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Ca2+ ions serve as pleiotropic second messengers in the cell, regulating several
cellular processes. Mitochondria play a fundamental role in Ca2+ homeostasis
since mitochondrial Ca2+ (mitCa2+) is a key regulator of oxidative metabolism and
cell death. MitCa2+ uptake is mediated by the mitochondrial Ca2+ uniporter
complex (MCUc) localized in the inner mitochondrial membrane (IMM).
MitCa2+ uptake stimulates the activity of three key enzymes of the Krebs cycle,
thereby modulating ATP production and promoting oxidative metabolism. As
Paracelsus stated, “Dosis sola facit venenum,”in pathological conditions, mitCa2+

overload triggers the opening of the mitochondrial permeability transition pore
(mPTP), enabling the release of apoptotic factors and ultimately leading to cell
death. Excessive mitCa2+ accumulation is also associated with a pathological
increase of reactive oxygen species (ROS). In this article, we review the precise
regulation and the effectors of mitCa2+ in physiopathological processes.
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1 Introduction

Intracellular calcium ions (Ca2+) serve as a widespread second messenger, regulating a
multitude of cellular functions such as gene expression, metabolism, muscle contraction,
synaptic plasticity, cell proliferation, and death. The intricate control of Ca2+ signaling
enables cell-specific control of these biological processes in space and time (Berridge, 2001).
There are several sources of Ca2+ that cooperate to elevate the concentration of Ca2+ in the
cytosol [(Ca2+)cyt ~ 100 nM]. These sources encompass Ca2+ from the extracellular milieu
[(Ca2+)ext ~ 1 mM], and intracellular Ca2+ reservoirs, primarily the endoplasmic reticulum
(ER)—recognized as the sarcoplasmic reticulum (SR) in striated muscle cells [(Ca2+)ER/SR
> 100 μM] (PMID: 8036248; PMID: 16371601). In this context, mitochondria play a pivoltal
role. Indeed, in response to an increase in [Ca2+]cyt, mitochondria can uptake Ca2+ through a
process that depends on three prerequisites. 1) The electrochemical proton gradient (ΔμH+),
generated by the translocation of H+ ions across the inner mitochondrial membrane (IMM)
due to the activity of the electron transport chain (ETC). It comprises the membrane
potential difference (ΔΨ) and the H+ concentration difference (ΔpH), with ΔΨ being
predominant (Mitchell and Moyle, 1967). The negative ΔΨ (~-180 mV) represents the
driving force for Ca2+ accumulation within the mitochondrial matrix. 2) The microdomains
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between ER/SR and the plasma membrane with the mitochondria.
Mitochondria are closely located to ER/SR Ca2+ channels (inositol-
1,4,5-triphosphate-receptors [Ins(1,4,5)P3Rs] and ryanodine
receptors (RYRs), as well as plasma membrane Ca2+ channels
(store-operated channels and voltage-operate channels). This
enables mitochondria to promptly sense microdomains of high
[Ca2+]cyt (Rizzuto et al., 1998; Csordás et al., 1999; Szalai et al.,
2000). 3) The presence of the mitochondrial Ca2+ uniporter (MCU)
complex in the IMM, a sophisticated mechanism that enables Ca2+

entry into the mitochondrial matrix (discussed in the next
paragraph).

In this review, we will provide a brief overview of the structure
and function of the MCU complex. We will then focus on the
regulators of mitCa2+. Specifically, we will discuss the role of
mitochondria as cytosolic Ca2+ buffers and the role of mitCa2+ in
the regulation of oxidative metabolism, cell death, and ROS
production.

2 Structure and function of the MCU
complex

The MCU complex is composed of the pore-forming subunit,
MCU, its dominant-negative form, MCUb, the essential MCU
regulator (EMRE), the mitochondrial Ca2+ uptake regulatory
subunits (MICU1, MICU2, and MICU3), and potentially by the
MCU regulator 1 (MCUR1) (Figure 1).

MCU is a highly conserved and ubiquitously expressed 40 KDa
protein localized at the IMM. Structurally, MCU consists of two
transmembrane domains separated by a short loop facing the
intermembrane space (IMS). This loop is highly conserved due to
the presence of negatively charged amino acids (“DIME” motif,
composed of acidic residues), which are crucial for Ca2+ selectivity

(Baughman et al., 2011; De Stefani et al., 2011). Consistent with its
role of highly selective Ca2+ channel, downregulatingMCU leads to a
substantial reduction in mitCa2+ uptake without affecting the
mitochondrial ΔΨ. Conversely, overexpression of MCU
significantly enhances mitCa2+ uptake (De Stefani et al., 2011;
Chaudhuri et al., 2013). Cryo-EM and X-ray diffraction structure
analysis revealed that MCU arranges in a tetrameric architecture
(Baradaran et al., 2018; Fan et al., 2018; Nguyen et al., 2018; Yoo
et al., 2018), confuting a previously proposed pentameric structure
of MCU (Oxenoid et al., 2016).

MCUb is an alternative isoform of MCU located in the IMM,
where it forms hetero-oligomers with MCU (Raffaello et al., 2013).
MCUb shares 50% sequence homology with MCU and has a similar
structure: two transmembrane domains linked by a short
loop. However, a crucial difference exists between these two
pore-forming subunits. The MCUb protein sequence contains an
amino acid substitution in the loop region (E256V) that neutralizes a
negative charge, resulting in a significant reduction in the channel
conductivity (Raffaello et al., 2013). In cells, overexpression of
MCUb causes a reduction in mitCa2+ uptake when stimulated
with a Ca2+ mobilizing agonist, while silencing MCUb strongly
increases mtCa2+ uptake. This indicates that MCUb negatively
affects Ca2+ entry through the MCU complex (Raffaello et al.,
2013). The expression levels of MCUb vary significantly among
different mammalian tissues, suggesting that the MCU/MCUb ratio
might impact the physiological ability of mitochondria of specific
tissues to uptake Ca2+. For instance, cardiomyocytes that display a
lowMCU/MCUb ratio are characterized by lowMCU activity (Fieni
et al., 2012), while skeletal muscle fibers, which instead exhibit high
MCU activity (Fieni et al., 2012), are characterized by a high MCU/
MCUb ratio. Interestingly, in heart MCUb incorporation in the
complex is a stress-responsive mechanism to limit mitochondrial
Ca2+ overload during cardiac injury (Lambert et al., 2019) and in

FIGURE 1
MCU complex structure. The MCU complex is localized in the IMM. It comprises the pore-forming subunit, MCU, and its dominant-negative form,
MCUb It consists of the pore-forming subunit, MCU, and its dominant-negative variant, MCUb. MCU is connected to the regulatory subunit MICU1 by the
transmembrane protein EMRE. The MICU family also includes MICU1.1, MICU2, and MICU3. MICU proteins detect increases in Ca2+ levels through EF-
hand domains, enabling the channel to open in response to elevated cytoplasmic Ca2+ levels. MCUR1 is a potential regulator of channel activity;
however, its role is still a subject of debate.
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skeletal muscle it is induced by caloric restriction, where it increases
mitochondrial fatty acid utilization in a PDH-dependent
mechanism (Huo et al., 2023). EMRE is a 10 kDa metazoan
protein located in the IMM and composed of a single
transmembrane domain (Sancak et al., 2013). This subunit
connects the pore region to the regulatory subunits, as it is
necessary for the interaction of MCU with MICU1 and MICU2
(Sancak et al., 2013). The function of the MCU complex critically
relies on EMRE, as demonstrated by experiments on EMRE
knockout cells. These experiments show that, in the absence of
EMRE, mitCa2+ uptake is abolished, similar to the MCU knockout
phenotype (Sancak et al., 2013). Also in vivo, EMRE has been shown
to be required for mitochondrial calcium uniporter activity (Liu
et al., 2020). The proteolytic regulation of EMRE, crucial for MCU
complex function, is a finely tuned multi-step process that prevents
the assembly of MCU-EMRE channels lacking gatekeeper subunits
and, as a result, prevents mitochondrial mitCa2+ overload. (König
et al., 2016).

The regulatory subunits MICU1, MICU2, and MICU3 are
located at the IMS and are responsible for the sigmoidal increase
of mitCa2+ in response to cytosolic Ca2+ levels. When cytosolic Ca2+

levels are low, mitCa2+ uptake is minimal, while it increases
exponentially once the [Ca2+]cyt reaches a certain threshold
(Vecellio Reane et al., 2020) (Figure 1).

MICU1, the first subunit of the MCU complex to be identified in
2010, is a 54 KDa protein located in the IMS (Perocchi et al., 2010).
The presence of two EF-hand Ca2+-binding domains at the
N-terminal sequence enables MICU1 to regulate the activity of
the MCU in a Ca2+-dependent manner. It was proposed that at
low [Ca2+]cyt levels, MICU1 keeps the channel closed to prevent
continuous Ca2+ entry inside the mitochondrial matrix, which could
lead to mitCa2+ overload if sustained over time. However, when a
certain threshold of [Ca2+]cyt is reached, MICU1 was proposed to act
as a cooperative activator of MCU, explaining the exponential
increase of mitCa2+ uptake (Mallilankaraman et al., 2012b;
Csordás et al., 2013).

Two paralogs ofMICU1were later discovered:MICU2 andMICU3
(Plovanich et al., 2013). MICU2 exhibits a comparable expression
pattern to MICU1, is also located in the IMS, and contains two EF-
hand Ca2+-binding domains. MICU2 directly interacts with
MICU1 and forms obligate heterodimers, which are stabilized by a
disulfide bond. In various cell types, the loss of MICU1 also results in
the depletion of MICU2 protein, suggesting that the protein stability of
MICU2 is dependent on the presence ofMICU1, in amechanism that is
not yet fully elucidated (Patron et al., 2014; Debattisti et al., 2019).
Different models have been proposed to explain how the activity of the
MCU channel is regulated by MICU1-MICU2 heterodimers.
According to Patron et al., the channel is controlled by a gatekeeper
mechanism, where MICU2 keeps the channel closed at resting
conditions (Figure 1, left panel) (Patron et al., 2014). However,
when the concentration of Ca2+ reaches a certain threshold,
conformational changes in the dimers lead to the release of
MICU2 inhibition, which results in an increased MICU1-mediated
mitCa2+ uptake (Patron et al., 2014) (Figure 1, right panel). Kamer et al.
proposed an on-off switch model for the channel activity. Both
MICU1 and MICU2 act as gatekeepers and cooperatively bind Ca2+

with high affinity to lead to mitCa2+ uptake. In this model, in the
absence of MICU2, MICU1 can keep the channel closed at low Ca2+

levels (Kamer et al., 2017). Another study suggests that the main role of
MICU2 is to regulate the Ca2+ threshold of the MICU1-mediated
channel activation (Payne et al., 2017).

It has been shown that skeletal muscle expresses a unique MCU
complex. Indeed, this tissue expresses an alternative splicing variant
of MICU1, known as MICU1.1 (Vecellio Reane et al., 2016). This
variant has an extra exon that encodes a short sequence of four
amino acids. When it forms dimers withMICU2, MICU1.1 activates
the channel at a lower Ca2+ level compared to MICU1-MICU2
heterodimers. This is especially important in skeletal muscles, as it
helps to maintain high ATP production (Vecellio Reane et al., 2016).

MICU3, the other paralog of MICU1, similarly to MICU2 is
located in the IMS and contains two EF-hand Ca2+-binding domains
(Plovanich et al., 2013). However, unlike MICU1 and MICU2 that
are ubiquitous proteins, it is mainly expressed in the nervous system
where it exclusively forms heterodimers with MICU1 (Plovanich
et al., 2013; Patron et al., 2019). It acts as a positive channel regulator
due to its reduced gatekeeping activity compared to MICU1. This
ensures a more rapid opening of the channel in response to fast
cytCa2+ increases, as it occurs in stimulated neuronal cells
(Plovanich et al., 2013; Patron et al., 2019).

A possible regulator of the complex is MCUR1, a 35 kDa protein
located in the IMM (Adlakha et al., 2019). This protein interacts
with MCU and its silencing leads to reduced mitCa2+ uptake and
ATP production (Mallilankaraman et al., 2012a). However, these
effects were proposed to be mediated by its role as an assembly factor
of the cytochrome-c oxidase (Paupe et al., 2015). In light of these
conflicting results, further studies are needed to clarify the role of
MCUR1 in the control of mitCa2+ homeostasis.

3 MitCa2+ buffering activity

As mentioned in the introduction, the presence of
microdomains between mitochondria and ER/SR is an essential
prerequisite for mitCa2+ uptake. Rapid changes in [Ca2+]cyt
occurring at these sites provide regulatory feedback on ER/SR
Ca2+ channels (Rizzuto et al., 2012).

This buffering function is particularly relevant for Ins(1,4,5)
P3Rs. The opening of these channels is inhibited by low and high
[Ca2+]cyt, while intermediate [Ca2+]cyt promotes their activity. An
initial increase in [Ca2+]cyt enables the opening of the Ins(1,4,5)P3Rs,
thereby promoting the release of Ca2+ from the ER. MitCa2+

buffering plays a crucial role in sustaining and prolonging the
release of Ca2+ by reducing the [Ca2+]cyt near the Ins(1,4,5)P3Rs.
This prevents the negative feedback associated with high [Ca2+]cyt
(Hajnóczky et al., 1999).

While the bell-shaped effect of [Ca2+]cyt on Ins(1,4,5)P3Rs is
commonly observed, there are some exceptions to this regulation
with physiological relevance. One such exception is observed in rat
cortical astrocytes, where the predominant isoform of the channel is
Ins(1,4,5)P3R2. This isoform is positively regulated only by high
[Ca2+]cyt, leading to limitations on mitochondrial involvement in the
propagation of calcium waves (Boitier et al., 1999).

MitCa2+ buffering activity also holds particular significance in
cardiac physiology. In neonatal cardiac cells, mitCa2+ uptake shapes
the amplitude of Ca2+ peaks, as evidenced by genetic manipulation of
MCU. Downregulation of MCU results in amplificated cytCa2+
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peaks during spontaneous oscillations, while MCU overexpression
has the opposite effect. Additionally, mitochondria buffer Ca2+ peaks
by taking up Ca2+ released during systole and releasing it back into
the cytosol during diastole (Drago et al., 2012).

MitCa2+ buffering capacity is also influenced by mitochondrial
positioning in a defined subcellular domain. This is strongly evident
in pancreatic acinar cells, where a “mitochondrial belt” separates the
apical secretory pole from the basal pole containing the nucleus.
Under normal conditions, this mitochondrial belt prevents the
spreading of Ca2+ waves from the apical to the basal region.
However, in pathological conditions where mitochondrial
buffering capacity is overwhelmed, Ca2+ waves propagate to the
basal region, leading to transcriptional events in the nucleus (Tinel
et al., 1999; Sutton et al., 2003).

The role of mitochondrial positioning in regulating Ca2+

buffering is also observed in neurons. Specifically, mitochondria
located at the synapse modulate cyt[Ca2+], strongly affecting
neurotransmitter release (Billups and Forsythe, 2002; David and
Barrett, 2003).

Overall, mitochondria possess an efficient Ca2+ buffering
capacity that regulates cellular Ca2+ signals through the
modulation of Ca2+ channels and their subcellular positioning.

4 MitCa2+ regulation of metabolism

In the 1960s and 1970s, research carried out in Bristol
revealed the pivotal role of mitCa2+ in regulating aerobic
metabolism. Specifically, it was demonstrated that Ca2+ ions
direclty activate four mitochondrial dehydrogenases, namely,
α-ketoglutarate dehydrogenase (α-KGDH), isocitrate-
dehydrogenases (IDH), FAD-linked glycerol phosphate
dehydrogenase (GPDH), and indirectly, through its Ca2+-
dependent phosphatase, pyruvate dehydrogenase (PDH)
(Denton, 2009) (Figure 2, left panel). Significantly, the

activation of these enzymes enhances the availability of
NADH, promoting the electron flow through the respiratory
chain complexes and, consequently, ATP synthesis. This is
particularly relevant under increased ATP demand in
stimulated cells.

- α-Ketoglutarate dehydrogenase (α-KGDH)

α-KGDH is an enzyme of the Krebs cycle responsible for
converting α-ketoglutarate to succinyl-CoA. It comprises a
complex of multiple enzymes with the core predominantly
composed of dihydrolipoamide succinyl-transferase (E2) subunits,
linked to 2-oxoglutarate decarboxylase (E1) and dihydrolipoamide
dehydrogenase (E3) subunits (Yeaman, 1989). Ca2+ ions directly
influence this enzyme by decreasing the Km for α-ketoglutarate
(McCormack and Denton, 1979).

- Isocitrate-dehydrogenases (IDH)

Another enzyme of the Krebs cycle directly activated by Ca2+ is
IDH, which catalyzes the conversion of isocitrate in α-ketoglutarate.
IDH consists of an octamer of three different subunits, with similar
structure and molecular weight. Similar to α-KGDH, Ca2+ ions
directly affect IDH by decreasing the Km for its substrate
isocitrate. However, for IDH, Ca2+ ion sensitivity is regulated by
the ATP/ADP ratio, with increased sensitivity observed at lower
ATP/ADP ratios (Denton et al., 1978; Rutter and Denton, 1988;
1989).

- FAD-linked glycerol phosphate dehydrogenase (GPDH)

This enzyme is located in the IMM and is part of the glycerol
phosphate shuttle, along with the cytosolic NAD-dependent
glycerol phosphate dehydrogenase. GPDH facilitates the
transfer of reducing equivalents from cytosolic NADH to

FIGURE 2
MitCa2+ uptake homeostasis. Under normal physiological conditions, the mitCa2+ enhances oxidative metabolism by increasing the activity of the
Krebs cycle. Conditions ofmitCa2+ overload promote the opening of themPTP, resulting in the release of pro-apoptotic factors that ultimately lead to cell
death. Simultaneously, excessive mitCa2+ uptake strongly promotes the formation of reactive oxygen species (ROS), contributing to the development of
pathological conditions.
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mitochondrial FADH2. Notably, this enzyme contains two EF-
hand domains, in a region facing the IMS that are responsible for
Ca2+ binding and increasing its activity (Wernette et al., 1981;
MacDonald and Brown, 1996).

- Pyruvate dehydrogenase phosphate (PDP)

The pyruvate dehydrogenase complex (PDC) is a multi-enzyme
complex that catalyzes the conversion of pyruvate to acetyl-CoA.
The central core of the enzyme consists of dihydrolipoate
acetyltransferase (E2) subunits, to which the pyruvate
decarboxylase (E1) and the dihydrolipoate dehydrogenase (E3)
subunits are attached (Hiromasa et al., 2004). Pyruvate
dehydrogenase kinases (PDKs) catalyze reversible
phosphorylation of three sites of the E1 subunits, inhibiting PDH
activity. This inhibition can be reverted by the action of pyruvate
dehydrogenase phosphatases (PDPs). In mammalian mitochondria,
there are two isoforms of PDPs: PDP1 and PDP2. Importantly, only
PDP1 is activated by Ca2+, leading to the dephosphorylation of PDH
and its activation (Huang et al., 1998; Karpova et al., 2003).

It has also been proposed that, in addition to the four
mitochondrial dehydrogenases, mitCa2+ can directly modulate the
activity of the ATP synthase (Territo et al., 2000).

Furthermore, the aspartate/glutamate exchangers of the IMM
(named SLC25A12 and SLC25A13) contain EF-hand Ca2+-binding
sites exposed in the IMS. In response to a rise in cyt[Ca2+],
metabolite transport is enhanced, ultimately stimulating ATP
production (Lasorsa et al., 2003; Contreras et al., 2007).

5 MitCa2+ regulation of cell death

An excessive accumulation of Ca2+ ions inside the
mitochondrial matrix, referred as to mitochondrial Ca2+

overload, is the primary trigger for the opening of the
mitochondrial permeability transition pore (mPTP) (Figure 2,
right panel). The opening of this channel leads to an unselective
increase of the permeability of the IMM, allowing the exchange of
small molecules across this membrane. This leads to a rapid
collapse of the membrane potential, mitochondrial swelling, and
subsequent release of pro-apoptotic mitochondrial components,
including cytochrome c, ultimately culminating in cell death
(Bernardi et al., 2022; Carraro and Bernardi, 2023).

MitCa2+ signals in apoptosis are tightly regulated by anti-
apoptotic B cell lymphoma (BCL-2) proteins. These proteins
modulate the ER-to-mitochondria Ca2+ transfer by enhancing the
ER Ca2+ leak, thereby reducing the ER Ca2+ level. This reduction
diminishes the transfer of Ca2+ to mitochondria upon extracellular
stimuli (Foyouzi-Youssefi et al., 2000; Pinton et al., 2000; 2001;
Palmer et al., 2004). In contrast, pro-apoptotic proteins exert the
opposite effects (Scorrano et al., 2003). Another proposed
mechanism involves the direct interaction and modulation of
BCL-2 with Ca2+-releasing channels on the ER membrane,
without affecting the ER Ca2+ level (Chen et al., 2004; Hanson
et al., 2008; Rong et al., 2009). Overall, BCL-2 proteins can modulate
the transfer of Ca2+ from the ER to the mitochondria by multiple
mechanisms, thereby regulating mitCa2+ uptake in response to
apoptotic stimuli.

MitCa2+ also plays a significan role in cell survival pathways.
Specifically, the regulation of metabolism by mit[Ca2+] impacts
autophagy. A decrease in mit[Ca2+], with the consequent
reduction in the stimulation of aerobic metabolism, activates the
AMP-activated protein kinase (AMPK), promoting autophagy.
Notably, both the knockdown of Ins(1,4,5)P3Rs or the use of
MCU blockers strongly increases autophagosome formation
(Cárdenas et al., 2010). Consistent with these findings, silencing
MCU,MICU1, orMCUR1 also serves as a potent activator of AMPK
and, consequently, autophagy (Mallilankaraman et al., 2012a).

Overall, maintaining cellular homeostasis involves a complex
balance between increasing MitCa2+ to meet cellular energy
demands and minimizing the risk of mitochondrial calcium
overload, a condition that promotes cell death.

6 Crosstalk of mitCa2+ and ROS
production

Under normal physiological conditions, mitCa2+ uptake, by
fueling oxidative metabolism, generates ROS signals. ROS are
natural by-products of oxidative phosphorylation, and their
concentration is tightly regulated by antioxidant molecules.
Importantly, at low concentrations, ROS can act as a second
messenger in the cell (Turrens, 2003). The physiological
significance of mitCa2+ uptake in stimulating ROS production has
been demonstrated in neurons, where it plays a critical role in the
initiation of long-term potentiation (LTP), a fundamental form of
synaptic plasticity. Specifically, MCU inhibition
disrupt potentiation, despite the N-Methyl-d-aspartate (NMDA)
receptor-mediated increase in cyt[Ca2+] (Kim et al., 2011).

However, in conditions of excessive mitCa2+ uptake,
mitochondrial ROS production becomes detrimental (Feno et al.,
2019). The increase in ROS production can be directly stimulated by
the influence of Ca2+ on ROS-producing enzymes like α-KGDH and
GPDH, or indirectly via nitric oxide synthase (NOS) activation,
which generates NO causing an inhibition of complex IV (Görlach
et al., 2015). Furthermore, an abundance of ROS is produced when
the mPTP opens under conditions of mitCa2+ overload, by reverse
electron transport (RET) following mitochondrial membrane
depolarization (Biasutto et al., 2016).

ROS can cause damage to proteins, DNA, and lipids
contributing to the development of diseases such as Duchenne
muscular dystrophy (DMD) and cancer (Sies and Jones, 2020).

Loss of dystrophin in DMD leads to muscle membrane
permeability and increased cyt[Ca2+]. One proposed
mechanism suggests that the mitCa2+ overload resulting from
the substantial rise in cyt[Ca2+] promotes ROS production,
ultimately leading to muscle cell death through apoptotic
pathways (Dubinin et al., 2020).

In the context of cancer, it has been demonstrated that Akt
phosphorylation of MICU1 elevates basal mitCa2+ level and,
consequently, ROS production, contributing to cancer
progression (Marchi et al., 2019).

Taken together, these studies highlight that mitCa2+ serves as key
regulator of ROS levels, and any dysregulation in mitCa2+

homeostasis may lead to excessive ROS production, fostering
pathological conditions.
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7 Conclusion

MitCa2+ uptake supports oxidative metabolism in response to
increased cell energy demand, and its buffering capacity influences
ER channels and cytosolic functions. Nevertheless, an excessive influx of
mitochondrial mitCa2+ triggers the opening of the mitochondrial
permeability transition pore (mPTP), ultimately culminating in cell
death and fostering increased reactive oxygen species (ROS)
production. Consequently, the maintenance of mitochondrial Ca2+

homeostasis is paramount for cellular functionality and survival..
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