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The human gastrointestinal (gut) microbiome plays a critical role in maintaining
host health and has been increasingly recognized as an important factor in
precision medicine. High-throughput sequencing technologies have
revolutionized -omics data generation, facilitating the characterization of the
human gut microbiome with exceptional resolution. The analysis of various
-omics data, including metatranscriptomics, metagenomics, glycomics, and
metabolomics, holds potential for personalized therapies by revealing
information about functional genes, microbial composition, glycans, and
metabolites. This multi-omics approach has not only provided insights into
the role of the gut microbiome in various diseases but has also facilitated the
identification of microbial biomarkers for diagnosis, prognosis, and treatment.
Machine learning algorithms have emerged as powerful tools for extracting
meaningful insights from complex datasets, and more recently have been
applied to metagenomics data via efficiently identifying microbial signatures,
predicting disease states, and determining potential therapeutic targets. Despite
these rapid advancements, several challenges remain, such as key knowledge
gaps, algorithm selection, and bioinformatics software parametrization. In this
mini-review, our primary focus is metagenomics, while recognizing that other
-omics can enhance our understanding of the functional diversity of organisms
and how they interact with the host. We aim to explore the current intersection of
multi-omics, precision medicine, and machine learning in advancing our
understanding of the gut microbiome. A multidisciplinary approach holds
promise for improving patient outcomes in the era of precision medicine, as
we unravel the intricate interactions between themicrobiome and human health.
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Introduction

The human body hosts diverse communities of microbes and
encompasses various glycomes, fostering diverse forms of
communication with our organs and facilitating metabolic
functions and molecular signals to maintain proper health
(Kavanaugh et al., 2015; de Vos et al., 2022). The advent of high-
throughput sequencing (HTS) along with research initiatives, such
as the Human Microbiome Projects (iHMP Research Network
Consortium, 2019), have paved a new path for microbial
community characterization. The implementation of HTS
strategies has equipped microbial taxonomic composition
profiling at nearly any given body site, propelling the study of
microbial networks, microbiome-disease associations, and host-
microbiota interactions (Clooney et al., 2016). In parallel, the
field of precision medicine has gained momentum, aiming to
provide personalized healthcare solutions tailored to an
individual’s unique genetic makeup, lifestyle, and environmental
exposures (Schork, 2015). As we stand at the intersection of human
microbiome research and healthcare innovation, there is a growing
recognition that the gut microbiome and its exploration using
-omics technologies hold immense potential as a key player in
achieving the goals of precision medicine.

Despite the prospect of the gut microbiome and ‘omics’ data
used in support of precision medicine, the sheer complexity and
large influx of these datasets pose formidable challenges to data
interpretation and analysis. Hence, researchers have expanded their
focus into the realms of bioinformatics and machine learning (ML)
to address these challenges. This is done by utilizing the capacity of
the aforementioned disciplines to integrate and process extensive
data through different algorithms, enabling the development of
models that can aid in diagnostic, prognostic, and therapeutic
interventions. Harnessing these techniques enables the
comprehensive analysis of intricate layers of biological
information ranging from metagenomics to metabolomics, and
the integration of patient record data, shedding light on the role
of the gut microbiome in different aspects of precision medicine.
This holistic approach ultimately improves the health trajectories of

patients (Figure 1). This mini-review discusses the current status
and interface between ML and bioinformatics methods of analyzing
multi-omics data in advancing the understanding of the gut
microbiome in relation to precision medicine.

Methods for microbiome data analysis

The continuous evolution of genomic sequencing through multiple
generations of sequencing technologies has resulted in our ability to
determine the abundance of microorganisms at a granular level. To
date, scientific research has primarily focused on characterizing
bacterial species. However, clinical research has expanded to include
other microorganisms in the gut, such as viruses, fungi, and helminths
(Caporaso et al., 2012;Mukhopadhya et al., 2019; Berg et al., 2020; Rubel
et al., 2020; Zhang et al., 2022). Microbiome investigationmethods have
expanded from 16S rRNA gene sequencing, whole-genome shotgun
metagenomic sequencing, and RNA (metatranscriptomics) sequencing
(Reuter et al., 2015). Here, we outline common sequencing platforms,
methods, and databases used to investigate the gut microbiome.

Sequencing technologies

Common second-generation sequencing (SGS) platforms and
methods include Illumina, Ion Torrent, 454 Pyrosequencing, and
SOLiD Sequencing (Liu et al., 2012; Meslier et al., 2022), where
Illumina’s sequencing platform became more widely used for
microbiome research due to their high-throughput processing,
quality and consistency, cost-effectiveness, and relevant
capabilities for microbiome research (Malla et al., 2018; Caporaso
et al., 2012). SGS platforms generate short-read data, typically
ranging from ~50 to 300 base pairs in length and varying in
sequencing depth (Ranjan et al., 2016; Johnson et al., 2019).
Common third-generation sequencing (TGS) platforms include
Helicos Single Molecule Sequencing (SMS), Pacific Biosciences
(PacBio), and Oxford Nanopore Technologies (ONT) (Schadt
et al., 2010; Koren and Phillippy, 2015; Athanasopoulou et al.,

FIGURE 1
Researchers and clinicians harness the power of big data for downstream machine learning (ML) and bioinformatics analysis. This integrated
approach yields valuable insights into the diagnosis, prognosis, and therapeutic treatment aspects of precision medicine, ultimately leading to improved
patient outcomes.
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2021). SMS enables single-molecule detection without the need for
amplification and was one of the early TGS technologies that had
potential applications in studying complex microbial communities
(Pushkarev et al., 2009). PacBio sequencing is a single-molecule,
real-time (SMRT) sequencing technology that offers long-read
sequence technology, where long-read data can range from
1,000–20,000 bases or more (Udaondo et al., 2021). This feature
is beneficial for resolving complex microbial communities and
detecting novel microorganisms. PacBio’s Sequel and Sequel II
systems have been utilized in various metagenomic studies. ONT
sequencing is based on nanopore technology, where DNAmolecules
pass through a nanopore, generating electrical signals that
correspond to the nucleotide sequence. The MinION and
PromethION devices from ONT have been used for real-time
sequencing of microbial DNA, providing long-read lengths,
portability, and potential for direct RNA sequencing. ONT
sequencing also produces long-read data, where the read lengths
can vary from several thousand base pairs to over a hundred
thousand base pairs (Jain et al., 2016; Schmidt et al., 2017).

Current paradigm: hybrid sequencing and
bioinformatics

Combining short-read and long-read data has the capacity to
characterize more complete and accurate microbial genomes present
in the gut microbiome. Hence, a hybrid sequencing approach
leveraging the strengths of both second and third-generation
technologies has been increasingly used in gut microbiome
research (Bharti and Grimm, 2021; Chen et al., 2022; Jin et al.,
2022). To begin with, SGS is used to generate short-read sequences
from gut microbiome samples. Whole genome short-read data is
particularly useful for identifying the taxonomic composition of the
microbiome, as short reads can accurately distinguish among
microbial species. Long-read sequences from the same samples
can then be generated, as they are crucial for resolving complex
genomic regions, such as repetitive elements and structural
variations, which are often missed or misassembled with short-
read data (Mantere et al., 2019). Synergistically, short-read and long-
read data can also be combined during the genome assembly process
where long reads help anchor and scaffold the assembly, ensuring
that the contigs represent more accurate and contiguous genome
fragments. The short reads provide accurate base-level information
to correct errors in the long reads and improve the overall accuracy
of the assembly (Amarasinghe et al., 2020).

Study design plays a crucial role not only in selecting sequencing
platforms or sequencing types but also in analyzing the vast amounts
of data generated by various sequencing technologies in microbiome
research. It is important to consider capturing extensive dietary,
medical history, and patient lifestyle data in tandem with
microbiome sampling and sequencing. This will allow a more
comprehensive view of a disease state and potential patient
outcomes, particularly when applying machine learning tools in a
precise use case–as discussed later in the review. Relevant analyses
include taxonomic profiling, phylogenetic analysis, metagenome or
genome assembly, gene prediction, functional annotation,
comparative metagenomics, pathway and differential abundance
analysis, metatranscriptomics analysis, metabolomics, and network

analysis (Prakash and Taylor, 2012; Maranga et al., 2023).
Taxonomic profiling is one of the most important starting points
for gut microbiome research; this is achieved using tools such as
QIIME/QIIME2 (Quantitative Insights Into Microbial Ecology),
mothur, Kraken/Kraken2 (Schloss et al., 2009; Caporaso et al., 2010;
Wood and Salzberg, 2014; Bolyen et al., 2019;Wood et al., 2019; Lu and
Salzberg, 2020; Schloss, 2020).

Databases and algorithms

Numerous databases are essential for identifying organisms found
within the gut microbiome and determining their taxonomic
composition via diverse sequencing techniques. Commonly used
repositories include NCBI’s non-redundant nucleotide database
(NT), filtered NT, and Greengenes (McDonald et al., 2012;
Shamsaddini et al., 2014). The NT is the most comprehensive
sequence database and contains sequences from GenBank, RefSeq,
PDB, and more, while the filtered NT is an expansion of RefSeq which
contains organisms from NT whose phylogenetic lineage is clearly
defined thus removing spurious and artificial sequences (Pruitt et al.,
2005). While the former two databases consolidate information
regarding an organism’s genes and genome, Greengenes leverages
full-length 16S rRNA or metatranscriptomics data from public
databases that fulfill several filtering qualifications (McDonald et al.,
2012). The utilization of 16S rRNApresents a cost-effective approach, as
it focuses on the identification of organisms through key marker genes
originating from conserved genetic regions (Balvociute and Huson,
2017). Occasionally, this technique exhibits amplification bias to some
extent and has limitations in the identification of archaea and viruses, as
well as overall organism resolution, in contrast to metagenomics
techniques such as random shotgun sequencing and WGS (Scholz
et al., 2016).

Sequence aligners, especially established ones such as BLAST
and Bowtie/Bowtie2, have been extensively reviewed (Langmead
and Salzberg, 2012; Alser et al., 2021). Typically, BLAST is used for a
handful of reads which is subsampled to search for similarities in a
large database such as NT (Shamsaddini et al., 2014), while Bowtie
and other similar rapid aligners are typically used to map reads to a
set of reference genomes (Langmead, 2010). BLAST utilizes local
alignment techniques to identify regions of similarity that have high-
scoring pairs. This is exemplified by BLAST tools such as BLASTP,
BLASTN, and BLASTX which function to identify similar pairs
based on protein, nucleotide, and translated nucleotide sequences,
respectively (Yang et al., 2014; Altschul et al., 1990; Chen et al., 2015;
Li and Lu, 2019). This differs from Bowtie, which aligns millions of
short reads from a sample of interest to limited number of references
quickly. In light of this information, it is imperative for researchers
to fully grasp the bioinformatics task at hand when deciding whether
to employ BLAST or a short-read aligner.

ML in gut microbiome for precision
medicine: current research

Unlike traditional computer programming, machine learning
(ML) algorithms are not explicitly programmed with rules and
instructions. Instead, they autonomously learn patterns and
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relationships from data, allowing for generalization and predictions
on new, unseen data (Bi et al., 2019). ML techniques are used in
various applications to study the gut microbiome, such as
microbiome composition, analysis, and therapeutic target
identification (Fukui et al., 2020). There are three principal
categories of ML: supervised, unsupervised, and reinforcement
learning. Supervised learning, including linear regression,
decision trees, and support vector machines, uses labeled datasets
to train algorithms to classify or predict unknown outcomes.
Unsupervised learning, including clustering, dimensionality
reduction, and anomaly detection, cluster unlabeled datasets to
discover hidden patterns or data groupings (Lopez et al., 2018;
Cammarota et al., 2020). Reinforcement learning is a type of
artificial intelligence (AI) that achieves a goal in an uncertain and
potentially complex environment to build an ML model for
decision-making by maximizing a reward function (McCoubrey
et al., 2021). Several deep reinforcement learning models have been
utilized for biomarker discovery as well as overall microbiome
characterization (Mahmud et al., 2018; Liu et al., 2022b; Pan
et al., 2022). The deployment of ML has the potential to catalyze
novel advancements in patient risk assessment, the discovery of
pivotal diagnostic biomarkers, and the prediction of treatment
response outcomes.

Personalized disease risk assessment

The unique variation in individuals’ gut microbiome profiles,
much like a fingerprint, can be leveraged by recommended
approaches, such as a patient-centered gut microbiome report, to
aid clinicians in making personalized treatment decisions (King
et al., 2019). ML can be leveraged in these instances to detect specific
patterns in individual patients that can help identify early disease
development. Early detection of cardiovascular disease, liver disease,
endometriosis, and Type 1 and 2 diabetes mellitus are some of
several diseases in which ML is being implemented to detect early
disease onset (Aryal et al., 2020; Fernández-Edreira et al., 2021;
Huang et al., 2021; Liu et al., 2022a; Ge et al., 2022). By recognizing
the initial patterns of disease development, the possibility of
reducing someone’s risk for a particular condition can be
enhanced. This, in turn, allows for timely interventions and
focused preventive measures that may impede or decelerate the
disease’s advancement. This proactive strategy not only enhances
the individual’s health outcomes but also alleviates the strain on
healthcare systems and promotes overall public health.

Diagnostic biomarker identification

Timely disease detection is vital, but not all individuals have
routine access to health screenings for identifying symptoms at an
initial stage. After the onset of a disease, the subsequent action may
involve analyzing biomarkers to detect the presence of the condition.
In these scenarios, ML can reveal essential biomarkers, enhancing
the precision and effectiveness of disease detection andmanagement
(Uddin et al., 2019). Previous studies have implemented ML-based
analysis to identify biomarkers associated with Graves’ disease,
inflammatory bowel disease (IBD), and cancers such as colorectal

cancer (CRC) (Zhou et al., 2018; Maurya et al., 2021; Zhu
et al., 2021).

Treatment response prediction

ML analysis of the human gut microbiome shows great potential
in predicting response outcomes to interventions and medications
(Ortega et al., 2014; de Jong et al., 2021). ML leverages metagenomic
data to identify microbial patterns linked to treatment outcomes.
These algorithms can then forecast how individual patients will react
to interventions, such as dietary adjustments, probiotics, or
medications, based on their unique gut microbiome profiles
(Dahlin et al., 2022). This personalized approach enables
healthcare providers to customize interventions for each patient,
optimizing treatment effectiveness and minimizing adverse effects.
Furthermore, ML can identify microbial biomarkers that indicate
treatment success or failure, facilitating the development of more
precise and efficient therapeutic strategies (Yi et al., 2021). As our
understanding of the complex interactions between the gut
microbiome and human health deepens, ML analysis becomes an
invaluable asset in advancing precision medicine and enhancing
patient-targeted outcomes.

Clinical applications of gut
microbiome data

Diagnosis and prognosis

A variety of multi-omics approaches, including microbial
metabolic modeling and phenome-wide associations, are used to
identify metabolites and other biomarkers associated with distinct
irritable bowel syndrome (IBS) subtypes, IBD, necrotizing
enterocolitis, and late-onset sepsis (Stewart et al., 2016; Stewart
et al., 2017; Grasberger et al., 2021; Jacobs et al., 2023). These
findings contribute to the translation of research discoveries into
clinical applications, bridging the gap between laboratory research
and improved patient care. One ML approach, trans-omic network
analysis, has successfully identified patterns in blood parameters, gut
microbiome, and urine metabolome data to identify biomarkers
associated with carotid atherosclerosis (Li et al., 2021). Additionally,
gene-microbiome association methods employed multi-omics
techniques of transcriptomic and metagenomic profiling to
expand clinical understanding of the pathophysiology of CRC,
IBD, and IBS (Priya et al., 2022).

The gut microbiome’s impact on the body as a whole system is
evident in its ability to influence various disease stages, with
neurological and cancer-related conditions being particularly
susceptible to its effects (Aho et al., 2021; Dizman et al., 2022;
Tian et al., 2022). Recent advances in gut microbiome and multi-
omics data allow for an augmented understanding of disease and
symptom severity, disease progression, and predicted responses to
therapeutic treatments. Longitudinal multi-omics was used to
associate the severity of IBS symptoms with changes in bacterial
relative abundance, and specific bacterial species were found to be
associated with “flares” in patient symptoms (Mars et al., 2020).
Favorable and unfavorable responses to IBS therapeutic classes were
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identified using high-throughput -omic profiling and the predictive
accuracy improved significantly with the incorporation of
proteomics, metabolomics, and metagenomics data (Lee et al.,
2021). Microbiota compositions of patients with ulcerative colitis
were used to identify proteases associated with disease severity (Mills
et al., 2022). In hematopoietic cell transplant patients, microbial
diversity was used to predict critical outcomes (Adhi et al., 2019).

Therapeutic treatment

Common gut microbiome-based interventions are additive and
modulatory therapies. Additive therapies, as the name suggests,
involve introducing microorganisms to a patient’s gut
microbiome. Fecal Microbiota Transplantation (FMT) and
probiotics are effective additive therapies. FMT, also known as
fecal bacteriotherapy, involves the introduction of fecal matter
into a patient’s gut microbiome and has been found to improve
patient outcomes related to Clostridium difficile infection (CDI),
hepatic encephalopathy, and blood disorders with antibiotic-
resistant bacteria (Petrof et al., 2013; Bilinski et al., 2017; Zuo
et al., 2018; Bajaj et al., 2019). Studies involving probiotic
therapies have shown improvements regarding obesity-related
disorders and cirrhosis (Dhiman et al., 2014; Depommier et al.,
2019). Live biotherapeutic properties have recently been approved
by the Federal Drug Administration (U.S. Food and Drug
Administration, 2023) and have been an effective treatment for
IBS and recurrent CDI (Khanna et al., 2021; Khanna et al., 2022;
Quigley et al., 2023). Another well-known type of therapeutic
treatments are modulatory ones: diet and exercise. The
introduction or restriction of certain nutrients is known to affect
gut microbiome composition and improve nonalcoholic fatty liver
disease and cardiovascular disease outcomes (Levitan et al., 2009;
Lopez-Garcia et al., 2014; Mardinoglu et al., 2018).

Concluding remarks

The development of ML, sequencing technologies, and
bioinformatics pipelines have enabled the use of the gut
microbiome knowledge to improve the health outcomes of
patients. However, it is important to acknowledge the current
limitations in this field. A myriad of sequencing and
bioinformatics combinations can be selected for the application
and translation of microbiome analysis in precision medicine that
can lead to widely varying results. Consequently, a principled
approach should be applied based on the study design and each
step of the process should be determined to ensure high-quality data
collection and thoughtful algorithm selection while aiming to
document all steps using technologies such as BioCompute
Objects (Simonyan et al., 2017). This would allow better
interpretation of results by clinicians and other researchers.

The prospect of personalized healthcare is becoming more and
more tangible as our understanding of this field deepens. While
there are software packages and toolkits available for multi-omics

research devoted to the clinical understanding of disease, the output
from the software often lacks user-friendly reports for clinicians.
Running these tools typically demands a high level of technical
expertise, which is essential to maintain the validity of the results.
Future endeavors in multi-omics and machine learning would be
best served with a multidisciplinary approach, to develop reporting
mechanisms of the results that allow evidence based clinical
decision-making. These efforts have the potential to harness the
full capabilities of multi-omics approaches in elucidating the gut
microbiome and further advancing precision medicine. Addressing
these limitations will be crucial to translate this vision into reality
and benefit an extensive community.
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