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Recruitment of enzymes to intracellular membranes often modulates their
catalytic activity, which can be important in cell signaling and membrane
trafficking. Thus, re-localization is not only important for these enzymes to
gain access to their substrates, but membrane interactions often allosterically
regulate enzyme function by inducing conformational changes across different
time and amplitude scales. Recent structural, biophysical and computational
studies have revealed how key enzymes interact with lipid membrane surfaces,
and how this membrane binding regulates protein structure and function. This
review summarizes the recent progress in understanding regulatory mechanisms
involved in enzyme-membrane interactions.
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1 Introduction

Protein-membrane interactions play a crucial role in cell signaling and membrane
trafficking (Cho and Stahelin, 2005; Niggli, 2005; Leonard and Hurley, 2011). Membranes
serve as sites for signaling activity and as dynamic scaffolds for the recruitment of signaling
molecules. These interactions can re-localize enzymes to substrates on membranes and
regulate enzyme function through allosterically-induced conformational changes. Allosteric
regulation upon membrane binding allows the enzyme to respond to changes in membrane
lipid composition and allows for different activities in different subcellular compartments.
Allosteric sites may also serve as targets for small molecule inhibitors for drug development,
which may act to block appropriate protein-membrane interactions and/or conformational
changes necessary for protein function. In this Review, we focus on peripheral membrane
binding enzymes that leverage various strategies for reversible membrane interaction, often
leading to changes in enzyme function. Two major methods to facilitate membrane
interactions are modular membrane-targeting domains that recognize specific lipids in
the membrane (Lemmon, 2008; Stahelin, 2009) and amphipathic secondary structures (Drin
and Antonny, 2010; Madsen et al., 2010). There are also post-translational modifications
(e.g., palmitoylation) that add a hydrophobic anchor that can act together with protein
components to relocalize proteins to membranes and regulate enzyme function.

Here, we emphasize recent biophysical studies that help to describe the mechanisms of
allosteric regulation upon enzyme-membrane interactions, help to identify common themes
amongst these proteins, and provide a future road map for further understanding this critical
class of enzymes. We divide these enzymes into two major groups, those that primarily use
an amphipathic helix for membrane engagement and those that use specialized membrane-
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interacting domains, including C1/C2, PH, PX and FERM domains.
The examples are meant to be illustrative, not exhaustive.

2 Amphipathic helix-containing
enzymes

Manymembrane-associated proteins contain an amphipathic α-
helix that is often unfolded in solution but becomes folded upon
membrane interaction. Such a protein segment may initially be
attracted to the membrane through electrostatic interaction, but
then folds into an α-helix with its nonpolar residues inserted into the
membrane while polar residues face the lipid head groups. It has
been proposed that these amphipathic helices especially bind to
membranes with high curvature owing to their lipid packing defects
(Drin and Antonny, 2010).

2.1 Phosphocholine cytidylyltransferase

Two well-studied enzymes known to interact with membranes
through their amphipathic helices are phosphocholine
cytidylyltransferase (CCT) and phospholipase A2 (PLA2). CCT is
a rate-limiting and regulatory enzyme of phosphatidylcholine (PC)
metabolism (Vance and Choy, 1979). Chemical structures of PC and
other important lipids are illustrated in Figure 1. CCTα/CCT1 and
CCTβ/CCT2 are twomajor isoforms in eukaryotic organisms, which
have similar structures (Lykidis et al., 1999) and are regulated
similarly by membrane lipids. CCT undergoes allosteric
activation when binding to membranes, which turns the soluble

form (CCTsol) to a membrane-bound form (CCTmem) and boosts
the catalytic efficiency by over 200-fold. The work by the Cornell lab
(Cornell, 2016; Cornell, 2020) has especially been instrumental in
our understanding of how the CCT-membrane binding
activates CCT.

Upon membrane binding, the autoinhibitory (AI) segment of
the membrane–lipid sensor domain (domain M) dissociates from
the four-helix complex (2 αE + 2 AI helices) at the base of the
catalytic domain (see Figure 2), as suggested by photo-crosslinking
and deuterium exchange analysis (Huang et al., 2013). Molecular
dynamics (MD) simulations suggest that this dissociation
destabilizes the αE helices and enables it to sample new
conformations (Ramezanpour et al., 2018). Following the change
in the αE helices, membrane insertion and folding of the “leash” of
domain M leads to a conformational change in the linker region
(Taneva et al., 2019). The allosteric linker, composed of the αE hinge,
the αEC, and the J segment, can mediate the communication
between domain M and the active site. Fluorescence resonance
energy transfer (FRET) experiments suggest that folding of the
allosteric linker can pull the active site close to the membrane
(Knowles et al., 2019).

Membrane lipid composition and the phosphorylation status of
the C-terminal region are two regulators of CCT membrane binding
(Cornell, 2016). High negative charge density and lipid packing
defects on the membrane caused by low PC content trigger the
membrane binding and the conversion of CCT, leading to PC
synthesis. In the absence of high negative charge density and
lipid packing defects, the rate of PC synthesis is lower. This
feedback regulation helps to maintain cellular PC homeostasis
(Cornell, 2016).

Perhaps the most interesting aspect is the dual function of the
amphipathic helix domain M: it acts as both an autoinhibitory
device in CCTsol and an activating device in CCTmem. Membrane
binding of domain M disrupts its autoinhibitory contact with the
active site. The deletion of domain M or specifically the AI segment
only leads to partial activation. For full activation, domain M must
be present (Ding et al., 2012). Amphipathic helices contribute to
protein–membrane binding since they can overcome the water–lipid
energy barrier (Drin and Antonny, 2010). The amphipathic helix
domain M can essentially sense the features of low PC content
membrane, enabling membrane binding (Cornell, 2016).
Mechanistic studies suggest that the amphipathic helix binds to
negatively charged membranes through electrostatic interactions
and the hydrophobic effect. With no electrostatic effect, it then relies
on the insertion of its hydrophobic residues into lipid packing
defects (Drin and Antonny, 2010). This mechanism may be
applicable to other membrane binding proteins with similar
amphipathic helix. Although there is strong evidence showing
that the linker is important for allosteric control, a high-
resolution CCT-membrane binding structure in its active form is
still not solved (Cornell, 2020), which would provide much needed
insight.

2.2 Phospholipase A2

PLA2 catalyzes the hydrolysis of acyl chains at the sn-2 position
of membrane phospholipids to produce fatty acids that are

FIGURE 1
Structures of important membrane lipids. The inositol ring is
numbered in phosphoinositol-4-phosphate (PI4P), as different
hydroxyl groups can be phosphorylated to generate different
phosphoinositide lipids (PIPs). PIPs can also be phosphorylated at
more than one position. For example, PI(4,5)P2 represents
phosphorylation at both the 4- and 5-positions. Different internal
membranes are enriched in different PIP lipids, and some PIP-
interacting domains may have increased affinity for PIPs
phosphorylated at specific positions.
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important for downstream signaling. The activity of PLA2 is higher
in the presence of lipid aggregates (vesicles, micelles, etc.) than
monomeric substrates (Singer et al., 2002; Gelb et al., 2003). The
PLA2 superfamily consists of 16 groups and many subgroups, and
can be described as six types. Each type has a distinctive structure
with an active site binds to specific phospholipid substrates and an
interfacial surface that can bind to the membranes (Mouchlis et al.,
2015; Mouchlis et al., 2018).

The Dennis lab (Dennis, 2022; Mouchlis and Dennis, 2022) has
made many important insights into the allosteric interaction
between lipid bilayer membranes and PLA2, especially through
their judicial use of hydrogen–deuterium exchange mass
spectrometry (HDX-MS) combined with MD simulations to
understand the association mechanism of the recombinant
human form of group IVA cytosolic (cPLA2), group V secreted
(sPLA2), group VIA calcium-independent (iPLA2), and group VIIA
lipoprotein-associated phospholipase A2 (GVIIA Lp-PLA2); they
propose that PLA2 exists in at least three forms: the “closed” form in
the cytosol, the “open” membrane-associated “unbound” form, and
the “open” membrane-associated “bound” form when binding to a
substrate (Mouchlis and Dennis, 2022).

HDX-MS studies on the iPLA2 with phospholipid vesicles and
MD simulations suggest that an amphipathic helix (residues
708–730) close to the active site penetrates the membrane. The
hydrophilic residues of the amphipathic helix interact with the
headgroups of the lipids and the hydrophobic residues interacts
with the fatty acid chains (Hsu et al., 2009; Mouchlis et al., 2015).
Studies on sPLA2 also show an amphipathic helix working in a
similar way (Burke et al., 2008a). HDX-MS indicates that an
amphipathic loop (residues 640–648) and the amphipathic helix
(residues 708–730) are important for regulating the volume of the
binding pocket of iPLA2. Indeed, MD simulation studies suggest that
the binding pocket volume of iPLA2 is larger in the presence of a
membrane.

cPLA2 contains a protein kinase C (PKC) conserved region 2
(C2) domain and a catalytic domain. HDX-MS showed lower
deuteration levels in some peptide regions derived from the
C2 and catalytic domains in the presence of phospholipid
vesicles (Burke et al., 2008b). According to their model, part of
the C2 domain (residues 35–39 and 96–98) penetrates the
membrane and “pulls” the catalytic domain to the membrane.
Two amphipathic helixes of the catalytic domain (residues
268–279 and 466–470) also interact with the membrane (Burke
et al., 2008b; Mouchlis et al., 2015).

Based on the HDX-MS data, two amphipathic helices of Lp-
PLA2 (residues 114–120 and 360–368) are involved in membrane
binding. MD simulations show that the volume of the active site is
increased upon membrane binding and the amphipathic helical
region (residues 100–130) is responsible for this conformational
change (Mouchlis et al., 2022). A site-directed tryptophan
fluorescence experiment also indicated that this peptide region is
in a more polar environment because of the conformational change
in the presence of vesicles.

Altogether, these data support the hypothesis that the
membrane binding sites of the PLA2s serve as allosteric sites, and
that membrane binding changes the enzyme conformation from a
closed, inactive form to an open, active form on the membrane
surface.

3 C1 domain-containing enzymes

PKC conserved region 1 (C1) domains were first identified in
PKCs and most of them bind to diacylglycerol (DAG) and phorbol
ester (Colón-González and Kazanietz, 2006). They are zinc finger-
like domains composed of ~50 amino acids. The interaction between
C1 and DAG is the key part of PKC activation. Structures of PKC
membrane binding domains are shown in Figure 3.

FIGURE 2
Schematic illustration of CCT activation. The CCT enzyme is kept in an autoinhibited state until interactions with the membrane lead to a series of
conformational changes, which enables the amphipathic M domain to interact with the membrane.
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3.1 Protein kinase C

PKC is a Ser/Thr kinase and is one of the best-studied paradigms
of enzymes that are re-localized to membranes and then activated by
lipids. All PKC isoenzymes consist of the N-terminal regulatory
domain, C-terminal catalytic domain and a hinge between them.
Conventional PKC isoenzymes (cPKCs; α, βI/II, and γ) are activated
by two second messengers Ca2+ and DAG. Novel PKC isoenzymes
(nPKCs; ε, δ, θ, and η) are activated by DAG alone. Atypical PKCs
(aPKCs; ζ and ι/λ) are regulated by protein-protein interactions.

The activation of cPKCs requires a conformational transition
from an inactive cytosolic form to an active membrane -bound form.
The inactive form is autoinhibited by trapping the pseudosubstrate
(PS) region into the active site of kinase domain. The autoinhibitory
interaction is released upon interaction of the regulatory domain
with lipid membrane.

One model (see Figure 4) (Antal et al., 2014) proposes that PKCβII
is originally in an open conformation and all the domains are unmasked
(Dutil and Newton, 2000). Phosphorylation of PKCβII at three sites
(T500, T641, S660) then leads to an autoinhibited conformation (Behn-
Krappa and Newton, 1999; Feng et al., 2000; Antal et al., 2015). The
Ca2+-sensing C2 domain clamps the autoinhibitory PS region in the
active site of the kinase domain, and the DAG-sensing C1 domains is
masked. Hydrolysis of phosphatidylinositol-4,5-bisphosphate (PI(4,5)
P2) generates secondmessengers, DAG and inositol-1,4,5-trisphosphate
(IP3). IP3 stimulates the release of Ca2+ from the endoplasmic reticulum.
There are two major steps leading to the activation. First, mutagenesis
and single-molecule studies show that Ca2+ binds to C2 domain and
mediates the engagement of PKC on the plasma membrane through
bridging the C2 domain to phosphatidylserine and PI(4,5)P2 (Nalefski
and Newton, 2001; Corbalán-García et al., 2003; Evans et al., 2006).
Thus, the C2 domain is removed from the kinase domain and the
regulatory and catalytic domain are separated. Second, PKC binds its
membrane-embedded activator DAG via the C1 domain (Giorgione
et al., 2003; Dries et al., 2007; Ziemba et al., 2014), which results in an
allosteric conformational change that releases the PS from the substrate-
binding cavity and the full activation of PKC (Orr and Newtont, 1994).
It should be noted that the number of C1 domains involved in the
membrane binding is different among PKC isoenzymes (Ziemba et al.,
2014; Antal et al., 2015).

Studies of energetics suggest that membrane binding of C1 and
C2 provides the energy to release the PS domain from the active site
(Newton and Johnson, 1998). However, the atomic-level structure of
the full-length active/inactive PKC and the spatiotemporal
activation sequence has remained elusive. The details of how the
intra-molecular rearrangement enables the PS release are still
unknown. The nature of all domain-domain interactions also
remains to be understood.

FIGURE 3
Lipid binding domains on the membrane with their putative
membrane-binding pose. PKCδ C1 domain with Zn2+ and phorbol-
1,3-acetate (PDB entry 1PTR). PKCα C2 domain with Ca2+ and
phosphatidylserine (PDB entry 1DSY). PLCδ1 PH domain with
inositol trisphosphate (PDB entry 1MAI). Sgk3 PX domain (PDB entry
6EDX). FAK FERM domain (PDB entry 2AL6).

FIGURE 4
Schematic illustration of PKCβII activation. In the open, inactive form, the C2 domain binds PI(4,5)P2 and phosphatidylserine, but the DAG site in C1B
is blocked. Phosphorylation and Ca2+ binding induces a series of conformational changes that allows the C1B to engage with DAG. These events lead to
the activation of PKC. This figure was adapted in part from ref. Antal et al. (2015).
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4 C2 domain-containing enzymes

C2 domains have a common fold of an antiparallel β-sheet
sandwich (Sutton et al., 1995). The majority of C2 domains interact
with lipids in a Ca2+-dependent manner. Some C2 domains bind to
anionic lipids like phosphatidylserine and phosphoinositides (PIPs)
and some bind to zwitterionic lipids like PC (Nalefski et al., 1998;
Perisic et al., 1998; Verdaguer et al., 1999; Sánchez-Bautista et al.,
2006).

4.1 Phosphatase and tensin homolog

Phosphatase and tensin homolog (PTEN) desphosphorylates
PI(3,4,5)P3 to PI(4,5)P2 in the PTEN/PI3Kα/Akt signaling pathway.
The product PI(4,5)P2, also the allosteric activator, facilitates PTEN
hydrolysis of PI(3,4,5)P3, which creates a positive feedback loop
(Campbell et al., 2003). The catalytic activity of PTEN is stimulated
by 5–8 fold in the presence of vesicles containing PI(4,5)P2
(McConnachie et al., 2003; Walker et al., 2004). Molecular modeling
and NMR studies identified the allosteric site, the N-terminal PI(4,5)P2
binding domain (PBD), near the active site (Wei et al., 2015).Mutagenesis
studies have shown that PTEN binds to the plasmamembrane with three
major anchor points (Walker et al., 2004; Shenoy et al., 2012; Wei et al.,
2015;Masson et al., 2016; Irvine et al., 2019; Jang et al., 2021): the PBD, the
arginine loop in the catalytic phosphatase domain, and the lysine-rich,
phosphatidylserine-binding motif CBR3 loop in the Ca2+-independent
C2 domain.

X-ray scattering, HDX-MS and cross-linking studies show that the
phosphorylated C-terminal tail (CTT) (S380, T382, T383, S385) covers
the CBR3 loop and Cα2 in C2 domain and the phosphatase domain,
which interferes with the membrane-binding interface and results in a
closed, inactive state of PTEN in the cytosol (see Figure 5) (Odriozola
et al., 2007; Rahdar et al., 2009; Bolduc et al., 2013; Chen et al., 2016;
Masson et al., 2016). PBD binds to the phosphatase domain at the same

time. Dephosphorylation of the CTT and the following release of
autoinhibition expose the active site (Bolduc et al., 2013). PTEN then
binds to the membrane using the arginine loop and CBR3 loop. MD
simulations suggest that the coordination of PI(3,4,5)P3 to the P loop, one
of the core loops of the active site, may allosterically promote unfolding of
the α-helix PBD (Jang et al., 2021). The unfolded PBD is subsequently
released from the phosphatase domain in the presence of PI(4,5)P2,
translocated onto themembrane, which stabilizes the protein through salt
bridges between lipids and a polybasic patch of the PBD, leading to the
coordination of two PI(4,5)P2 and full activation of PTEN (Jang et al.,
2021).

There are some questions about the PTEN regulation that remain to
be studied. First, since CTT is an intrinsically disordered region (IDR), it
is difficult to obtain a picture of the proposed closed state (Maccario
et al., 2007; Malaney et al., 2013; Dempsey et al., 2021; Smith et al.,
2022). Second, previous MD simulations showed that membrane
binding of PTEN leads to an orientation change between the
phosphatase and C2 domain (Kalli et al., 2014), which requires
experimental evidence. In addition, it has been proposed that the
full activation of PTEN requires the formation of PTEN dimer
(Papa et al., 2014; Heinrich et al., 2015). PTEN dimers seem to have
a more compact conformation, which allows for better cooperativity
between the phosphatase and C2 domains that may increase of the
catalytic activity (Heinrich et al., 2015). How PTEN dimers engage in
the PTEN-membrane interaction remains to be understood.

4.2 Src homology 2 domain-containing
inositol 5-phosphatase

The Src homology 2 domain-containing inositol 5-phosphatase
(SHIP) dephosphorylates PI(3,4,5)P3 to generate PI(3,4)P2. The
SHIP family, consisting of SHIP1 and SHIP2, share a high level
of sequence and structural homology, but have different tissue
expression patterns. A previous study (Ong et al., 2007) showed

FIGURE 5
Schematic illustration of PTEN activation. PTEN remains in an autoinhibited state until removal of phosphate groups in the C-terminal region, which
then allows membrane interaction. Specific interactions include C2 domain interacting with phosphatidylserine and the PBD domain interacting with
PI(4,5)P2, which then allows the phosphatase domain to gain access to its PI(3,4,5)P3 substrate. This figure was adapted in part from ref. Jang et al. (2021).
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that adding PI(3,4)P2 to the enzyme reaction activates full-length
SHIP1, but not SHIP1 without the C2 domain. Protein lipid overlay
(PLO) assays suggested that purified C2 domain bound to PI(3,4)P2,
although there are some concerns about PLO assays being artifact
prone. These data indicate that the C2 domain is needed for the
allosteric activation of SHIP1 and that allosteric activators such as
PI(3,4)P2 might bind to the C2 domain.

A recent study (Waddell et al., 2023) used single molecule total
internal reflection fluorescence (TIRF) microscopy to visualize
membrane association and dissociation dynamics of fluorescently
labeled SHIP1 on supported lipid bilayers (SLBs). They found that
the SHIP1 truncation containing the central phosphatase domain
flanked by C2 domain binds to PI(3,4)P2 and pleckstrin homology-
related (PHR) domain (PHR-PP-C2) binds to PI(3,4,5)P3.
Molecular dissection showed that the full-length SHIP1 was
autoinhibited by the N-terminal Src homology 2 (SH2) domain
and the disordered C-terminus compared to the central PHR-PP-
C2. They also found that phosphatidylserine enhanced the activity of
full-length SHIP1, but the overall activity was lower than that of
PHR-PP-C2 lacking autoinhibition. They suggest that the
autoinhibition of SHIP1 is regulated by a mechanism that is
partially resistant to phosphatidylserine-mediated activation, and
phosphatidylserine may bind to the C2 domain, leading to allosteric
activation.

4.3 SHIP2

Studies by the Lietha lab established that the C2 domain
stabilizes the phosphatase (Ptase) domain and promotes
membrane binding (Le Coq et al., 2017). With surface plasmon
resonance (SPR) experiments, they found that both the Ptase and
Ptase-C2 bind phosphatidylserine, and the C2 domain enhances the
binding. The C2 domain affects the catalytic activity of the Ptase
domain, which may indicate allosteric communication. MD
simulations and X-ray crystal structure analysis suggested that
communication between the C2 domain and the active site in the
Ptase is modulated by the conformational dynamics of α5–7 helices
and L4 loop.

More recent MD simulations (John et al., 2023) with
SHIP2 bound to a lipid membrane suggest that C2 causes
conformational changes in L4 and α5–7, but there is no change
in flexibility in these regions, which may be because that the
presence of a lipid membrane changes protein conformational
dynamics. Another study (Le Coq et al., 2021) focusing on the
function of the PHR domain of SHIP2 showed that the reaction
product PI(3,4)P2 induces higher activity of PHR-Ptase-
C2 compared to Ptase-C2 and Ptase. The direct binding of the
PHR domain and PI(3,4)P2 was indicated by a fluorescence
polarization assay. They proposed a model where both the PHR
and C2 domains interacted with the membrane, resulting in optimal
positioning toward the substrate and allosteric activation of SHIP2.
They also proposed allosteric communication via the PHR-Ptase
linker interacting with the Ptase-C2 linker.

A simulation and calculation work also compared the role of
C2 domains in PTEN and SHIP2 (John et al., 2023). This study
showed that the C2 domain of PTEN plays an important role in
membrane binding and adjusts the posture of PTEN for substrate

binding which is similar to the role of other C2 domains. The
C2 domain in SHIP2 binds relatively weakly to phospholipid
membranes but contributes to allosteric interdomain changes
essential for catalytic activity.

5 PH domain-containing enzymes

Pleckstrin homology (PH) domains consist of a 7-stranded β
sandwich structure together with a C-terminal α helix (see Figure 3)
(Lemmon et al., 1995). They are found in many types of proteins and
are thought to bind PIPs and target proteins to specific membranes.
The specific interactions with PIPs are still unclear for most PH
domain-containing proteins (Singh et al., 2021).

5.1 Protein kinase B

Ser and Thr kinase Akt, also known as protein kinase B
(PKB), is one of the key proteins in the phosphoinositide 3-kinase
signaling pathways. There are three Akt isoforms, Akt1, Akt2 and
Akt3, that all have an N-terminal PH domain, an unstructured
linker sequence, a kinase domain, and a C-terminal regulatory
domain. PI(3,4,5)P3 or PI(3,4)P2 binding to the PH domain
allosterically activates Akt by unmasking the substrate binding
site (Ebner et al., 2017).

The conformational changes of Akt upon PI(3,4,5)P3 binding
have been elucidated by small-angle X-ray scattering (SAXS) and
HDX-MS experiments (Lučic et al., 2018). In the cytosol, the
interaction between the PH domain and the kinase domain
inhibits substrate binding and keeps Akt in a closed and inactive
state, with the activation loop and the hydrophobic motif
sequestered in the autoinhibited conformation. The generation of
PI(3,4,5)P3 or PI(3,4)P2 in the plasma membrane leads to the
binding of Akt and release of autoinhibition, the PH domain is
displaced from the catalytic cleft, the activation loop and the
hydrophobic motif are exposed for phosphorylation(see Figure 6)
(Ebner et al., 2017). The phosphorylation of T308 by 3-
phosphoinositide-dependent kinase 1 (PDK1) orders the
activation loop and helps with substrate binding (Stokoe et al.,
1977; Alessi et al., 1997), and phosphorylation on S473 by mTOR
complex 2 (mTORC2) in the hydrophobic motif orders the C helix
and organizes the catalytic residues (Sarbassov et al., 2005; Lučic
et al., 2018). The phosphorylated residues are protected by ATP
from dephosphorylation (Yang et al., 2002a; Yang et al., 2002b).
Fluorescence imaging techniques and live cell spectroscopy show
that dissociation from PI(3,4,5)P3 is the rate-limiting step in Akt
dephosphorylation and the presence of PI(3,4,5)P3 is required for
sustained Akt phosphorylation (Ebner et al., 2017). Turnover of
PI(3,4,5)P3 and PI(3,4)P2 results in Akt inactivation by returning it
to the autoinhibited form. The phosphorylated activation loop and
hydrophobic motif are released and then accessible for
dephosphorylation (Lučic et al., 2018). In summary, both
PI(3,4,5)P3/PI(3,4)P2 binding and phosphorylation are required
for Akt activation. The significance of activation in the presence
of PI(3,4,5)P3 or PI(3,4)P2 is thought to enhance the substrate
specificity and reduce the potential crosstalk between signaling
pathways (Ebner et al., 2017).
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5.2 Bruton’s tyrosine kinase

Bruton’s tyrosine kinase (Btk) is a protein kinase that is critical
in activation of B cells. Btk consists of a PH domain fused with a Tec
homology (PH-TH) domain, a proline-rich region (PRR), a Src
homology 3 (SH3) domain, a SH2 domain, and a C-terminal kinase
domain. The activation of Btk depends on the recruitment to the
plasma membrane. The PH-TH domain binds two PI(3, 4, 5)P3,
which allosterically mediate Btk dimer formation and activation
(Chung et al., 2019; Wang et al., 2019).

NMR and HDX-MS reveal the autoinhibitory interactions in
cytosolic Btk between the PH-TH and the kinase domain, and

between SH3 and the SH2-kinase linker (see Figure 7) (Devkota
et al., 2017; Joseph et al., 2017; Amatya et al., 2019). Displacement of
the SH3 domain from the kinase domain by PRR transiently opens
the autoinhibited structure of Btk (Joseph et al., 2017), which may
promote PI(3, 4, 5)P3 binding. After Btk is recruited to the
membrane containing PI(3, 4, 5)P3, a domain rearrangement can
occur and likely leads to a second autoinhibitory structure with the
PH-TH domain adopting the Saraste dimer (Hyvönen and Saraste,
1997), a structure associated with membrane binding. The second
autoinhibitory structure based on crystallography (Wang et al.,
2015)may suggest an intermediate between the fully autoinhibited
and active state (Amatya et al., 2019; Kueffer et al., 2021). When

FIGURE 6
Schematic illustration of PKB/Akt activation. Phosphorylation at positions 308 and 473 releases the PH domain so that it can interact with PIP lipids in
the membrane.

FIGURE 7
Schematic illustration of Btk activation. A series of conformational changes, including changes in domain-domain interactions, must occur to allow
the PH-TH domain to interact with PI(3,4,5)P3. There is a proposed intermediate state that interacts with the membrane, but further conformational
changes, dimerization and trans-autophosphorphorylation are required for full activation. This figure was adapted in part from ref. Kueffer et al. (2021).
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there is sufficient amount of PI(3, 4, 5)P3 in the membrane, Btk
binds to PI(3, 4, 5)P3 through both the canonical and peripheral sites
on the PH domain to stabilize membrane interactions (Chung et al.,
2019). The binding of the second PI(3, 4, 5)P3 may also be involved
in an allosteric structural change or electrostatic interaction
necessary for dimerization (Chung et al., 2019; Wang et al.,
2019). This further structural change allows the SH2 domain to
contact the kinase domain N-lobe and helps stabilize the kinase
domain in its active state. Btk then undergoes trans-
autophosphorylation and achieves activation (Rawlings et al., 1996).

Fluorescence correlation spectroscopy (FCS) shows that by
binding to multiple PI(3, 4, 5)P3, the PH-TH module is more
sensitive to the PI(3, 4, 5)P3 concentration on the surface thus
leading to better regulation of Btk (Chung et al., 2019). However, the
role and structural basis for the PI(3, 4, 5)P3-induced dimerization in
Btk activation is not clear and awaits further study.

5.3 Myotubularins

Myotubularins (MTM) are phosphatidylinositol phosphatases,
which dephosphorylate the D-3 position of PI3P and PI(3,5)P2 and
generate phosphatidylinositol and PI5P, respectively (Begley and
Dixon, 2005). The product PI5P is an allosteric activator that
promotes oligomerization of MTM1 into a heptamer, which
enhances the activity of MTM1 (Schaletzky et al., 2003). The PH
domain overlapping with the Glucosyl transferases, Rab-like
GTPase activators and myotubularins (GRAM) motif has been
reported to bind PIPs and mediate the allosteric activation
(Lorenzo et al., 2005). The structural details about the activation
and the oligomerization require further studies.

5.4 Phospholipase D

Phospholipase D (PLD) is a transphosphatidylase that
hydrolyzes PC to generate phosphatidic acid (PA) (Mohn et al.,
1992). Two canonical mammalian isoforms PLD1 and PLD2 have
similar structures (Sung et al., 1999a; Sung et al., 1999b). The tandem
phox homology-pleckstrin homology (PX-PH) domains in PLDs are
thought to activate the enzyme by association with PI(4,5)P2, and
they may play different roles in membrane associations and
activation in different PLD isoforms (Yao et al., 2021). A recent
study based on crystallography and mutagenesis demonstrated that
a polybasic pocket in the catalytic domain likely binds PI(4,5)P2
(Bowling et al., 2020). Structural determination of full-length PLD is
also needed to identify the PIP binding sites and activation
mechanisms.

6 PX domain-containing enzymes

PX domains are membrane binding domains that bind to
phosphatidylinositol and PIPs and consist of three anti-parallel
β-strands followed by three α-helices (see Figure 3) (Ellson et al.,
2002). Besides PLD, PX domain also exists in serum- and
glucocorticoid-regulated kinase 3 (Sgk3). Sgk3 is a serine/
threonine protein kinase allosterically activated by PI3P. The

allosteric activation process of Sgk3 is similar to that of Akt.
HDX-MS provides evidence for conformational changes in
Sgk3 in the presence of vesicles (Pokorny et al., 2021). Cytosolic
Sgk3 is autoinhibited by its PX domain, PI3P binding relieves the
autoinhibition and renders Sgk3 a substrate for PDK1. Then
PDK1 phosphorylates the Sgk3 activation loop, which completes
the activation of Sgk3 (Kobayashi and Cohen, 1999).

7 FERM domain-containing enzymes

Four-point-one, ezrin, radixin, moesin (FERM) domains have
three compact lobes (see Figure 3) and are found in a variety of
cytoskeletal-associated proteins that link the plasmamembrane with
cytoskeleton at specific cellular locations (Chishti et al., 1998; Frame
et al., 2010).

7.1 Focal adhesion kinase

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase
and is composed of a N-terminal FERM domain, a central kinase
domain, an unstructured proline-rich region, and a C-terminal focal
adhesion targeting (FAT) domain. FAK binding to PI(4,5)P2-rich
membranes in focal adhesion induces a multistep activation
sequence, which causes FAK oligomerization and an
conformational change for autophosphorylation and activation
(Goñi et al., 2014; Acebrón et al., 2020).

In the autoinhibited form, the FERM domain binds to the kinase
domain, blocks the active site and sequesters phosphorylation sites
(see Figure 8) (Lietha et al., 2007). FAT domain targets FAK into
focal adhesions (Arold et al., 2002; Hayashi et al., 2002; Gao et al.,
2004). Locally increased concentration of FAK close to the
adhesome induces FAK dimerization through FERM-FERM
interactions (Brami-Cherrier et al., 2014). Vesicle pull-down
experiments show that a basic patch on the FERM domain binds
to PI(4,5)P2 in the membrane through electrostatic interactions
(Goñi et al., 2014). Cryo-electron microscopy (cryo-EM) of FAK
bound to a PI(4,5)P2 -containing membrane shows that binding
induces FAK oligomerization between FAK dimers and release of
the autoinhibition: the kinase domain is released, and it undergoes a
conformational change, binds to PI(4,5)P2 in the membrane and
places the active site towards themembrane (Hall and Schaller, 2017;
Acebrón et al., 2020). The conformational change upon PI(4,5)P2
binding also exposes Y397 in the linker between the FERM and
kinase domains to trans -autophosphorylation by another FAK
dimer. The Src kinase is then recruited to the autophosphorylated
linker and phosphorylates Y576 andY577 in the activation loop of FAK,
which activates FAK (Calalb et al., 1995; Lietha et al., 2007). The active
site of FAK faces toward the membrane in the cryo-EM structure,
making it difficult for Src to access the activation loop and for substrates
to access FAK catalytic site. An additional level of regulation, likely the
tension force, is thought to expose the active site and trigger the
activation of FAK in the presence of PI(4,5)P2 (Acebrón et al.,
2020). The understanding of tension force within the focal adhesion
requires further experiments. In addition, the proximity of FAK may
promote FAT dimerization (Le Coq et al., 2022) through a helix-
swapped structure observed in crystallography (Arold et al., 2002),
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which has not been proven since FAT domain is missing from the cryo-
EM structure (Goñi et al., 2014).

8 Other enzymes regulated by
membrane-interactions

There are other enzymes that are allosterically regulated by
membranes, but most mechanisms are unclear. PI(4,5)P2 binds to a
basic region of regulatory domain in P21 activated kinase 1 (Pak1) to
promote its activation synergistically with Rac1/Cdc42 (Strochlic et al.,
2010; Malecka et al., 2013). Arachidonic acid was shown to activate
protein phosphatase 5 (PP5) by binding to its regulatory tetratricopeptide
repeat (TPR) domain (Chen and Cohen, 1997). Another example is Sac1,
where its activity is stimulated by binding of anionic phospholipids like
phosphatidylinositol and phosphatidylserine. Lipid binding in the
cationic groove induces a conformational switch of the catalytic
P-loop and activates Sac1 (Zhong et al., 2012).

9 Discussion

Here, we have described the mechanism of membrane binding and
subsequent conformational changes for key peripheral membrane
binding enzymes. These actions not only re-localize these enzymes
to these membranes, but also modulate their catalytic activity. We have
categorized enzymes intowhere an amphipathic α -helix or a specialized
lipid-binding domain is most important for membrane engagement.
The amphipathic α-helices in CCT and PLA2 bind to the core of the
protein in the unbound, inactive form. Rotation of these helices exposes
the hydrophobic side for binding to the membrane. Amphipathic
helices enable the protein to sense changes in physical properties of
the bilayer. Thus, proteins containing amphipathic helices not only bind
to specific lipids but respond more generally to negative surface charge
and lipid packing voids of the membrane.

In contrast, lipid-binding domains consist of a binding pocket for a
specific lipid, especially different phosphoinositide lipids, and enable the
protein to be regulated by the concentration of a specific lipid in the
membrane. In addition, the presence of more than one lipid-binding
domain allows cooperation between lipids to increase the binding

affinity and enzyme activity, diversifying enzyme regulation. For
example, regulation of PKC’s function by two lipid-binding domains
provides higher sensitivity in the activation process.

The general regulation strategy used by many peripheral proteins is
to displace an autoinhibitory domain or release the intramolecular
interaction upon membrane binding. Some peripheral proteins
undergo oligomerization or dimer dissociation during membrane
binding, where the changes of intramolecular and intermolecular
interactions both contribute to the allosteric regulation. Moreover,
positive feedback via allosteric activation by reaction products is
observed in some phosphoinositide phosphatases, which is an
important part in lipid metabolism. These processes are also often
induced by changes in the phosphorylation state of these proteins.
Other post-translational modifications (PTMs), especially
palmitoylation and acylation, are also important for membrane
recruitment and are responsible for fine-tuning enzyme function.
Cysteine palmitoylation attaches a long chain fatty acid to the
protein, increases its hydrophobicity and membrane-binding affinity
(Salaun et al., 2010). Palmitoylation regulates function and cellular
localization of Btk-C isoform and Akt. The phosphorylation levels of
Btk-C and Akt are decreased if they are unpalmitoylated (Blaustein
et al., 2021; Kokabee et al., 2022). Palmitoylation of PKC facilitates its
interaction with membrane (Ford et al., 1998). Lysine acetylation
neutralizes the positive charge of the protein, resulting in weaker
binding with negatively charged membranes (Okada et al., 2021).
Acylation at the PH domain of Akt blocks membrane-binding and
reduces Akt phosphorylation, while deacylation promotes membrane-
binding and activation (Sundaresan et al., 2011). Acylation of PTEN in
the catalytic cleft attenuates its activity (Okumura et al., 2006).

While much has been revealed about membrane binding and
consequent allosteric regulation, high-resolution protein-membrane
binding structures from X-ray crystallography or cryo-EM are still
required to map the spatiotemporal activation sequence for most
enzymes mentioned above. Imaging studies to reveal the co-
localization of membrane-bound proteins with specific lipids in
vivomay also help us to understand howmembrane localization and
allosteric activation happen inside cells. These studies will continue
to reveal important concepts in membrane binding and allosteric
regulation, and provide novel mechanisms by which to modulate
these functions through small molecules, serving both as chemical

FIGURE 8
Schematic illustration of FAK activation. Activation of FAK requires dimerization to release the kinase domain and allow for domain reorientation. FAK
can further oligomerize upon trans-phosphorylation. This figure was adapted in part from ref. Acebrón et al. (2020).
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probes and potential starting points for pharmaceutical
development.
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