut-off. The amino acid
Phe was predicted for residues L-Y91, L-D92 and H-D96.

2.6 Experimental physicochemical analysis
of the antibody mutants

We expressed the mutants (Table 2) and purified them using
size-exclusion chromatography (SEC). Similar to theWT antibodies,
we conducted SPR analysis for the mutants to measure the binding
affinity and compared the change in binding affinity or KD ratio
(Figure 5). For the Ala mutants of the predicted hydrophobic-
hydrophobic pairs identified in 8F6 (H-I98/H-Y99 and H-Y100c/
H-R100d), significant loss of binding affinity was observed. Ala
mutation to H-Y100c exhibited a weak binding to the extent that
kinetic fitting was not applicable (Supplementary Figure S7B),
revealing that this position is also a hotspot for binding. This
suggests that all residues involved in the hydrophobic-
hydrophobic pairs of 8F6 were critical for binding. As a control,
we chose 8F6 H-D96, which is spatially near the hotspot pair
H-Y100c/H-R100d in 8F6 (Supplementary Figure S8). Although
H-D96 was not predicted as a hotspot in our approach, its proximity
and the charged nature of aspartic acid suggested its potential
importance for binding. However, despite its location within the
CDR-H3, H-D96 showed a negligible change in binding affinity
(Figure 5 and S8). This outcome serves as validation for our hotspot
identification pipeline (Figure 2), confirming the accuracy of not
identifying this residue as a hotspot.

For the Ala mutants of 7C6, we identified L-Y91 from the
hydrophobic-hydrophilic pair as a key residue with a loss in
binding affinity of about 242-fold. On the other hand, its partner
residue, L-D92, had no significant effect on binding affinity
(Figure 5). In contrast, within the hydrophobic-hydrophobic pair,
the H-D96A andH-W97Amutants in CDR-H3 of 7C6 showed a 16-
fold loss and a negligible change in binding affinity, respectively.
Additionally, the differences in the KD ratio between key residues
found in CDR-L3 and CDR-H3 suggested that light chain
accommodated the primary hotspot. The Ala mutants resulting
in reduced binding affinity of the high-affinity antibodies to MVH
echoed one common cause of loss of binding, that is faster
koff (Table 2).

The Phe mutants to 7C6 showed tolerance for Phe mutation at
the primary hotspot pair (L-Y91/L-D92), which is consistent with
the docking scores (Supplementary Figure S9). Furthermore, the
hydropathy of these Phe mutations aligned with the hydropathy of
the pair in the WT, suggesting an explanation for the pair’s ability to

tolerate the mutations. In contrast, the mutant H-D96F in CDR-H3
showed a 63-fold loss in binding affinity. This suggests that the
secondary hotspot is also contributing to the overall binding affinity
of 7C6 and did not tolerate a mutation to a bulky residue like Phe.

We performed circular dichroism (CD) to observe any structural
changes that may have occurred due to the point mutations causing
these changes in binding affinity (Figure 6). The CD spectrum for all
the mutants retained the beta-sheet like folding that generally
observed for Fab antibodies (Cathou et al., 1968). In addition,
some changes in molar ellipticity were observed for the mutants,
but the results were not conclusive to provide sufficient information
about the type of structural changes. Thus, we next performed
thermal stability measurements to observe the effect of mutations
on the melting temperature (Tm) of the mutant antibodies.

Due to insufficient yield, we employed CD measurements
instead of DSC to determine the Tm of the mutants. The Tm of
WT 7C6 remained consistent in both DSC and CD measurements
(Tm in CD: 73.9°C ± 0.9°C and DSC: 73.9°C ± 0.3°C), while a
negligible difference was observed for the 8F6 WT antibody
(ΔTm ~0.5°C). Therefore, we used the Tm obtained from CD
measurements to compare the ΔTm upon mutation (Table 2;
Supplementary Figure S10). In the CD measurements, we
observed that some mutants, such as L-D92A and H-D96A in
7C6, displayed larger error bars (±1.7°C). While differences in Tm
values might seem insignificant, the slopes of the CD profiles in
Supplementary Figure S10 could offer biophysical insights. For
instance, although the ΔTm value of L-D92A is only 0.3°C, a
seemingly negligible difference from the WT, its slope increases
more rapidly than the WT. This implies that the mutant unfolds
faster than the WT upon exposure to increasing temperatures.
Therefore, despite the need for caution, the subtle variations in
Tm observed in this study could provide valuable insights into the
affinity-stability trade-offs of the antibodies.

The thermal stability results offer revealing insights when
correlated with the nature of the amino acid pairs, specifically
their relative hydropathy. Figure 7 illustrates the relationship
between molar Gibbs free energy (ΔG) and stability, highlighting
the intricate interplay between affinity-stability trade-offs. For
hydrophobic-hydrophobic pairs found in CDR-H3 of both
antibodies, residues H-D96 in 7C6, as well as H-I98/H-Y99 and
H-Y100c/H-R100d in 8F6, exhibited an increase in Tm, with a less
favorable ΔG. This implies that the mutations have improved the
thermal stability of the antibodies; however, this enhancement
comes at the expense of an energetically less favorable binding
reaction, resulting in a decrease in affinity. An exception among the
hydrophobic-hydrophobic pairs was observed with H-W97 in 7C6.
An alanine mutation in this residue led to a decrease in Tm

(ΔTm = −1.0°C), but did not significantly affect binding affinity
(Table 2). Similar to a Tyr residue, a Trp residue seems to have a
unique function; it contributes to aromatic interactions, acts as a
hydrogen bond donor, possesses a large hydrophobic surface, and
can shield delicate hydrogen bonds from water (Samanta et al.,
2000). In contrast, in the case of the hydrophobic-hydrophilic pair
within 7C6’s CDR-L3 (L-Y91/L-D92), a less favorable ΔG was
observed alongside a decrease in Tm. This suggests that the
mutation has resulted in an energetically less favorable binding
interaction, consequently leading to diminished binding affinity and
a decrease in thermal stability. Notably, the negative ΔG associated
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with our predicted Phe mutant of 7C6 L-D92 suggests that this
hydrophilic position is well-suited to accommodate the mutation
and promotes an energetically favorable binding reaction. Among
the identified hotspot pairs, the residues 7C6 L-Y91 and H-D96,
along with 8F6 H-I98, H-Y100c and H-R100d, had a notable impact
on Tm. The marginal effect of 8F6 H-Y99A on Tm corroborates our
hypothesis about the dual role of Tyr, as evidenced by our
pattern analysis.

Our computational analysis and experimental measurements
suggest that relative hydropathy influences the trend in thermal
stability, whether increasing or decreasing (Figure 4; Table 2),
while the IMGT-defined hydropathy highlights the importance
of a residue’s contribution to stability (Figures 2, 4). This was
particularly observed with the dual nature of Tyr (8F6 H-Y99).
Recognizing the importance of both definitions provides a better
understanding of the factors determining stability. Therefore,
this study contributes to laying the groundwork for further

exploration into the dual nature of Tyr in antibody and
protein research.

3 Discussion

This study aims to investigate the binding affinity and stability of
anti-MVH neutralizing antibodies, with the objective of exploring a
potential correlation between binding affinity and stability. For this
purpose, we proposed a hypothesis that high-affinity antibodies with
differences in stability could provide valuable insights for our
research objective. The physicochemical analysis revealed that
antibodies 7C6 and 8F6 exhibited rapid association and slow
dissociation with MVH, indicating high binding affinity (<1 nM).
We focused on these two antibodies, which showed a significant
difference in thermal stability (ΔTm, ~6°C). Since no antibody crystal
structure was available at the time of writing, homology modelling

FIGURE 6
CD profile of the mutants. (A, B) show the CD profile of the mutants for 7C6 and 8F6, respectively.

FIGURE 7
Relationship between themolar Gibbs free energy (ΔG) and thermal stability (Tm).ΔG is obtained from the equilibrium dissociation constant, KD using
the following equation: ΔG = −RTln(1/KD), where R is gas constant (0.0019872 kcal/mol·K) and T is temperature in Kelvin (298.15 K). Thermal stability is
represented by melting temperature (Tm). Error bars are shown for Tm calculated from three independent measurements for all antibodies except
7C6 L-D92F due to insufficient protein quantity. This is shown by gray error bar. Since kinetic parameters were not obtained for 8F6 H-Y100cA, the
corresponding ΔG value does not directly reflect the effect on free energy for this mutant. To point out this discrepancy we marked this mutant with X.
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and knowledge-based local docking were performed to generate the
apo (antibody) and holo (complex) forms, respectively.

Modeling antibody structures remains challenging, especially
when the CDR-H3 extends beyond the average length (i.e., >
13–14 residues). While the modeling accuracy for non-CDR-
H3 sections of antibodies is often satisfactory, even the
state-of-the-art deep learning methods still struggle with CDR-
H3 conformation predictions. On average, these predictions often
deviate by more than 2.0 Å in backbone RMSD from crystal
structures (Ruffolo et al., 2023). Such a 2 Å variance in backbone
conformations is significant; even minor discrepancies (<1.0 Å) in
backbone configurations can substantially alter the energy landscape
of protein-protein interactions (Kuroda and Gray, 2016).
Consequently, computer-guided affinity maturation studies
without antibody crystal structures are scarce. A standout
example is the work by Cannon et al. They integrated
experiments with computational modeling to guide the affinity
maturation of an antibody targeting an antigen (Cannon et al.,
2019). Mutagenesis experiments were used to validate docking
models and pinpoint the potential binding modes of the
antibody-antigen complex. This was succeeded by re-docking of
the complex and further design calculations based on the predicted
model complex.

In our study, we sought to improve computational modeling
accuracy by performing MD simulations immediately after
modeling the antibody and docking it with the antigen. Within
MD simulations, model structures undergo adjustments by
interacting with the surrounding environment, including explicit
water molecules. Based on these wholly computational outcomes, we
were able to identify hotspots in the antibody-antigen interactions, a
finding that our in vitro mutagenesis experiments subsequently
validated. While the accuracy of ΔΔG calculations by FoldX may
be influenced by the quality of the input structures (Buß et al., 2018),
our study’s strength lies in the experimental validations that
corroborate our computational predictions. Although crystal
structures of the complexes between MVH and the anti-MVH
antibodies would offer valuable insights into molecular-level
interactions, our study suggests that knowledge-based rigid-body
docking simulations, followed by explicit solvent MD simulations,
could serve as an effective alternative for exploring these
interactions.

In protein engineering, the defined hotspots are a subset of
residues composed of high affinity residues surrounded by low
affinity residues as O-ring structure (Bogan and Thorn, 1998;
Soga et al., 2010; Akiba and Tsumoto, 2015). We proposed a
novel high and low ΔΔG pattern that appears to effectively
recognize these hotspots as a subset of two partner residues or
pair. This pattern aided in identifying the hotspots responsible
for significant loss in binding affinity for both the 7C6 and
8F6 antibodies. Through our investigation of high-affinity
anti-MVH antibodies, we suggested a potential relationship
between affinity and stability, which may offer insights into
their trade-offs. We noted two distinct types of pairs based on
their relative hydropathy: a) hydrophobic-hydrophilic and b)
hydrophobic-hydrophobic. While the former type tended to
show a decrease in stability along with a loss in binding
affinity, the latter type seemed to maintain or increase stability
despite a decrease in affinity.

In general, CDR-H3 is primarily responsible for antigen
recognition and binding. However, it is intriguing to note that
the highest affinity antibody, 7C6, possesses a shorter CDR-H3
(consisting of only 7 residues) compared to the other anti-MVH
antibodies (2F4 and 10B5 with CDR-H3 of 12 residues, and 8F6 with
CDR-H3 of 13 residues). This disparity in CDR-H3 length may
explain why the CDR-H3 of 7C6 acts as a secondary hotspot.

A comparison ofMVH binding to its receptors and antibodies in
Supplementary Figure S11 shows that the binding site of 7C6 is
predicted to be located within the region composed of amino acid
residues 190–200, which is part of the immunodominant epitope
(amino acids: 190–200 and 571–579). This epitope has been
identified as a recognition site for mAb BH26, which inhibits the
binding of approximately 60% of human serum antibodies in
vaccinees and individuals recovering from measles (Ertl et al.,
2003; Tahara et al., 2016). On the other hand, the predicted
binding site of 8F6 lies within amino acids 505–552, which
corresponds to the receptor binding epitope (residues 187, 190,
483, and 505–552). Additionally, residues within the CDR-H3 of
8F6 were found to interact with R533, which is part of a conserved
neutralizing epitope (residues F483, D505, R533, Y541, and Y543).
While there was a clear correlation between docking score and
binding affinity, we also observed that the docking pose correlates
with the inhibition capabilities of the anti-MVH antibodies.
Supplementary Figure S11B illustrates the footprints of both
receptors and the antibody on MVH. Although the overall
binding sites seem similar, the CDR-H3 of 8F6, containing a
hotspot (H-R100), is located near the hydrophobic pocket within
the β4-β5 groove, a region implicated in receptor binding (Zhang
et al., 2013). In contrast, a hotspot of 7C6 (L-Y91), experimentally
identified in this study, is positioned in a region more distal from the
hydrophobic pocket (Supplementary Figure S11B). This difference
in the location of hotspots may account for the lower neutralizing
capability of 7C6 compared to 8F6, as reported by Sato and
colleagues (Sato et al., 2018), despite having higher affinity
among the anti-MVH antibodies (Supplementary Figure S11A).
Mutations at these conserved neutralizing epitope residues have
been shown to facilitate immune escape from neutralization by the
monoclonal antibody 2F4 (Santiago et al., 2010; Tahara et al., 2013).
Although a co-crystal structure is currently unavailable, this study
suggested the plausible binding mode of high-affinity antibodies to
MVH (Supplementary Figure S11). Consequently, these findings
open up avenues for further research on anti-MVH antibodies,
providing valuable insights into their development.

Thus, this study highlighted the importance of a balance
between hydrophobic and hydrophilic residues for achieving high
affinity and stability in anti-MVH antibodies (Supplementary Figure
S9). These findings pave the way for computational design strategies
aimed at enhancing the affinity and stability of low-affinity anti-
MVH antibodies, such as 2F4 and 10B5, in future research
endeavors. When applying our approach to analyze the low-
affinity anti-MVH antibodies, we identified residues that form
pairs with Gly (Supplementary Figure S12). The absence of a side
chain in one of the paired residues in 2F4 and 10B5 may contribute
to their low affinity (Table 1). While Gly is known to play important
roles in conformational flexibility, its specific influence on affinity,
stability, and neutralization requires further investigation.
Additionally, the pairs identified for 2F4 and 10B5 exhibit a
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hydrophobic gradient, suggesting that hydrophobic-hydrophilic
combinations are relatively uncommon.

In this study, the combination of high-low ΔΔG pattern and
relative hydropathy analysis exhibit computational promise for
addressing challenges related to the trade-offs between affinity
and stability in antibody research. By training AI models with
this pattern-driven analysis of antibodies, it may be possible to
mitigate the need for large-scale experimental data. Therefore, it is
essential to validate this pattern on additional antibodies targeting a
range of antigens, in order to drive advancements in the field of
antibody research facilitated by computational methods.

4 Methods

4.1 Antibody homology modeling and
docking to antigen

The RosettaAntibody protocol (Weitzner et al., 2017) in Rosetta
(Leman et al., 2020) was used to generate three-dimensional
structure of the antibody Fv. To ensure comprehensive analysis,
we generated 2000 structures for the top scored grafted model and
200 structures for the other grafted models. This enabled us to select
the top-scoring model as a representative of the Fv structure among
a wide variation of models.

At the time of our analysis, seven crystal structures of the MVH
antigen were available in PDB, two of which were in the apo form,
and the remaining structures were in complex with receptors. To
identify the most suitable structure for docking, we selected the best
resolution structure available (PDB: 2ZB6, 2.6 Å). Using Chimera
v1.16 (Pettersen et al., 2004), we manually constructed a putative
antigen-antibody complex. Subsequently, we employed the
SnugDock protocol to perform a flexible backbone local docking,
generating 1,000 poses of the anticipated antigen-antibody complex
(Sircar and Gray, 2010).

4.2 Molecular dynamics simulations

The input structure for MD simulation were first modeled using
Modeller 10.0 (Webb and Sali, 2016) for repairing the missing
residues of MVH and constructing the constant regions of Fab.
Then MD simulations were conducted using GROMACS 2022.4
(Berendsen et al., 1995; Lindahl et al., 2001; Abraham et al., 2015)
with the CHARMM36m force field (Huang et al., 2017) to explore
the behavior of the docked models. To solvate the system, TIP3P
water (Madura et al., 1983) was used to fill a cubic box, and the
protein was placed at the center with a 10 Å minimum distance to
the box edge, while periodic boundary conditions were applied.
Additional Na+ or Cl− ions were introduced to neutralize the protein
charge and simulate a salt solution with a concentration of 0.15 M.
Each system was energy-minimized for 5,000 steps with the steepest
descent algorithm and equilibrated with position restraints of
protein heavy atoms and NVT ensemble, where the temperature
was increased from 50 to 298 K during 200 ps. Further non-
restrained simulations were performed with the NPT ensemble at
298 K for 240 ns. The time step was set to 2 fs throughout the
simulations. A cutoff distance of 12 Awas used for Coulomb and van

der Waals interactions. Long-range electrostatic interactions were
evaluated by means of the particle mesh Ewald method (Darden
et al., 1993). Covalent bonds involving hydrogen atoms were
constrained by the LINCS algorithm (Hess et al., 1997). A
snapshot was saved every 100 ps. We performed three
independent production runs with distinct initial velocities. All
subsequent analyses were conducted using the GROMACS package.

4.3 In silico alanine scanning and
mutational design

FoldX (v4) AlaScan command was utilized to identify potential
hotspots on the antibody (Schymkowitz et al., 2005). Both apo and
holo models underwent alanine scanning to predict the effect of
mutations on binding with the antigen and antibody. We obtained
difference in the free energy, or ΔΔG values for both apo (ΔΔGapo)
and holo (ΔΔGholo) forms in kcal/mol from each analysis and
averaged them for each position (ΔΔG).

ΔΔGholo � ΔGMut holo − ΔGWT holo

ΔΔGapo � ΔGMut apo − ΔGWT apo

ΔΔG � average ΔΔGholo + ΔΔGapo( )

Using ΔΔG from Ala scan as a reference, we performed
mutational design. Mutations for positions with low ΔΔG were
predicted using FoldX BuildModel command (van Durme et al.,
2011), while positions with high ΔΔG were predicted using the
Rosetta’s Cartesian_ddg application (Kellogg et al., 2011; Park et al.,
2016). A cut-off value of −1 kcal/mol was used for selecting mutants
for in vitro mutagenesis study.

4.4 Spatial aggregation propensity (SAP)

The SAP (Chennamsetty et al., 2009) algorithm was used to
predict relative hydropathy with an in-house CHARMM-based
script (Brooks et al., 2009). The SAP was calculated on the holo
form and score for each atom within a 10 Å radius was calculated by
this algorithm. As a result, a residue wise score was obtained in an
output file. The maximum (positive) and minimum (negative)
values on the SAP scale indicate hydrophobicity and
hydrophilicity of the scale.

4.5 Cloning, expression, and purification of
antibodies

The DNA sequences encoding the heavy and light chains of the
Fab antibodies were codon-optimized and synthesized by Integrated
DNA Technologies, Inc. They were subcloned into separate
pcDNA3.4 vectors (Thermo Fisher Scientific), with a His6 tag
fused to the C-terminus of the heavy chains by HiFi DNA
assembly (NEB). The DNA of the mutants was prepared by site-
directed mutagenesis PCR using the KOD -Plus- Mutagenesis Kit
(TOYOBO). The protocol was slightly modified, as we used KOD
One PCR Master Mix (TOYOBO) instead of KOD -Plus-. The Fab
antibodies were expressed in ExpiCHO cells (Thermo Fisher
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Scientific) following the max titer protocol for 8F6 antibody, and in
Expi293 cells (Thermo Fisher Scientific) following the
manufacturer’s standard protocol for rest of the antibodies (Fang
et al., 2017; Jain et al., 2017). The cells were cultured by rotating at
125 rpm at 37°C and 8%CO2 for 5 days for Expi293 cells, and at 32°C
and 5% CO2 for 13 days for ExpiCHO cells after co-transfecting the
cells with 13 µg of the heavy and light chain encoding plasmids. The
culture supernatant was collected by centrifugation for 10 min at
5,000 g, dialyzed with a solution of 20 mM Tris-HCl (pH 8),
500 mM NaCl, 5 mM imidazole (binding buffer), and filtered
with 0.8 μm filters (Advantec). It was loaded onto a Ni-NTA
Agarose resin (Qiagen) equilibrated with binding buffer for
immobilized metal affinity chromatography. After washing the
resin with 10 mL of binding buffer, the protein was eluted with
the buffers containing increasing concentrations of imidazole. The
antibodies were obtained after further purification by size-exclusion
chromatography (SEC) using HiLoad 26/600 Superdex 75 pg
column (Cytiva) at 4°C equilibrated with phosphate-buffered
saline (PBS) pH 7.4. The concentration of the proteins was
calculated from the molecular weights and molar extinction
coefficients (cm−1M−1) calculated from the amino acid sequences
using ProtParam Tool (ExPASy) (Gasteiger et al., 2005) and the
absorbance at 280 nm obtained on NanodropOne (Thermo
Fisher Scientific).

4.6 Cloning, expression, and purification of
antigen hemagglutinin

The pHLsec-vector plasmid with theMVH head domain (amino
acid residues 149–617) was transiently transfected into 293S GnTI
(−) cells (Hashiguchi et al., 2007). The cells were cultured for 4 days
after transfection at 37°C and 5% CO2. The culture supernatant was
collected by centrifugation at 7,000 rpm for 20 min at 4°C and
filtration. The collected supernatant was purified with a complete
His-Tag Purification Resin (Roche, Cat# 5893682001) affinity
column after equilibration with 50 mM NaH2PO4・2H2O,
150 mM NaCl, and 10 mM imidazole. The resin capturing the
head domain of MVH was washed with 25 mM NaH2PO4・

2H2O, 75 mM NaCl, and 5 mM imidazole, and subsequently, the
protein was eluted with the buffers containing increasing
concentrations of imidazole. The head domain of MVH was
obtained after further purification by SEC using Superdex
200 Increase 10/300 GL column (Cytiva) equilibrated with PBS.
The concentration of the head domain of MVH was also confirmed
following the same protocol as above.

4.7 Surface plasmon resonance (SPR)

The kinetic parameters of the antigen-antibody binding were
determined by SPR using Biacore T200 instrument (Cytiva). The
antigen hemagglutinin was immobilized on a CM5 sensor chip
(Cytiva) at around 500 resonance units following the manufacturer’s
amine coupling protocol. The Fabs were injected into the sensor chip at
a flow rate of 30 μL/min at 25°C. The binding response at the following
concentrations 62.5, 125, 250, 500, and 1,000 nM for 2F4 and 10B5, and
1.25, 2.5, 5, 10, and 20 nM for 7C6 and 8F6 wild type antibodies were

used for the experiment. The concentrations used for 7C6 mutants
except L-Y91A, were 1.25, 2.5, 5, 10, and 20 nM. For 7C6 L-Y91A
mutation we used the following dilutions 6.25, 12.5, 25, 50, and 100 nM.
For 8F6, two mutants H-D96A and H-I98A, used the following
concentrations 1.25, 2.5, 5, 10, and 20 nM, like wild type antibody.
For, 8F6 mutants H-Y99A, H-Y100 cA and H-R100dA, the following
concentrations 190, 380, 750, 1,500, 3,000 nM; 250, 500, 1,000, 2000 and
4,000 nM; and 62.5, 125, 250, 500, and 1,000 nM, were used
respectively. The association and dissociation time for wild 2F4,
10B5 and 8F6 mutant H-Y100 cA were 120 s and 600 s,
respectively. For the rest of the Fabs including wild type and
mutants for 7C6 and 8F6, a 120 s of association and 1,200 s of
dissociation time were used in the experiment. The assays were
carried out in HBS-T buffer (10 mM HEPES pH 7.5, 150 mM NaCl
and 0.005% [v/v] Tween 20 surfactant). Biacore Insight Evaluation
Software (Cytiva) was used to calculate the binding parameters.

4.8 Differential scanning calorimetry (DSC)

The thermal stability of the wild type antibodies was measured
by DSC using MicroCal PEAQ-DSC (Malvern; Worcestershire,
UK). The Fab samples (1 mg/mL) were prepared in PBS. At a
scanning rate of 1°C/min the samples were heated from 20°C to
110°C. The data was fitted by non-two-state model using MicroCal
PEAQ-DSC software (Malvern).

4.9 Circular dichroism (CD) measurements

The Fab’s CD profile and thermal stability were measured using
a JASCO J-820 spectropolarimeter. The CD spectra were obtained
from 260 to 200 nm using a 1 mm quartz cuvette with a protein
sample of 0.1 mg/mL in PBS. Each sample was measured five times
with a 1 nm bandwidth. To analyze the protein denaturation profile,
the thermal stability was measured at lower concentrations under
the same buffer conditions and with three repetitions, at 1°C
intervals from 30°C to 90°C and at a speed of 0.1°C/min, at
218 nm and 215 nm ellipticity for 7C6 and 8F6 wild type and
mutants, respectively. The Tm was determined by fitting the
ellipticity data against temperature using nonlinear least squares
curve fitting that followed the below logistic function equation,
followed by sigmoid curve fitting in Python 3.0 (Rossant, 2018) to
obtain the fitted molar ellipticity and temperature values.

f L,m,k,x0 x( ) � L
1 + exp −k x − x0( )( ) +m

Where, L, m, k and x0 are the vector parameters for optimization
of the fitting. For better visualization of the Tm measurements, we
represent the derivative of the fitted data.
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