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Background: Aldosterone-producing adenomas (APA) are a common cause of
primary aldosteronism (PA), a clinical syndrome characterized by hypertension
and electrolyte disturbances. If untreated, it may lead to serious cardiovascular
complications. Therefore, there is an urgent need for potential biomarkers and
targeted drugs for the diagnosis and treatment of aldosteronism.

Methods: We downloaded two datasets (GSE156931 and GSE60042) from the
GEO database and merged them by de-batch effect, then screened the top50 of
differential genes using PPI and enriched them, followed by screening the
Aldosterone adenoma-related genes (ARGs) in the top50 using three machine
learning algorithms. We performed GSEA analysis on the ARGs separately and
constructed artificial neural networks based on the ARGs. Finally, the Enrich
platform was utilized to identify drugs with potential therapeutic effects on
APA by tARGseting the ARGs.

Results: We identified 190 differential genes by differential analysis, and then
identified the top50 genes by PPI, and the enrichment analysis showed that they
were mainly enriched in amino acid metabolic pathways. Then three machine
learning algorithms identified five ARGs, namely, SST, RAB3C, PPY, CYP3A4,
CDH10, and the ANN constructed on the basis of these five ARGs had better
diagnostic effect on APA, in which the AUC of the training set is 1 and the AUC of
the validation set is 0.755. And then the Enrich platform identified drugs
tARGseting the ARGs with potential therapeutic effects on APA.

Conclusion: We identified five ARGs for APA through bioinformatic analysis and
constructed Artificial neural network (ANN) based on them with better diagnostic
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effects, and identified drugs with potential therapeutic effects on APA by
tARGseting these ARGs. Our study provides more options for the diagnosis and
treatment of APA.

KEYWORDS

aldosterone-producing adenomas, primary aldosteronism, artificial neural network,
machine learning algorithm, potential targeted drugs

Introduction

Primary aldosteronism (PA) is caused by adrenocortical lesions
characterized by the autonomous secretion of aldosterone.
Dysregulation of excess aldosterone causes patients to be at high
risk of refractory hypertension, severe hypokalemia or related
cardiovascular morbidity and mortality (FUNDER et al., 2016).
APA are a common cause of PA (FUNDER et al., 2016; LALLI
et al., 2016; WILLIAMS and REINCKE, 2022), a tumor of the
adrenal glands that overproduces aldosterone, leading to PA.
APA is one of the specific pathologic conditions that lead to
primary aldosteronism, but not all primary aldosteronism is
caused by APA; other possible causes include adrenocortical
hyperplasia (in which the number of cells in the adrenal cortex is
increased, leading to an overproduction of aldosterone) or, very
rarely, adrenocortical carcinoma (PLOUIN and JEUNEMAITRE,
2004; WILLIAMS and REINCKE, 2018; NANBA and RAINEY,
2021). In recent years, numerous studies have revealed a number of
genetic mutations that drive APA development, such as KCNJ5
(CHOI et al., 2011; KITAMOTO and NISHIKAWA, 2022),
ATP1A1 (BEUSCHLEIN et al., 2013), ATP2B3 (BEUSCHLEIN
et al., 2013), CACNA1D (AZIZAN et al., 2013; SCHOLL et al.,
2013), CACNA1H (SCHOLL et al., 2015) and CLCN2
(FERNANDES-ROSA et al., 2018; SCHOLL et al., 2018). These
mutations usually lead to abnormalities in cell membrane voltage-
gated ion channels, which increase aldosterone synthesis and
secretion (OKI and GOMEZ-SANCHEZ, 2020; SPYROGLOU
et al., 2021; SCHOLL, 2022). Despite our deeper understanding
of the molecular mechanisms of APA, how to accurately link these
mutations to clinical manifestations, as well as to the prognosis of
the disease, remains an unresolved issue. In addition, diagnostic and
therapeutic options for APA remain limited; diagnosis of APA
usually involves a series of steps, including clinical evaluation,
biochemical testing, imaging, and possibly confirmatory testing
(MONTICONE et al., 2015; LAURENT et al., 2018), but current
diagnostic methods are not 100% accurate and rely heavily on the
experience of the clinician (PIADITIS et al., 2015; STOWASSER,
2015; BEUSCHLEIN et al., 2017). In terms of treatment, if primary
aldosteronism is caused by APA, then surgical removal of the tumor
is usually the treatment of choice (AMAR et al., 2010). This surgery,
usually performed laparoscopically or robotically assisted, can be
effective in resolving the disease, lowering blood pressure and
improving hypokalemia (CATENA et al., 2010; STOWASSER, 2015).
However, not all patients are candidates for surgical treatment. For
some patients who are unable to undergo surgical treatment or have
poor surgical outcomes, we still need to find more effective treatments.
Therefore, the identification of potential biomarkers capable of
diagnosing and treating APA is urgent and necessary.

In review, there are few approaches for the diagnosis and
treatment of APA, thus a better understanding of the molecular
mechanisms of APA is essential to improve the prognosis, early
screening and diagnosis of patients who have APA. In the
present study, we attempted to construct a novel ANN model
diagnosis and evaluation of APA. First, we used three machine
learning algorithms to identify hub DEGs for APA and
validated the diagnostic effect of these hub DEGs. We then
constructed a novel ANN model for APA diagnosis and
validated the accuracy of the ANN model in the validation
set. In addition, we revealed the biological pathways played
specifically by hub DEGs and screened drugs that may tARGset
hub DEGs, providing a new perspective for the diagnosis and
treatment of APA.

Methods

Data acquisition and preprocessing

The workflow chart of this study is shown in Figure 1. We
downloaded 4 APA datasets from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/), GSE156931, GSE60042, GSE64957 and
GSE8514, respectively. The GSE156931 dataset contains 8 APA
and 8 normal adjacent adrenal gland (AAG). The probes were
transformed into the corresponding gene symbols by referring to
the GPL6883 platform annotation information. The
GSE60042 dataset contains 7 APA and 7 AAG. The probes were
transformed into the corresponding gene symbols by referring to the
GPL14550 platform annotation information. The GSE64957 dataset
contains 14 APA and 27 AAG. The probes were transformed into
the corresponding gene symbols by referring to the
GPL10739 platform annotation information. The
GSE8514 dataset contains 10 APA and 5 AAG. The probes were
transformed into the corresponding gene symbols by referring to the
GPL570 platform annotation information. GSE156931 and
GSE60042 were used as the training set. GSE64957 and
GSE8514 were used as the validation set for this study. We
performed a batch de-effect on GSE156931 and GSE60042.
Specifically, we first normalized the gene expression data in the
GSE156931 and GSE60042 datasets using the R package “limma”.
Subsequently, in order to eliminate the batch effect caused by
different platforms, we found that “ComBat” in the R package
“sva” could effectively eliminate the batch effect between data
generated by different platforms by reviewing previous studies
(JOHNSON et al., 2007; TANG et al., 2021). Therefore, we
merged the normalized gene expression data of GSE156931 and
GSE60042 and used “ComBat” in the R package “sva” to eliminate
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the batch effect (LEEK et al., 2012). Similarly, GSE64957 and
GSE8514 underwent the same batch de-effect.

Differential analysis of gene expression

Expression profiling data of APA and AAG were compared to
identify the differentially expressed genes (DEGs) of 2 clusters using
the R package “limma”. The threshold values were |log2FoldChange
| >1 and adjusted p-value < 0.001, and finally 190 DEGs were
obtained.

PPI and correlation analyses of differentially
expressed genes

The STRING database (https://string-db.org/) and Cytoscape
software were used to analyse the protein-protein interaction (PPI)
among differentially expressed genes (SZKLARCZYK et al., 2019).
Differential genes were incorporated into the PPI network, and the
differential genes were comprehensively scored using CytoHubba

function in Cytoscape, and the top 50 genes with comprehensive
scores were finally selected for subsequent analysis.

Functional enrichment analysis

To clarify which biological processes and functions the top
50 genes are enriched in, to better comprehend the pathogenesis
of APA, and we performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis of the top
50 genes using the “clusterProfiler” package in R software (YU et al.,
2012). A p-value of less than 0.05 was set as the cutoff criterion.

Selection of ARGs

We used 3 machine algorithms to identify ARGs, namely,:
randomForest (RF), last absolute shrinkage and selection
operator (LASSO) and support vector machine recursive feature
elimination (SVM-RFE). First, we used the RF algorithm of
“randomForest” package (PAUL et al., 2018), the LASSO

FIGURE 1
Schematic view of the procedures for data collection and analyses in APA.
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algorithm of “glmnet” package (VASQUEZ et al., 2016) and the
SVM-RFE algorithm of “e1071” package (NOBLE, 2006) for
screening top 50 genes to identify potential candidate genes.
Then, we used Venn diagrams to intersect the candidate genes
screened by the above 3 algorithms, and finally found 5 intersecting
hub candidates.

Construction and validation of the artificial
neural network (ANN) model

We constructed the ANN model using 5 hub genes, which was
built using the R package “neuralnet” and consists of 3 parts.

a. Input layer, which includes the gene expression of 5 hub genes;
b. The first hidden layer, which includes the gene expressions of the

5 hub genes and the weights of the 5 hub genes; and the second
hidden layer, which includes the weights of all neurons in hidden
layer 1.

c. Output layer, which indicates whether the sample belongs to
AAG or APA.

To speed up the convergence and improve the accuracy of the
neural network, we set the number of neurons in the first hidden
layer to 12 and the number of neurons in the second hidden layer to
8, and use ROC to evaluate the prediction performance of the ANN
in the training and validation sets.

ssGSEA

The ssGSEA was performed in R language using the R packages
“GSVA” and “GSEABase”, and using the ssGSEA algorithm to
evaluate the immunological characteristics among APA patients,
respectively. We first obtained 28 immune gene sets from the
TISIDB database (http://cis.hku.hk/TISIDB/), and then performed
single-sample gene set enrichment analysis (ssGSEA) based on these
28 immune gene sets, and the ssGSEA score of 28 immune gene sets
in each sample were calculated.

Evaluation of the diagnostic value of the
selected ARGs in APA

We further investigated whether the selected 5 hub genes are
potentially valuable in the diagnosis of APA. The performance of
5 hub genes was evaluated. We performed ROC analysis using the R
package “pROC” to obtain AUC, specifically, we obtained 5 hub
genes expression data and disease status grouping data from APA
sets, performed ROC analysis using the “roc” function of “pROC”
package and using the “ci” function of “pROC” to obtain the final
AUC results.

Gene set enrichment analysis

To further identify which biological functions and signaling
pathways are associated with 5 hub genes, we clustered APA

according to the median value of 5 hub genes expression and
performed gene set enrichment analysis (GSEA) on different
subgroups, and with p < 0.05 being statistically significant.

Selection and docking of drugs tARGseting
5 hub genes

To screen the drugs tARGseting 5 hub genes, we used the
Enrichr platform (https://maayanlab.cloud/Enrichr/) for online
analysis and screening. First, we input the gene symbol of 5 hub
genes in the primary webpage of Enrichr platform, and then
screened the drugs tARGseting 5 hub genes based on the
DSigDB database in the “Diseases/Drugs” module, and with p <
0.05 being statistically significant. Subsequently, we used molecular
docking method (MDM) to investigate the interaction and binding
affinity of the screened drug molecules to their hub genes in order to
screen for the most potential drugs. Specifically, the molecular
structures of potential drugs were acquired from PubChem
database (https://pubchem.ncbi.nlm.nih.gov/). Meanwhile, the 3D
coordinates of PPY (PDB ID, 4U6S; resolution, 2.10Å), SST (PDB
ID, 7T10; resolution, 2.50 Å), CYP3A4 (PDB ID, 5BQG; resolution,
1.44Å), CDH10 (PDB ID, 5VEB; resolution, 2.34Å), and RAB3C
(PDB ID, 6Y7G; resolution, 2.30 Å) were retrieved from the PDB
(https://www.rcsb.org/). The protein and molecular files were
converted to PDBQT format, with the exclusion of water
molecules and the inclusion of polar hydrogen atoms. And to
enable unrestricted molecular movement, the domain of each
protein was encompassed by a centered grid box. AutoDock tools
were used to prepare the ligand and protein files. Protein-ligand
docking was performed with AutoDock tools, and the resulting
interactions between receptor and ligand were visualized with
PyMOL (version 2.5).

Statistical analysis

Statistical analysis and visualization were conducted using R
software for this study. The analysis of variance (ANOVA) method
was employed to statistically analyse multi-group data, while the
wilcoxon rank sum test was used to compare two groups. For all
statistical analyses, a significance level of p < 0.05 was considered
statistically significant. In addition, we have provided the scripts for
the main analyses required for this study in the Supplementary
Material S1 for consultation.

Results

Identification of differentially expressed
genes in APA

To systematically identify ARGs that enable the diagnosis and
treatment of APA, we conducted a set of analyses. The study design
was illustrated in Figure 1. We downloaded the RNA-seq datasets
from 15 APA patients and 15 AAG retrieved by GEO datasets
(GSE156931 and GSE60042) and performed a de-batch effect on the
two datasets to ensure data consistency. The de-batch effect results
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showed that the data of the dataset grouping and the disease status
grouping were consistent (Figure 2A). Additionally, we also
performed the de-batch effect on an independent validation set
for this study consisting of two datasets, GSE8514 and GSE64957,
and the results showed that the treated samples were uniformly
dispersed (Figure 2B). Then, we performed differential gene
expression analysis, and the results identified a total of
190 differentially expressed genes, of which 66 were upregulated
and 124 were downregulated (Figure 2C). The overall landscape of
190 DEGs between APA and AAG is shown in Figure 2D. Next, the
protein-protein interaction of these 190 differential genes was
constructed using STRING database (https://string-db.org/), and
then the CytoHubba plug-in in Cytoscape was utilized for overall
evaluation of these 190 differential genes. Finally, the top 50 genes
with the highest scores were selected (Figure 2E).

To investigate the role of the top 50 genes, we performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis. Consequently, GO enrichment analysis revealed
multiple biological processes, including “voltage−gated potassium
channel complex”, “G protein−coupled receptor binding”,
“potassium ion transmembrane transporter activity”, “G
protein−coupled receptor signaling pathway involved in heart
process”, “regulation of phagocytosis, engulfment”, “regulation of
complement activation”, “positive regulation of voltage−gated

calcium channel activity”, “regulation of potassium ion transport”,
“G protein−coupled receptor signaling pathway”, “regulation of
receptor−mediated endocytosis”, “positive regulation of endocytosis”,
“positive regulation of receptor−mediated endocytosis”, “positive
regulation of G protein−coupled receptor signaling pathway” and
“potassium ion transport” (Figure 3A). The KEGG enrichment
analysis including “Tyrosine metabolism”, “Neuroactive ligand-
receptor interaction”, “GABAergic synapse”, “cAMP signaling
pathway”, “Synaptic vesicle cycle”, “Calcium signaling pathway” and
“Phenylalanine metabolism” (Figure 3B).

Identification of hub genes using 3 machine
learning algorithms

Next, to find out the key differentially expressed genes in APA, we
applied 3 machine learning algorithms, including least absolute
shrinkage and selection operator (LASSO), support vector machine
recursive feature elimination (SVM-RFE), and random forest, as these
machine learning approaches have been widely employed to analyse
biological data and accurately identify hub genes in gene expression
profiles (CHEN et al., 2016). Firstly, we utilized the LASSO algorithm to
identify the variation in regression coefficients of 50 differentially
expressed genes and select the optimal and minimal criteria of the

FIGURE 2
Identification of the DEGs in APA. (A) Data characteristics of the training set before and after the debatch effect. (B) Data characteristics of the
validation set before and after the debatch effect. (C) Volcano shows expression of DEGs between the APA and AAG cohort. (D) Heatmap shows the
overall landscape of DEGs between APA and AAG. (E) The protein-protein interaction network shows the interactions betweenDEGs, with the inner circle
showing the top 50 genes with the higher scores.
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penalization parameter (λ) using 10-fold cross-validation (Figure 4A),
and 7 candidate genes were screened (SHAO et al., 2021). Besides, We
also established the SVM-RFE model to screen out the genes with the
minimum cross-validation error (Figure 4B), and the SVM-RFE

algorithm screened 18 candidate genes with an accuracy of
0.933 and an error of 0.0667 (NOBLE, 2006). Meanwhile, we also
used the obtained 50 differentially expressed genes to incorporate into
the random forest model, the cross-validation error was minimized to

FIGURE 3
GO and KEGG analysis of the top 50 genes with the higher scores. (A)GOenrichment results in the top 50 genes. (B) KEGG enrichment results in the
top 50 genes.
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10 trees (Figure 4C). Subsequently, 27 candidate genes with important
points than zero were identified by random forest (PAUL et al., 2018).
In summary, LASSO algorithm identified 7 candidates, while the SVM-
RFE algorithm identified 18 candidates, and the randomForest
algorithm identified 27 candidates (Table 1). By intersected all the
candidates, we found SST, RAB3C, PPY, CYP3A4 andCDH10 could be
identified by all the indicated machine learning approaches and thus
defined as hub genes (Figure 4D).

Diagnostic efficacy of hub genes in
predicting APA

The screened hub genes were significantly differentially expressed
in APA than those in AAG, suggesting that these genes may play a

potential role in contributing APA (Figures 5A–E). Furthermore, the
area under curve (AUC) of the receiver operating characteristic curve
(ROC) of these hub genes was 0.840 of UPP1, 0.942 of S100A9, 0.938 of
KIF1B, 0.924 of S100A12, 0.942 of SLC26A8 respectively (Figures 5F–J).
These phenomena indicated that the screened hub genes had
remarkable diagnostic efficiency in forecasting APA. Besides, we also
constructed ANN based on ARGs to diagnose the onset of APA. ANN
is one of the main types of artificial intelligence that has been used in
many specialized areas of clinical medicine (CHEN et al., 2018).
Specifically, we incorporated hub genes into the artificial neural
network and constructed an ANN model to predict whether the
samples belonged to AAG or APA, which consisted of three parts:
input layer, hidden layer and output layer (Figure 6A). Then we
compare the ANN model prediction results with the actual grouping
information of the samples. We use two datasets, GSE156931 and

FIGURE 4
Identification of hub genes using 3 machine learning algorithms. (A) LASSO coefficient profiles of the indicated differentially expressed immune-
related genes (left panel). After cross-validation for tuning parameter selection, 7 candidate ARGs were identified (right panel). (B) SVM–RFE algorithm
identified 18 candidate genes with an accuracy of 0.933 (left panel) and an error of 0.0667 (right panel). (C) RandomForest algorithm identified
27 candidate genes. RandomForest error rate versus the number of classification trees (left panel) and gene importance scores (right panel). (D) Venn
plot shows the overlapped candidate genes.

TABLE 1 Scanning of candidate machines by 3 machine learning algorithms.

Methods Genes

Lasso TH, SST, RAB3C, PPY, CYP3A4, CTNND2, CDH10

RandomForest PPY, KCNE2, KCNK5, TTR, RAB3C, TM4SF4, CD19, C3, PNMT, ABCC8, PENK, CYP3A4, KCNB1, NTF3, SCN3B, SYT1, CDH10, CDH18,
GABRG2, TAGLN3, GABBR2, FBP2, RBP4, PVALB, ELAVL4, RET, SST

SVM-REF CYP3A4, PPY, RAB3C, CTNND2, ORM2, CDH10, DDC, GABRG2, SST, GABBR2, ORM1, KIF1A, TM4SF4, C3, CD19, ADCY1, TH, PHOX2B
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GSE60042, as the training set of the ANN and two datasets,
GSE64957 and GSE8514, as the validation set of the ANN,
respectively. The ANN prediction results and their accuracy for the
training and validation sets are shown in Table 2, where the prediction
accuracy for the training set is 100% and the prediction accuracy for the
validation set is 75%. Finally, we evaluate the prediction capability of the
ANN model on the training and validation sets using the ROC curves,
where the AUC value for the training set is 1 (Figure 6B) and the AUC
value for the validation set is 0.755 (Figure 6C). It was shown that an
area under the ROC curve greater than 0.5 proves that the diagnostic
model has some diagnostic value (ROBIN et al., 2011). Generally, the
ANN model is convincing and has the potential to be used as an
independent diagnostic predictor for APA.

GSEA analysis

We assessed signaling pathways associated with signature genes via
GSEA analysis. The top 10 signaling pathways were displayed in
Figure 7. The results showed that CDH10 was significantly
correlated with Asthma, Tyrosine metabolism, Graft-versus-host
disease, Type I diabetes mellitus, Systemic lupus erythematosus,
Lysosome, Cell cycle, p53 signaling pathway, Base excision repair,
Fanconi anemia pathway. The expression of CYP3A4 significantly
correlated with Asthma, Graft-versus-host disease, Allograft
rejection, Type I diabetes mellitus, Autoimmune thyroid disease,
Ubiquitin mediated proteolysis, Cell cycle, Lysosome, Protein
processing in endoplasmic reticulum, Hedgehog signaling pathway.
The expression of PPY significantly correlated with Aminoacyl-tRNA
biosynthesis, Hedgehog signaling pathway, Basal cell carcinoma, Cell
cycle, Ubiquitin mediated proteolysis, Tyrosine metabolism, Type I
diabetesmellitus, Allograft rejection, Asthma, Graft-versus-host disease.
The expression of RAB3C significantly correlated with Arginine
biosynthesis, Focal adhesion, Rap1 signaling pathway, Viral
carcinogenesis, Human immunodeficiency virus 1 infection, Primary
immunodeficiency, Type I diabetes mellitus, Allograft rejection,

Asthma, Graft-versus-host disease. The expression of SST
significantly correlated with Asthma, Tyrosine metabolism, Systemic,
lupus erythematosus, Amphetamine addiction, Regulation of lipolysis
in adipocytes, Ubiquitin mediated proteolysis, Nucleocytoplasmic
transport, Cell cycle, Base excision repair, Fanconi anemia pathway.
Taken together, these genes all positively correlated Cell cycle, Protein
processing and proteolysis, Amino acid metabolism signaling pathway
as well as tumor-immune signaling pathway.

Immune cell infiltration

Immunological features were evaluated according to immune cell
infiltration. Compared with AAG, APA have lower Effector memeory
CD8 T cell, Effector memeory CD4 T cell, Type 1 T helper cell,
Regulatory T cell, Activated B cell, Immature B cell, Natural killer
cell, Myeloid derived suppressor cell, Plasmacytoid dendritic cell,
Macrophage, Mast cell (Figure 8A). The overall landscape of
immune cell infiltration is shown in Figure 8B, and the results
showed significant differences in immune cell infiltration between
the APA and AAG groups. Meanwhile, we compared the ssGSEA
scores betweenAPA andAAG groups, and the results showed that APA
had significantly lower immune cell infiltration than AAG (Figure 8C).
All hub genes were correlated with the infiltration of Immature
dendritic cell and Activated B cell. CYP3A4 and CDH10 were
positively correlated with Type 1 T helper cell, Regulatory T cell,
Natural killer cell, Myeloid derived suppressor cell, Mast cell,
Effector memeory CD8 T cell and Activated B cell, and negatively
correlated with Plasmacytoid dendritic cell, Immature dendritic cell.
While RAB3C, PPY were positively correlated with Immature dendritic
cell, and negatively correlated with Type 1 T helper cell, Regulatory
T cell, Natural killer cell, Myeloid derived suppressor cell, Mast cell,
Effector memeory CD8 T cell, Macrophage and Activated B cell. SST
was only positively correlated with Effector memeory CD4 T cell,
Central memory CD8 T cell, Activated B cell, and negatively correlated
with Immature dendritic cell (Figure 8D).

FIGURE 5
The performance of the signature genes. (A-E) The expression of signature genes between the APA and AAG cohort. (F-J) ROC showed the
diagnostic performance of the signature genes.
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Identification and docking of potential drugs
targeting hub genes

To find out the drugs targeting hub genes, we used the Enrichr
platform (https://maayanlab.cloud/Enrichr/) for online analysis and
screening. We identified four drugs targeting hub genes based on the
DSigDB database with a p-value < 0.05. Next, we used the molecular

docking method (MDM) to investigate the binding affinity of the
drugs with their targeting hub genes, and their binding energy is
shown in Table 3. The results showed that Melatonin was able to
target SST and CYP3A4, in the order of CYP3A4-Melatonin (−6.
0 kcal/mol) and SST-Melatonin (-5.7 kcal/mol) (Figures 9A, B). In
addition, the absolute values of the binding energies of the two
complexes, RAB3C-phenobarbital (−6.3 kcal/mol) and CDH10-
trichostatin A (−6.8 kcal/mol), were relatively high (Figures 9C,
D), while PPY- 2,3-diformyloxypropyl formate (−5.6 kcal/mol) with
relatively low absolute values of binding energy (Figure 9E). Overall,
the docking results suggest that these potential drugs may regulate
the pathologic development of APA by interacting with hub genes.

Discussion

APA is one of the common clinical subtypes of PA, a tumor that
autonomously secretes aldosterone mainly from the zona
glomerulosa, with hypertension and hypokalemia as the main

FIGURE 6
Construction of artificial neural network (ANN) based on hub genes. (A) Construction of ANN based on SST, RAB3C, PPY, CYP3A4 and CDH10. (B)
The AUC of the training set with a value of 1. (C) The AUC of the validation set with a value of 1.

TABLE 2 ANN diagnosis effect for the training and validation sets.

Training set Validation set

AAG APA AAG APA

Prediction AAG 15 0 23 5

APA 0 15 9 19

Accuracy 100% 75%

AUC 1 0.755
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clinical manifestations may lead to serious cardiovascular
complications if untreated (PLOUIN et al., 2004; ZENNARO
et al., 2020).

Current clinical diagnostic methods for APA include clinical
evaluation, biochemical testing, imaging and possible
confirmatory testing. However, there are some drawbacks to
these diagnostic methods; for example, in imaging, CT and
MRI can show the structure of the adrenal gland and possible
tumors, but they cannot distinguish between APA and
nonfunctional adrenal tumors, or accurately differentiate
between APA and adrenocortical hyperplasia. In addition,
these imaging techniques may not be able to detect
microscopic adenomas smaller than 1 cm. In addition,
confirmatory tests also typically require special conditions
(e.g., specific salt intake) and complex sample processing,
which may also lead to false-positive or false-negative results
in some specific cases (SONOYAMA et al., 2011). In addition, the
preferred clinical treatment for APA is surgical resection, but
there is still a need to find more effective treatments for some
patients who are unable to undergo surgery or who have poor
surgical outcomes (BRAVO et al., 1988; LO et al., 1996).

In other words, there is an urgent need for potential biomarkers
and tARGseted drugs for the diagnosis and treatment of APA.

In the present study, we first screened 190 DEGs from 15 APA
patients and 15 healthy controls based on the GEO databases
GSE156931 and GSE60042. Subsequently, in order to find tightly
interacting genes among these 190 DEGs, we included them in the
PPI interaction interactions network and took the top 50 genes with
the highest composite scores to be included in the subsequent
analysis. To explore the signaling pathways and biological
functions that may contribute to the development of APA, we
performed GO and KEGG enrichment analyses on the top
50 genes with the highest scores. Our enrichment analysis
indicated that the pathogenesis of APA may be related to amino

acid metabolism, Calcium signaling pathway, G protein-coupled
receptor signaling pathway, and GABAergic synapse.

To identify ARGs in APA, we used three machine learning
algorithms, including LASSO, SVM-RFE, and Randomforest. We
found that SST, RAB3C, PPY, CYP3A4, CDH10 are five ARGs in
APA, and they were identified by all the machine learning methods,
suggesting that they have a potential role in the development of
aldosterone tumor and development of APA. Certain of these genes
have been reported in previous studies, for example, RAB3C is a
peripheral membrane protein that is involved in membrane
trafficking (vesicle formation) and cell movement (CHANG et al.,
2023), and RAB3C overexpression promotes tumor metastasis and
is associated with poor prognosis in colorectal cancer, through
modulating the ability of cancer cells to release IL-6 through
exocytosis and activate the JAK2-STAT3 signaling pathway
(CHANG et al., 2017). Also, CDH10 is involved in sporadic
pancreatic carcinogenesis, and might have a role in rare cases of
familial pancreatic cancer (JINAWATH et al., 2017).

These 5 ARGs are probably mechanistically involved in the
onset and development of APA, then they can also be potential
diagnostic tARGsets for APA. Of course, the diagnostic
performance of these 5 ARGs for APA still needs to be verified
by artificial neural network modeling (MANDAIR et al., 2023). At
present, the clinical approach for diagnosing APA still has some
drawbacks. Therefore, we incorporated these 5 ARGs into the
artificial neural network and constructed an ANNmodel to predict
whether the samples in this study belonged to the healthy control
or APA, in which the prediction accuracy for the training set is
100% and the prediction accuracy for the validation set is 75%. At
the same time, we evaluate the prediction capability of the ANN
model on the training and validation sets using the ROC curves,
where the AUC value for the training set is 1 and the AUC value for
the validation set is 0.755. That is, the ANN has the potential to be
used as an independent diagnostic predictor for APA.

FIGURE 7
The GSEA of the signature genes in APA. (A) The GSEA of BAB3C in APA. (B) The GSEA of CDH10 in APA. (C) The GSEA of SST in APA. (D) The GSEA of
CYP3A4 in APA. (E) The GSEA of PPY in APA.
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Meanwhile, we also performed a comprehensive assessment of the
tumor microenvironment (TME) of APAs in this study, and we
demonstrated the different cellular components of the TME between
APAs and AAGs. Our study showed a lower density of

CD45 lymphocyte infiltration in APAs. Our study showed a lower
density of tumor-infiltrating CD45 lymphocytes in APAs. This change
in the TME in APAs may be due to competition for nutrients in the
TME and the formation of an acidic microenvironment by glycolytic

FIGURE 8
The immune cell infiltration association with signature genes. (A) The box plot shows the immune cell infiltration between the APA and AAG groups.
(B) Heatmap shows the overall landscape of APA and AAG groups’ ssGSEA score. (C) The violin plot shows the ssGSEA score of immune cells of the APA
and AAG groups. (D) The association between signature genes and significantly different immune cell infiltration. (*p < 0.05; **p < 0.01; ***p < 0.001).
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TABLE 3 Potential drugs tARGseting hub genes.

Term p-value Combined score Genes Binding energy (kcal/mol)

2,3-diformyloxypropyl formate 0.006981041 917.8914803 PPY −5.6

trichostatin A 0.04316521 21.60762902 CDH10 −6.8

phenobarbital 0.028399813 39.74917525 RAB3C −6.3

Melatonin 8.27E-04 515.1515385 SST; CYP3A4 −5.7/-6.0

FIGURE 9
3D structures of the interacted interface between hub genes and their potential binding drugs. (A, B) The structure of the complex formed by the
docking of Melatonin with SST and CYP3A4. (C) The structure of the complex formed by the docking of phenobarbital with RAB3C. (D) The structure of
the complex formed by the docking of trichostatin A with CDH10. (E) The structure of the complex formed by the docking of 2,3-diformyloxypropyl
formate with PPY.
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intermediates that inhibits immune activation (CHANG et al., 2015;
LEONE and POWELL, 2020). Another potential mechanism is the
activation of PPAR signaling to promote evasion of immune
surveillance (KORPAL et al., 2017). For example, PPARα has anti-
inflammatory activity, and PPARα agonists mediate a variety of
immune responses that can reverse acute and chronic liver
inflammation (PAWLAK et al., 2015). In addition, we observed
lower infiltration of effector memory CD8 T cells in APA, and it
has been previously shown that effector T cell viability is reduced in
glucose-limited in vitromedium (ZHAO et al., 2016), suggesting that
metabolic reprogramming of glycolysis in APA may create a
hypoglycemic environment and limit glucose uptake by immune
cells, thereby hindering their function.

Certainly, the present study has some limitations. We constructed
an ANN diagnostic model based on the transcriptomes of only
30 samples from the GEO database, and although the reliability of
themodel was verified in the data set independent of the present study,
the present study is still at a relatively early stage, and many clinical
trials are needed to validate the diagnostic model if it is truly applied to
assist clinical diagnosis. Of course, the present study also provides
promising targets for the diagnosis and treatment of APA at the
transcriptome level, and we aim to continue our work on the diagnosis
and treatment of APA through the integration of multi-omics
(transcriptome, proteome, metabolome, etc.) in our future work.

In review, there are fewmethods for diagnosing and treating APA,
thus there is an urgent need for potential biomarkers and tARGseted
drugs for the diagnosis and treatment of APA. Specifically, we first
used three machine learning to identify ARGs in APA and validated
the diagnostic effect of these ARGs, meanwhile we constructed a novel
ANN model for APA diagnosis and validated the accuracy of this
ANN model in validation set. We then explored the immune
infiltration between the two groups of APA patients and healthy
controls and assessed the correlation between these five ARGs and
differential immune cells. Finally, we identified drugs that may
tARGset these 5 ARGs through the Enrich platform, providing
new perspectives for the diagnosis and treatment of APA.
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