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Background: Sepsis is a pathological state resulting from dysregulated immune
response in host during severe infection, leading to persistent organ dysfunction
and ultimately death. Senescence-associated genes (SAGs) have manifested their
potential in controlling the proliferation and dissemination of a variety of diseases.
Nevertheless, the correlation between sepsis and SAGs remains obscure and
requires further investigation.

Methods: Two RNA expression datasets (GSE28750 and GSE57065) specifically
related to sepsis were employed to filter hub SAGs, based on which a diagnostic
model predictive of the incidence of sepsis was developed. The association
between the expression of the SAGs identified and immune-related modules
was analyzed employing Cell-type Identification By Estimating Relative Subsets Of
RNA Transcripts (CIBERSORT) and Microenvironment Cell Populations-counter
(MCP-counter) analysis. The identified genes in each cohort were clustered by
unsupervised agreement clustering analysis and weighted gene correlation
network analysis (WGCNA).

Results: A diagnostic model for sepsis established based on hub genes (IGFBP7,
GMFG, IL10, IL18, ETS2, HGF, CD55, and MMP9) exhibited a strong clinical
reliability (AUC = 0.989). Sepsis patients were randomly assigned and classified
byWGCNA into two clusters with distinct immune statuses. Analysis on the single-
cell RNA sequencing (scRNA-seq) data revealed high scores of SAGs in the natural
killer (NK) cells of the sepsis cohort than the healthy cohort.

Conclusion: These findings suggested a close association between SAGs and
sepsis alterations. The identified hub genes had potential to serve as a viable
diagnostic marker for sepsis.
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Introduction

Sepsis is characterized by impaired immunomodulation that
could cause complex and heterogeneous organ dysfunction (Angus
and van der Poll, 2013). According to a report in 2017,
approximately 48.9 million people were diagnosed with sepsis,
resulting in more than 11 million deaths and accounting for 20%
of the global death cases (Rudd et al., 2020). Although clinical
interventions such as antimicrobial drugs, intravenous fluid
administration, and comprehensive organ support have been
advanced significantly, sepsis-related mortality continues to
increase (Gavelli et al., 2021). Previous research has indicated
that biomarkers play a crucial role in the diagnosis of sepsis,
early detection of organ failure, risk assessment, prognostic
prediction, and development of care plans (Bosmann and Ward,
2013). Hence, discovering sepsis-associated biomarkers is of great
importance for a timely detection of sepsis.

Cellular senescence is commonly known as regular cell division
in response to various cellular stresses or DNA damage,
accompanied by pro-inflammatory responses, dysfunctional
mitochondria, and shortened telomeres (Evans and Noren
Hooten, 2017). Numerous studies have demonstrated that
inhibiting cell cycle can effectively prevent the proliferation and
infiltration of malignant cells via cellular senescence. Moreover, this
phenomenon has been associated with a range of medical ailments,
including nonalcoholic steatohepatitis, diabetes mellitus, pulmonary
arterial hypertension, osteoarthritis, and infectious diseases (Wei
and Ji, 2018). Current research on senescence-associated genes
(SAGs) focuses primarily on extending lifespan and improving
health of patients (Ashraf et al., 2016; Xiang et al., 2019)A recent
article hinted at the role of cellular senescence in sepsis, with RNA-
seq analysis showing that multiple cellular senescence genes are
involved in sepsis. In line with this, the expression of cellular
senescence related genes p53 and p21 were upregulated (Chen
et al., 2023). Metformin, acting as an anti-aging agent, alleviated
cellular senescence in mouse myoblasts and skeletal muscle during
sepsis as well as sepsis-associated liver injury and inflammatory
response (Song et al., 2022). However, there is relatively little
research on SAGs in spesis

This study explored the regulatory role of specific SAGs in the
pathogenesis of sepsis and devised a publicly accessible diagnostic
framework for sepsis using RNA-seq and scRNA-seq data. The
current findings unveiled the interplay between the immune milieu
of sepsis and SAGs, offering a novel direction for identifying
effective diagnostic indicators for clinical interventions in sepsis.

Method

The expression of SAGs in peripheral blood
between sepsis patients and a control group
of healthy individuals

We downloaded two gene expression profiles of human
peripheral blood (GSE28750, GSE57065) from the Gene
Expression Omnibus (GEO) database. Batch effect was
removed procedure using the “sva” tools in R software to
create a produce database consisting of 92 sepsis samples and

45 healthy control samples. Latest SAGs identified by Saul et al.
(2022) including senescence associated secretory phenotype
(SASP) (n = 83), trans-membrane (n = 20) and intra-cellular
(n = 22) proteins were used for further analysis. Subsequently,
differential expression of these genes in sepsis and healthy
samples was analyzed applying the “limma” package with the
threshold value of abs (logFC) > 0.585 and adj.P.Val<0.05. Data
were subsequently visualized employing the “ggplots” and
“heatmap” packages.

Discovering hub genes associated with
senescence in sepsis

The relevance of each SAG was ranked by a support vector
machine-recursive feature elimination (SVM-RFE) method and
“randomForest” with the R package “randomForest”. The top ten
genes were selected and the central SAGs were identified by
intersecting the top 10 SAGs determined by the two
methods mentioned.

Construction of a nomogram and receiver
operator characteristic curve

Multivariate logistic regression analysis was conducted on the
hub SAGs, based on which a nomogram for estimating the risk
of developing sepsis was created. Furthermore, calibration curve
and decision curve were plotted to assess the model stability.
Internal validation of the model was performed using the
bootstrap algorithm.

Examining the relationship between the hub
SAGs and infiltration of immune cells

The proportion of immune cells was assessed using “relative”
and “absolute” methodologies in CIBERSORT. The aim of this
section was to investigate the relationship between the hub
genes and infiltration of 22 immune cell types. Additionally,
the association between central genes and the quantities of
8immune cell categories in the peripheral blood derived
from sepsis patients was analyzed using the software
“MCP-counter".

Consensus clustering analysis and co-
expression analysis

The “ConsensusClusterPlus” algorithm was employed to
determine the maximum number of cluster genes in human
peripheral blood samples from sepsis patients, with a fixed
value of 10. The top 5,000 genes showing the greatest
variability were assessed, and the blood samples of sepsis were
categorized based on their median absolute deviation. The
WGCNA method was employed with standard setting to
identify clusters of genes with similar mRNA expression
patterns in sepsis patients.
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Gene ontology (GO) enrichment analysis

Co-expression clusters enriched with “Biological Process” terms
of GO were assessed using the “fgsea” package.

ScRNA-seq analysis

The scRNA-seq data (GSE167363) of healthy individuals and
individuals with Gram-negative sepsis were obtained from the GEO
database. Data analysis was conducted using the “Seurat” and
“SingleR” packages. Scaled data were integrated using the
“Harmony” function. Unbiased and impartial subsets of cells
were obtained using the functions “FindNeighbors”,
“FindClusters”, and “RunTSNE”. Cell types were characterized
using the “SingleR” program. Subsequently, we employed the
“AddModuleScore” function to calculate the signature-specific
score for individual cells while considering the involvement of
hub genes. The distribution of hub genes associated with aging
across various cell types was analyzed.

Using the “Monocle2” package, we first isolated all NK cells
and then selected those with an average expression greater than

0.1 and empirical dispersion surpassing 1 * dispersion fit. Cellular
dimension was reduced using “DDRTree” tool, and the
“reduceDimension” function was utilized to examine the
cellular differentiation state. The visualization of NK cell
differentiation trajectories was completed applying the “plot_
cell_trajectory” function. Subsequently, NK cells were classified
into high- and low-scoring groups according to the median score
of senescence-associated hub genes as the basis for categorization.
We used the “CellChat” R package to study the communication
interaction between two groups of NK cells and other cells and to
reveal the mechanism of communication molecules at single-
cell level.

Statistical analysis

Raw data were processed using R program (version 4.2.1). To
identify the significant distinction between two groups, the Student’s
t-test or Wilcoxon’s rank sum test was employed. The
Kruskal–Wallis test was utilized to determine the dissimilarity
among multiple groups. Statistically significant was defined
as p < 0.05.

FIGURE 1
Identification of differential expression of SAGs. (A) The expression of SAGs in samples from healthy and septic patients. (B) A volcano plot showing
the differential expression of SAGs between healthy and sepsis samples. (C) Differences in SAG expression between sepsis and healthy samples are
displayed in this heat map. (D) The difference in expression of each SAG between healthy and sepsis samples can be seen in the histogram below. (E)
Correlation of expression of SAGs in sepsis samples. *p < 0.05, **p < 0.01, ***p < 0.001 ****p < 0.0001.
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Results

Determination of differentially expressed
SAGs in sepsis

After eliminating batch effect between GSE28750 and
GSE57065, we successfully merged a database comprising
92 sepsis and 45 healthy control gene expression profile samples

(Supplementary Figure S1). The expression level of SAGs in the
sepsis samples exhibited a statistically significant increase (p =
6.4*10–14) (Figure 1A). Next, we used limma analysis to
determine differentially expressed SAGs. As showed in Figure 1B,
8 specific SAGs including HGF, IL10, CD55, MMP9, ETS2, GMFG,
IGFBP7, and IL18 were upregulated in the peripheral blood of sepsis,
whereas 5 other SAGs (RPS6KA5, CCL5, IL32, CCL4, and CXCL8)
were downregulated. The volcano map also showed 13 differentially

FIGURE 2
Identification of eight senescence-associated hub genes in sepsis. (A) SVM-RFE analysis of SAGs. (B) Random Forest analysis of SAGs. (C) The
importance rank of SAGs shown in Bubble chart. (D)Hub genes were identified by intersection of random forest and SVM-RFE analysis. (E)Nomogram for
the diagnosis of sepsis patients. (F) Calibration curve for the model. (G) Model evaluation curves.
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expressed genes between the sepsis group and the healthy control
group (Figure 1C). Variation in expression of SAGs between the two
groups was depicted in Figure 1D. Additionally, Figure 1E presents
the correlation among SAGs in sepsis samples. Moreover,
MMP9 gene expression was positively correlated to CD55,
ETS2 and GMFG expressions, respectively (Supplementary
Figures S2A, B).

Identification of eight senescence-
associated hub genes in sepsis

To examine primary genes associated with senescence in sepsis,
we employed the SVM-RFE algorithm and conducted Random
Forest analysis to assess the significance of SAGs. The SVM-RFE
algorithm was used to identify a subset of 8 features in the
determined hub genes (Figure 2A). The relationship between
error rate and number of taxonomic trees was used to reveal
genes with relative importance greater than 2.5 as the key genes
(10 genes) (Figure 2B). The important order of the out-of-bag scores
for the 13 differentially expressed SAGs is displayed in Figure 2C.
The marker genes obtained from SVM-RFE models and Random
Forest analysis were intersected, and 8 genes (IGFBP7, GMFG, IL10,

IL18, ETS2, HGF, CD55, andMMP9) were identified for subsequent
analysis (Figure 2D). These hub genes were employed to construct a
nomogram (Figure 2E). The calibration data showed that the
predicted probability of nomogram was closed to ideal curve
(Figure 2F). DCA analyses demonstrated that the nomogram
model had strong predictive ability (Figure 2G).

The correlation of senescence-associated
hub genes with and immune
microenvironment (IME) in sepsis

Visualized immune cell distribution in both healthy and sepsis
samples with color-coded bars is shown in Figure 3A. Notably, sepsis
patients had significantly elevated proportions of plasma cells,
macrophages M0, and neutrophils in comparison to the healthy
group (Figure 3B). Through CIBERSORT analysis, NK cells,
CD8+T cells were negatively correlated to 8 hub genes, while
phagocytes, such as macrophages were positively associated with
8 hub genes (Figure 3C). Similarly phenomenon was observed in
MCPcounter analysis (Figure 3D). MMP9 and ETS2 gene
expressions were positively correlated to Neutrophils_
MCPcounter (Supplementary Figures S2D, E).

FIGURE 3
The correlation of senescence-associated hub genes with the IME in sepsis. (A) The percentage of immune cells in each sample. The ordinates
represent percentages. (B) The proportions of immune cells in healthy and sepsis sample. (C) The correlation between 8 hub genes and 19 immune-
related cells was analyzed using CIBERSORT (D) Correlation between hub genes and the abundance of 8 immune-related cells (MCP-counter).
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Comparison of age, state of SAPSII scores,
gender, inflammatory and immune
characteristics between two clusters

Consensus cluster analysis we successfully classified sepsis
patients into two distinct groups based on the expression of
8 hub genes (IGFBP7, GMFG, IL10, IL18, ETS2, HGF, CD55,
and MMP9) (Figure 4A). The expression of these hub genes
varied significantly between the two clusters (Figure 4B).
Specifically, CD55, ETS2, GMFG, HGF, IGFBP7, IL10, IL18,

MMP9, and TNF were upregulated, while CCL4, CCL5, IL32,
RPS6KA5, CD4, HLA-DRA, HLA-DRB4, IFNG, T cells, cytotoxic
lymphocytes, NK cells, monocytic lineage, and neutrophils were
downregulated in cluster 2 (Figures 4C–E). In addition, cluster
2 contained younger sepsis patients than cluster 1 (Figure 4F).
The proportion of sepsis patients with higher SAPSII scores was
significantly more in cluster 2 than in cluster 1 (Figure 4G), but
gender did not differ between the two clusters (Figure 4H). The
clinical information of database was showed in
Supplementary Table S1.

FIGURE 4
Comparison of various clinical and biologic characteristics between Two Clusters. (A) Consensus matrix plots depicting consensus values ordered
by consensus clustering. (B) The distribution of distribution gene expression, state of SAPSII scores, gender and age in two clusters. (C) Differential
expression of 13 differentially expressed SAGs in two clusters. (D) Differential expressions level of inflammatory cytokines in two clusters. (E) The
abundance of 8 immune-related cells differs between the two clusters. (F) There were differences in age distribution between two clusters. (G)
Cluster 2 had more samples with high SAPSII scores. (H) cluster 2 had more male samples. *p < 0.05, **p < 0.01, ***p < 0.001 ****p < 0.0001.
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Establishment of a co-expression network

By performing dynamic tree-cut analysis, co-expression
modules were identified with a soft threshold of 10 serving as the
most suitable SFT for the construction of a scale-free network
(Figure 5A). Subsequently, dynamic module identification was
performed in combination dataset, with the number of genes per
module not less than 50 (Figure 5B). Interestingly, cluster 1 and
cluster 2 had the exact opposite properties with modules
(Figure 5C). Next, we performed GO enrichment analysis on
clusters. Cluster 1 exhibited a positive correlation with the

regulation of leukocyte chemotaxis, while cluster 2 demonstrated
a negative correlation with the regulation of natural killer cell-
mediated immunity (Figure 5D).

Single-cell analysis revealed the interaction
between the SAGs and immune in sepsis

After pre-processing scRNA-seq data fromGSE167363 based on
the stringent quality control metrics described, 26,191 high-quality
cell samples were separated. The correlation coefficient between

FIGURE 5
Identification of important modules correlated with hub genes. (A) Calculation and determination of the optimal soft-threshold power. (B) Genes’
clustering dendrogram based on topological overlap. (C) The correlation between module eigengenes and two clusters. (D) Analysis of functional
enrichment for two clusters.
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nCount RNA and nFeature RNA, which serves as a measure of
unique molecular identifiers, was 0.94, as shown in Figure 6A. The
number of genes detected (nFeature) and the depth of sequencing
(total UMI, nCount), and the percentage of mitochondrial genes
(percent.mt) were plotted before and after cell filtration (Figures 6B,
C). Additionally, principal component analysis (PCA) was
conducted to selected the top 20 principal components for
subsequent analysis (Figure 6D).

Single R annotation identified six distinct cell subtypes between
healthy and sepsis samples, namely, B cells, monocytes, neutrophils,
NK cells, platelets, and T-cells, were (Figures 7A, B). Notably, the
scores of senescence-associated hub genes in T cells (p < 2.2*10-16),
neutrophils (p < 6.2*10-4), and NK cells (p < 2.2*10-16) of sepsis
patients were markedly elevated compared to the healthy control
group (Figure 7C). To more comprehensively examine the
distribution of scores for senescence-associated hub genes in NK

FIGURE 6
The process of quality control for single-cell data. (A) The relationship between gene expression, cell counts, and mitochondrial content were
examined in each sample. (B) The values of nCount RNA, nFeature RNA, and percent. mt for each sample before filtering were displayed. (C) The values of
nCount RNA, nFeature RNA, and percent. mt for each sample after filtering was showed. (D) Principal Component Analysis (PCA) plot and an elbow plot
were presented.
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cells, this study subdivided NK cells into 12 distinct subclusters and
subsequently analyzed the distribution of these scores within each
subcluster (Figure 7D). Moreover, scores of senescence-associated
hub genes in NK in sepsis samples was higher than that in normal
samples (Figure 7E). Those data indicated that senescence-
associated hub genes in immune cells may be closely related to
the development of sepsis.

Pseudo-time and cell-chat analysis of
NK cells

Pseudo-temporal analysis was performed separately for NK cells
annotated to explore their differentiation directions using the
Monocle 2 algorithm. The results showed that NK cells gradually
followed 3 differentiation directions (Figure 8A). Subsequently,

simulations were conducted to trace the differentiation
trajectories of all NK cells, and we observed that the intensity of
blue coloration was inversely correlated with temporal
differentiation, indicating a progressive differentiation of NK cells
from right to left. Notably, the darkest blue corresponded to the
earliest differentiated cells (Figure 8B). Furthermore, distinct
differentiation trajectories for various samples and subclusters of
NK cells were observed (Figures 8C, D). It was found that NK cells
exhibiting varies scores of senescence-associated hub genes were
regulated by distinct ligand receptor pathways during their
interactions with other cells. When NK cells of high scores
communicated with monocytes, IFNG- (IFNGR1+IFNGR2) was
significantly downregulated and CCL5-CCR1, MIF- (CD74+CD44)
were significantly upregulated. When it communicated with B cells,
IFNG- (IFNGR1+IFNGR2) was significantly downregulated and
MIF- (CD74+CD44), MIF- (CD74+CXCR4) were significantly

FIGURE 7
Analysis of the relationship between SAGs and the immune system in sepsis using single cells. (A) UMAP displays cell subpopulations in patients with
andwithout sepsis. (B) The distribution of numerous hub genes associated with senescence across various cell types. (C) The violin diagram illustrates the
differential expression of a large number of hub genes associatedwith senescence in various immune cells from healthy and sepsis samples. (D) The violin
diagram depicts the distribution of senescence-associated hub gene scores among various subtypes of NK cells in sepsis samples. (E) Levels of
senescence-associated hub genes differ between healthy and sepsis patients’ NK cells. *p < 0.05, **p < 0.01, ***p < 0.001 ****p < 0.0001.
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FIGURE 8
Pseudo-time and cell-chat analysis of NK cells in GSE167363. (A) Three differentiation phases of NK cells. State 1 is the initial differentiation phase. (B)
Differential maturation times of NK cells. Darker blue represents an earlier stage of differentiation, whereas a paler blue represents a later stage of
differentiation. (C) NK cell differentiation in four samples. (D) Differentiation of different NK cell subclusters. (E) The ligand-receptors that mediate
communication between NK cells at different state of senescence-associated hub genes’ scores and different cell sub-populations. (F) The
communication intensity of NK cells with different senescence-associated hub genes’ scores and other cell sub-populations. (G) Identification of global
communication patterns and major signals for specific cell sub-populations.
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upregulated (Figure 8E). NK cells with higher scores had strong signal
output ability during the communication of various types of cells
(Figures 8F, G).

Discussion

Previous research has demonstrated a correlation between
senescence and the onset of sepsis. Margotti et al. (2020)
proposed that aging increases permeability of post-sepsis cerebral
barrier, which may further promote infiltration of neutrophils in the
central nervous system, leading to an increase in oxidative stress.
Agudelo-Ochoa et al. (2020) found that loss of gut microbial
diversity and changes in microbiota function due to senescence
results in a higher risk of sepsis. Increasing formation of platelet-
monocytes in geriatric patients diagnosed with sepsis is correlated
with a greater death risk within a 28-day period (Rondina et al.,
2014). However, the association of senescence-associated genes with
sepsis has rarely been reported. In this study, we identified
8 senescence-related genes (IGFBP7, GMFG, IL10, IL18, ETS2,
HGF, CD55, and MMP9) and developed a diagnostic model for
the prediction of sepsis occurrence. These genes were associated
with the immune microenvironment in sepsis.

In recent years, anti-inflammatory cytokines (Liu et al., 2022)
and changes in cell surface markers in monocytes and lymphocytes
(Faix, 2013) have been considered as markers for
immunosuppressive phase of sepsis. Discovery of these
biomarkers facilitates the diagnosis and early intervention of
sepsis, while reducing the risk of death from the disease
(Barichello et al., 2022). We identified 8 genes associated with
senescence and used them to predict the onset of sepsis. Studies
have shown that IGFBP7 is important for clinical staging of sepsis-
related acute kidney injury (Molinari et al., 2022) because
IGFBP7 can delay the progression of acute kidney injury by
inhibiting RNF4/PARP1-mediated tubular injury (Yu et al.,
2022). Changes in the concentration of [TIMP-2] [IGFBP7] in
urine after fluid resuscitation could be used to differentiate the
risk of developing sepsis for patients with acute kidney injury
(Fiorentino et al., 2020). GMFG is currently studied in the field
of oncology. RNF144A exerts a negative regulatory effect on the
expression of GMFG in breast cancer by specifically targeting YY1-
degrading proteasomes, thereby preventing the proliferation,
migration, and invasion of breast cancer cells (Zhang et al.,
2022). Similarly, in solid tumors such as colorectal cancer and
ovarian cancer, GMFG promotes the development of cancer (Zuo
et al., 2014; Wang et al., 2017). As a potent endogenous
immunosuppressive cytokine (Scumpia and Moldawer, 2005),
IL10 is considered as the most important factor associated with
rapid death in patients with sepsis (Chuang et al., 2014). Gu et al.
(2008) proved that the presence of polymorphism in the promoter
region of IL-10 gene significantly influences the susceptibility to
sepsis and subsequent outcome of sepsis. Moreover, IL-10 can
stimulate immunosuppressive pathway of sepsis by promoting
nuclear localization of S100A9 and MDSC development (Bah
et al., 2018). Pro-inflammatory cytokine IL-18 has substantial
potential in distinguishing Gram-negative from positive sepsis
and may serve as an important marker for monitoring changes
in sepsis (Tschoeke et al., 2006). Michelle V. Eidt et al. demonstrated

that IL-18 has an accuracy in predicting fatal outcomes up to 88.9%
and 90% in the severe sepsis and septic shock groups, respectively,
with a sensitivity of 80% and 83% and a specificity of 100% (Eidt
et al., 2016). ETS2 has been recognized as an effective prognostic
biomarker for patients suffering from acute-on-chronic liver failure,
and it mitigates liver failure through the downregulation of the
HMGB1/lipopolysaccharide-induced inflammatory response (He
et al., 2023). A high level of HGF is firmly associated with poor
outcomes in sepsis patients (Peng et al., 2021). Elias et al. (2023)
discovered that endothelial dysfunction resulted from sepsis
stimulates the production of HGF, which activates C/EBP in liver
cells and ultimately causes liver failure or acute-on-chronic liver
failure. Upregulated C5a expression in the body exacerbates the
progression of sepsis. CD55 expression on neutrophils can be
inhibited through NOD2 or IL-10-mediated mechanism
(Zamboni et al., 2013; Kim et al., 2014). Previous research
showed that the upregulation of antagonistic MMP9 may serve
as a viable therapeutic approach for individuals suffering from
severe sepsis or septic shock (Sachwani et al., 2016). This is
consistent with the result that MMP9 expression is associated
with septic shock and is significantly correlated with sequential
organ failure assessment scores in another study (Hong et al., 2022).
In conclusion, the role of these 8 senescence-related genes in sepsis
and other severe diseases provides an adequate theoretical
foundation for our prediction model.

Currently, it is widely accepted that sepsis consists of two
distinct phases, an initial phase characterized by immune
activation and a subsequent phase characterized by chronic
immunosuppression, which ultimately leads to cell death (Nedeva
et al., 2019). During the early stages of pathogen detection, primary
immune cells such as macrophages, dendritic cells, and neutrophils
undergo rapid proliferation. Subsequently, adaptive immune system
initiates the activation of T helper cells and cytotoxic T cells through
T cell receptor activation. Subsequently, differentiation and
proliferation of these cells contribute to the development of a
highly specific adaptive immune response (Fitzgerald and Kagan,
2020). In the context of a severe infection, acute inflammatory
response may result in immunosuppression if the immune
system fails to defense effectively. Such immunosuppression is
characterized by phenotypic alterations in systemic immune cells,
which directly influences the generation of innate and adaptive
immune cells and the functionality and viability of effector cells
(Skrupky et al., 2011). Hence, activation of the immune system and
induction of inflammation play a critical role in preventing infection
in sepsis, necessitating a comprehensive comprehension and
development of therapeutic interventions to enhance immune
system homeostasis during sepsis treatment (Nedeva, 2021). In
this study, single-cell sequencing analysis was performed on
sepsis patients, and we discovered that senescence-related genes
were significantly high-expressed in the NK cells of sepsis patients,
and that NK cells with high-expressed senescence genes played a
crucial role in the communication of immune cells. During sepsis,
NK cells may be overactivated, leading to amplified systemic
inflammation. Overproduction of IFN- and TNF as a result of
overactivation causes excessive inflammation, multi-organ failure,
and increased mortality (Guo et al., 2018). A majority of studies
indicated that the number of NK cells in older adults remains
relatively stable or slightly higher (Almeida-Oliveira et al., 2011;
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Campos et al., 2014), and the slight increase is caused by an
increased proportion of more mature CD56dim subpopulation,
whereas the number of embryonic CD56bright subsets decreases in
older adults (Chidrawar et al., 2006). Age-related increase in the
release of IFN- by NK cells stimulates tissue injury, which explains a
higher prevalence of sepsis in older individuals (Xie et al., 2021).
This is also consistent in our findings.

The current research also has limitations. The influencing
factors of sepsis were primarily predicted at the molecular level,
but relevant clinical variables were not included. Although this study
demonstrated that SAGs may serve as diagnostic markers for sepsis
and they interact with IME in sepsis, additional animal and clinical
research is required to confirm our findings.

Conclusion

A comprehensive analysis was conducted to investigate the
impact of senescence-related genes on sepsis, and 8 hub genes
(IGFBP7, GMFG, IL10, IL18, ETS2, HGF, CD55, MMP9)
associated with senescence were identified. These genes
manifested a strong potential to serve as diagnostic markers for
patients suffering from sepsis. Notably, significant associations were
observed between these genes with immune cells and inflammatory
factors. This study proved novel insights into the interaction
between sepsis and aging, potentially guiding future clinical
treatment and diagnosis of sepsis.
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