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Objectives: This study aimed to identify plasma proteins that are associated with
and causative of breast cancer through Proteome and Transcriptome-wide
association studies combining Mendelian Randomization.

Methods: Utilizing high-throughput datasets, we designed a two-phase
analytical framework aimed at identifying novel plasma proteins that are
both associated with and causative of breast cancer. Initially, we
conducted Proteome/Transcriptome-wide association studies (P/TWAS) to
identify plasma proteins with significant associations. Subsequently,
Mendelian Randomization was employed to ascertain the causation. The
validity and robustness of our findings were further reinforced through
external validation and various sensitivity analyses, including Bayesian
colocalization, Steiger filtering, heterogeneity and pleiotropy. Additionally,
we performed functional enrichment analysis of the identified proteins to
better understand their roles in breast cancer and to assess their potential as
druggable targets.

Results: We identified 5 plasma proteins demonstrating strong associations and
causative links with breast cancer. Specifically, PEX14 (OR = 1.201, p = 0.016) and
CTSF (OR = 1.114, p < 0.001) both displayed positive and causal association with
breast cancer. In contrast, SNUPN (OR = 0.905, p < 0.001), CSK (OR = 0.962, p =
0.038), and PARK7 (OR = 0.954, p < 0.001) were negatively associated with the
disease. For the ER-positive subtype, 3 plasma proteins were identified, with CSK
and CTSF exhibiting consistent trends, while GDI2 (OR = 0.920, p < 0.001) was
distinct to this subtype. In ER-negative subtype, PEX14 (OR = 1.645, p < 0.001)
stood out as the sole protein, even showing a stronger causal effect compared to
breast cancer. These associations were robustly supported by colocalization and
sensitivity analyses.
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Conclusion: Integrating multiple data dimensions, our study successfully
pinpointed plasma proteins significantly associated with and causative of breast
cancer, offering valuable insights for future research and potential new biomarkers
and therapeutic targets.

KEYWORDS

proteome-wide association study, transcriptome-wide association study, plasma proteins,
mendelian randomization, breast cancer

1 Introduction

In 2020, a concerning 2.3 millionwomenwere diagnosedwith breast
cancer, establishing it as the most common cancer among women
worldwide (Sung et al., 2021). This high prevalence underscores the
urgency for ongoing research; however, despite significant efforts, the
precise causes of breast cancer remain elusive. The disease ismarked by a
wide range of biological characteristics, including diverse histological and
molecular features (Prat and Perou, 2011). Among these, the estrogen
receptor (ER) status stands out as a crucial biomarker, significantly
influencing treatment strategies such as endocrine therapy for ER-
positive breast cancers (Trayes and Cokenakes, 2021). In addition to
tissue-specific protein markers, the study of proteins in circulating
plasma, often found due to cellular leakage or active secretion
(Anderson and Anderson, 2002), is increasingly important. Due to
the ease of detection and reproducibility of plasma proteins, these
proteins are suitable for biomarkers and potential therapeutic targets
(Suhre et al., 2021). Recent studies have highlighted the significant
relationship between a variety of circulating proteins and breast cancer,
thereby providing crucial insights into the disease’s prognosis (Key et al.,
2010; Christopoulos et al., 2015; Rosendahl et al., 2021; Veyssière et al.,
2022; Mälarstig et al., 2023). The identification of these proteins as
potential biomarkers has opened new avenues for early detection and
personalized medicine in breast cancer, emphasizing the importance of
understanding the complex biological interactions and pathways
involved in cancer progression.

Genome-wide association studies (GWAS) have been instrumental
in identifying nearly 200 genetic loci associated with breast cancer,
revealing insights into genetic predispositions (Michailidou et al., 2017;
Shu et al., 2020; Zhang et al., 2020; Gudjonsson et al., 2022). These
discoveries underscore the importance of genetic factors in breast
cancer susceptibility. Particularly, SNPs located within a 500 Kb
range of the transcription start sites of protein-coding genes, known
as cis-acting quantitative trait loci (cis-QTLs). Among these, protein
Quantity Trait Loci (pQTLs) are crucial for regulating protein levels and
are valuable tools for research (Sun et al., 2018). Utilizing pQTL as
genetic proxies allow us to make a deeper exploration of the role of
plasma proteins in breast cancer susceptibility. Recently, Proteome-
Wide Association Studies (PWAS) (Wingo et al., 2021) and
Transcriptome-Wide Association Studies (TWAS) (Gusev et al.,
2016) have been pivotal in understanding the functions of proteins
and gene expression in disease onset and progression. Initial PWAS
focused primarily on neurological contexts due to data limitations
(Zhang et al., 2022a), However, recent advancements (Zhang et al.,
2022a) have broadened the scope of these studies to include diverse
health conditions, thereby enriching our understanding of the
associations between plasma proteins and various diseases (Li
et al., 2023).

Our first phase focused on identifying proteins that are
inherently associated with breast cancer at both proteomic and
transcriptomic levels. For PWAS analysis, we integrated plasma
protein pQTL data from ARIC cohort (Zhang et al., 2022a) with
breast cancer GWAS summary data, including its different ER
subtypes. Additionally, we carried out a supplementary TWAS in
whole blood and breast mammary tissues. This combined P/TWAS
methodology revealed significant associations between plasma
proteins and breast cancer. However, it is crucial to note that
such associations do not automatically imply causations. To
address this, in our second phase, we employed two-sample
Mendelian Randomization (MR) analysis (Emdin et al., 2017),
adding a causal dimension to the protein-breast cancer
relationship. We further assessed shared causal variants between
them by genetic Bayesian colocalization. To ensure the robustness
and broader applicability of our findings, we further conducted
external validations of the established causal link. These validations
were achieved using 4 extensive large plasma protein pQTL datasets
(Folkersen et al., 2017; Sun et al., 2018; Ferkingstad et al., 2021;
Gudjonsson et al., 2022) and the eQTLGen dataset (Võsa
et al., 2021).

In our study, we implemented a two-phase design that integrates
P/TWAS with MR analyses. This comprehensive methodology,
blending associative and causative analyses, provides valuable
insights into breast cancer. Furthermore, the relative simplicity in
detecting plasma proteins not only strengthens their role in
development of diagnostic biomarkers but also suggests their
potential value in the development of therapeutic targets for
breast cancer.

2 Materials and methods

2.1 Research framework

The analysis flowchart for the study is presented in Figure 1. A
two-phase analytical approach was employed in this study, merging
P/TWAS for association and MR for causation. Additionally, to
guarantee the validity and reliability of the findings, a discovery-
confirmatory framework was implemented in both phases.

2.2 Breast cancer GWAS summary
data source

The GWAS summary data from the Breast Cancer Association
Consortium (BCAC), which specifically focused on individuals of
European descent (https://bcac.ccge.medschl.cam.ac.uk/), was
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utilized in our study. This dataset was comprised of 122,977 breast
cancer cases and 105,974 controls. The same analytical approach
was also applied to ER positive and negative breast cancer. The ER-
positive subtype was found to consist of 69,501 cases and
105,974 controls, while the ER-negative subtype included
21,468 cases and 105,974 controls.

2.3 Quantity trait loci (QTL) dataset sources

Cis-pQTL data for European Americans’ (EA) plasma proteins
were obtained from the ARIC cohort (nilanjanchatterjeelab.org/
pwas/), generated using PLINK2 software (Purcell et al., 2007). The
SeqID file names correspond to the SOMAmers (Slow Off-rate
Modified Aptamers), which are utilized for measuring protein
levels in biological samples by leveraging their enhanced affinity
and specificity for target proteins (Rohloff et al., 2014). For external
validation, cis-pQTL data from 4 extensive plasma protein cohorts
of European descent were used. Additionally, our study also
explored expression quantitative trait loci (eQTLs), which

influence gene expression at the transcriptome level (Zhu et al.,
2016). We extracted eQTL data using the SMR toolkit (Wu et al.,
2021), a tool specifically designed for genetic epidemiological
research, from two major sources: the Genotype-Tissue
Expression Project (GTEx Consortium, 2020) and the eQTLGen
consortium (Võsa et al., 2021). Detailed descriptions of each dataset
are provided in Table 1.

2.4 Proteome/transcriptome-wide
association studies with fusion

FUSION (Boston, MA, United States) (Gusev et al., 2016),
which is a software to establish associations between functional
phenotype and GWAS phenotype, was used to conduct P/TWAS
analysis. In our study, FUSION was implemented to identify
associations between protein/gene expression levels and Breast
Cancer susceptibility. Methodologically, FUSION takes two
inputs: 1) Precomputed functional weights, and 2) GWAS
summary statistics unified to a reference SNP panel. In PWAS,

FIGURE 1
Framework of Comprehensive Research Methodology. This research methodology is divided into two phases: phenotype-association and
phenotype-causation. Each phase follows a discovery-confirmatory approach.
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precomputed functional weights of plasma proteins were obtained
from the ARIC study (Zhang et al., 2022b), and the reference SNP
panel was derived from the European descent of the 1000G project
(http://www.internationalgenome.org/faq/how-do-i-cite-1000-
genomes-project). The primary outputs of FUSION are the Z-score
and p-value, wherein Z-score quantifies the strength and direction
of the associations between plasma proteins and breast cancer,
while the p-value elucidates the statistical significance of this
association. To enhance our findings at transcriptomic level, we
incorporated TWAS for both whole blood and breast mammary
tissues. The precomputed functional weights for TWAS, provided
by Junghyun Jung from the Mancuso lab (http://gusevlab.org/
projects/fusion/). A false discovery rate (FDR,
Benjamini–Hochberg) threshold of 0.05 was applied to
determine the statistical significance of the results.

2.5 Bayesian colocalization analysis and
protein association classification

Bayesian colocalization analysis (Giambartolomei et al., 2014)
was utilized to evaluate the probability that the same genetic variant
affects both plasma protein and breast cancer. The default
parameters set by the analysis were followed, including p1 =
10e−4 (the probability of a variant being a significant pQTL),
p2 = 10e−4 (the probability of a variant associated with breast
cancer), and p12 = 10e−5 (the probability of a variant being
significant in both protein/gene and GWAS). This analysis
involved five predefined hypotheses: H0, indicating no
association with either trait; H1, signifying association with
trait1 only; H2, implying association with trait2 only; H3,
representing associations with both traits due to different SNPs;

TABLE 1 Detailed information about each GWAS summary data.

GWAS Cohort Paper title Year Author PMID Sample
size

Protein/
Gene

measured

pQTL

Discovery ARIC study Plasma proteome analyses in
individuals of European and African
ancestry identify cis-pQTLs and
models for proteome-wide association
studies

2022 Jingning Zhang,
et al

35,501,419 7,213 4435 (1,318 in
PWAS)

Confirmatory Icelandic Cancer Project (52%
of participants) and deCODE
genetics (48% of participants)

Large-scale integration of the plasma
proteome with genetics and disease

2021 Egil Ferkingstad,
et al

34,857,953 35,559 4719

Confirmatory AGES-Reykjavik study A genome-wide association study of
serum proteins reveals shared loci
with common diseases

2022 Alexander
Gudjonsson,
et al

35,078,996 5,368 2091

Confirmatory INTERVAL study Genomic atlas of the human plasma
proteome

2018 Benjamin B.
Sun, et al

29,875,488 3,301 2,994

Confirmatory IMPROVE study Mapping of 79 loci for 83 plasma
protein biomarkers in cardiovascular
disease

2017 Lasse Folkersen,
et al

28,369,058 3,394 83

eQTL

Confirmatory GTEx v8 Consortium Whole
Blood

The GTEx Consortium atlas of genetic
regulatory effects across human tissues

2020 GTEx
Consortium

32,913,098 670 12,828

Confirmatory eQTLGen Consortium Whole
Blood

Large-scale cis- and trans-eQTL
analyses identify thousands of genetic
loci and polygenic scores that regulate
blood gene expression

2021 Urmo Võsa, et al 34,475,573 31,684 16,987

Confirmatory GTEx v8 Consortium Breast
Mammary Tissue

The GTEx Consortium atlas of genetic
regulatory effects across human tissues

2020 GTEx
Consortium

32,913,098 396 12,828

Breast Cancer

Overall Breast
Cancer

Association analysis identifies 65 new breast cancer risk loci 2017 Kyriaki
Michailidou,
et al

29,059,683 228,951

ER positive Association analysis identifies 65 new breast cancer risk loci 2017 Kyriaki
Michailidou,
et al

29,059,683 175,475

ER negative Association analysis identifies 65 new breast cancer risk loci 2017 Kyriaki
Michailidou,
et al

29,059,683 127,442
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and H4, indicating association with both traits due to a common
SNP. A posterior probability of H4 (PPH4) exceeding 0.8, or in some
cases 0.7, is generally interpreted as strong evidence of the same
genetic variant being implicated in both traits (Giambartolomei
et al., 2014).

Recent studies have investigated the causal associations between
plasma proteins and diseases like colorectal cancer (Sun et al., 2023)
and inflammatory bowel disease (Chen et al., 2023), utilizing a
scoring system that integrates p-value and PPH4. Building on this
approach, our research employs P/TWAS and Bayesian
Colocalization analysis to systematically categorize the degrees of
association between proteins. The scoring system was as follows: a
significant adjusted p-value was awarded 1 point, and a PPH4 >
0.75 also earned 1 point. Based on the cumulative scores,
associations were categorized as follows: a score between 1 and
2 indicated a “Weak” association, 3 to 4 suggested a “Moderate”
association, and 5 to 6 signified a “Strong” association.

2.6 Mendelian Randomization and
sensitivity analysis

In the causal analysis, we primarily conducted further analysis
on proteins with strong and moderate associations. MR analysis
were based on 3 essential assumptions for genetic instrumental
variables: relevance, independence, and exclusion-restriction
(Davies et al., 2018). We implemented a stringent selection
process for SNPs to be used as instrumental variables, requiring a
p < 5e-8, or p < 5e-6 in cases when SNP was absent. Clump was
applied in accordance with the default parameters. The Wald Ratio
(WR) method was employed when a single SNP was used as the
instrumental variable, whereas the inverse-variance weighted (IVW)
method was predominant when the instrumental variables involved
multiple SNPs (Burgess et al., 2019). To reinforce the robustness of
our findings, we conducted several sensitivity analyses. The Steiger
filtering test (Deng et al., 2022) was utilized to eliminate the
possibility of reverse causal associations. Additionally,
heterogeneity and pleiotropy sensitivity analyses were conducted
for proteins that met the criteria (Bowden et al., 2015; Greco et al.,
2015). Furthermore, to improve the reliability and applicability of
our results, external validation was carried out on pQTL data derived
from 4 extensive plasma protein cohorts in European populations.

2.7 Enrichment analysis and potential
druggable targets

To delve deeper into the intricate relationships and biological
functions of significant proteins identified in our PWAS, gene
ontology (GO) enrichment and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses was performed. Given
the emerging role of plasma proteins as potential therapeutic targets
(Sun et al., 2018), we matched P/TWAS-MR significant proteins
with the druggable genome database (Finan et al., 2017), which
categorizes 4,479 genes into three druggability tiers: Tier 1 includes
approved drugs and candidates in clinical trials, Tier 2 encompasses
targets of biologically active molecules and those similar to approved
drug targets, and Tier 3 comprises genes for secreted or extracellular

proteins and other key druggable gene family members.
Additionally, the significant proteins were annotated using the
Therapeutic Target Database (http://db.idrblab.net/ttd/) (Zhou
et al., 2022).

2.8 Statistical methods

In this study, data analysis was executed using R software
(version 4.3.1). The P/TWAS analysis followed the analytical
process previously described. The Benjamini–Hochberg method
was employed for multiple testing correction, with adjusted
p-values <0.05 considered statistically significant. Causations were
investigated using the “TwoSampleMR” package, while Bayesian
colocalization analysis was carried out using the “COLOC” package.
The “ClusterProfiler” package (Wu et al., 2021) was utilized for
functional enrichment analysis. Data visualization was achieved
through the “Forestploter” and “ggplot2” packages, and data
cleaning was performed using the “tidyverse” package.

3 Results

3.1 Identification of associations at the
proteomic level

In our study, a total of 25 plasma proteins were significantly
associated with breast cancer (Table 2; Figure 2A, and
Supplementary Table S1). Of these proteins, 14 showed a Z-score
greater than 0, denoting a positive association with breast cancer.
Conversely, the remaining 11 proteins suggested an inverse
association with the disease. When duplicate SOMAmers are
present, we select the protein corresponding to the smallest
p-value for subsequent analysis, such as RSPO3 (Supplementary
Table S1). In ER subtypes analysis, 16 proteins were found to be
significantly associated with ER-positive breast cancer and 6 with
ER-negative breast cancer (Supplementary Table S2, S3). The PWAS
Manhattan plot illustrates the distribution of significant genes across
different chromosomes and their respective p-value (Figure 3A,
Supplementary Figure S2A, B).

3.2 Identification of associations at the
transcriptomic level

For the 25 proteins identified by PWAS, 12 showed significant
associations in the whole blood TWAS analysis (P.adj < 0.05)
(Supplementary Table S4). While, in the breast mammary tissue
TWAS, 10 of these proteins were further validated (P.adj < 0.05)
(Table 2, Supplementary Table S5). Among the 16 significant
proteins in ER-positive breast cancer, with 7 were confirmed in
both whole blood and breast mammary tissue analyses. Meanwhile,
in ER-negative breast cancer, 2 out of the 6 significant proteins were
validated (Figures 2B,C, Supplementary Table S6). It should be
noted that MST1 exhibited contradictory associations in PWAS
(Z = 4.194, P.adj = 0.004) and TWAS (Z = −2.547, P.adj = 0.014).
This pattern was also observed in ER-positive and ER-negative
subtypes. Due to the complex nature and potential biological
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implications of MST1’s contrasting results, we did not conduct
further analysis on this protein.

3.3 Bayesian Colocalization analysis

Among 25 significant proteins, 9 exhibited strong genetic
colocalization evidence. Additionally, 4 proteins–SNUPN
(PPH4 = 93.9%), CSK (PPH4 = 84.3%), CTSF (PPH4 = 94.4%),
and PARK7 (PPH4 = 96.5%)–also demonstrated the same strong
genetic evidence at the whole blood transcriptomic level.
Remarkably, CSK (PPH4 = 86.3%) and CTSF (PPH4 = 93.9%)
were further validated in the breast mammary tissue transcriptomic
level (Table 2). In ER-positive breast cancer, 5 proteins showed
strong evidence of genetic colocalization. Notably, 2 of these

proteins, CSK (PPH4 = 85.8%, 86.5%) and GDI2 (PPH4 = 97%,
97.2%), demonstrated the same strong genetic colocalization
evidence in both whole blood and breast mammary tissues. In
the ER-negative breast cancer, PEX14 showed strong genetic
colocalization evidence in protein (PPH4 = 99.9%) and breast
mammary tissue (PPH4 = 88.8%), but this pattern was not
replicated at the whole blood transcriptomic level (PP4 = 8%,
Supplementary Table S6).

3.4 Stratification of plasma protein
association strengths

In breast cancer, 25 proteins were classified: 5 as “Strong”
association (red), 6 as “Moderate” association (blue), and the

TABLE 2 Integrative analysis and stratification of proteome and transcriptome associations in breast cancer.

Gene CHR Plasma protein PWAS
(discovery cohort)

Whole blood TWAS
(confirmatory cohort)

Breast tissue TWAS
(confirmatory cohort)

Score Association
power

Zscore P_FDR PPH4 Zscore P_FDR PPH4 Zscore P_FDR PPH4

PGD 1 −9.152 7.39E-17 0.994 - - - - - - 2 Weak

TLR1 4 6.225 3.18E-07 1 - - - - - - 2 Weak

FBLN5 14 5.226 7.60E-05 0 0.460 0.6460 0 - - - 1 Weak

PEX14 1 4.839 0.0004 0.989 6.843 1.09E-10 0.195 5.341 8.14E-07 0.79 5 Strong

LAYN 11 4.499 0.0018 0.936 - - - - - - 2 Weak

SNUPN 15 −4.413 0.0022 0.952 −5.285 8.82E-07 0.939 −5.256 8.14E-07 0.372 5 Strong

GSTM4 1 −4.273 0.0036 0.618 −3.451 0.0011 0.001 −3.736 0.0004 0.175 3 Moderate

MST1 3 4.194 0.0045 0.904 −2.547 0.0139 0.148 −3.266 0.0015 0.584 4 Moderate
(inconsistent)

CSK 15 −4.147 0.0049 0.779 −3.979 0.0002 0.843 −4.613 1.46E-05 0.863 6 Strong

NTN4 12 3.938 0.0108 0 - - - - - - 1 Weak

PAPPA 9 −3.692 0.0255 0.137 - - - - - - 1 Weak

CTSF 11 3.681 0.0255 0.777 2.895 0.0059 0.944 4.394 0.0000 0.939 6 Strong

PARK7 1 −3.648 0.0269 0.978 −4.644 1.20E-05 0.965 −2.391 0.0185 0.014 5 Strong

NCF1 7 3.601 0.0296 0.002 4.419 2.78E-05 0.958 - - - 3 Moderate

COL6A3 2 −3.585 0.0296 0.026 - - - - - - 1 Weak

RSPO3 6 −3.541 0.0319 0.272 - - - - - - 1 Weak

HEBP1 12 3.533 0.0319 0.058 2.358 0.0215 0.015 - - - 2 Weak

NRP1 10 −3.508 0.0328 0.038 - - - - - - 1 Weak

ABO 9 −3.442 0.0369 0.298 −4.953 3.41E-06 0.169 2.127 0.0334 0.994 4 Moderate

PRDX1 1 3.436 0.0369 0.004 1.993 0.0498 0.005 3.392 0.0011 0.03 3 Moderate

EMILIN3 20 3.410 0.0369 0.072 - - - - - - 1 Weak

ANXA4 2 3.404 0.0369 0.681 2.820 0.0067 0.008 - - - 2 Weak

POSTN 13 3.401 0.0369 0.01 - - - - - - 1 Weak

LDHA 11 −3.352 0.0424 0.404 −3.307 0.0016 0.416 −3.625 0.0005 0.291 3 Moderate

UROD 1 3.302 0.0487 0.254 - - - 2.834 0.0056 0.113 2 Weak
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remaining as “Weak” association (grey) (Figure 2A). Among the
“Strong” Tiers, PEX14 (Z = 4.839) and CTSF (Z = 3.681) had a
positive association with breast cancer. Whereas, SNUPN
(Z = −4.413), CSK (Z=−4.417), and PARK7 (Z = −3.648) showed
negative associations (Table 2).

In ER-positive breast cancer, 16 proteins were classified:
3 proteins showed “Strong” association (red), with GDI2
(Z = −3.652) newly identified and negatively associated with ER-
positive breast cancer. Additionally, CSK and CTSF followed the
same trends with the findings from breast cancer. Besides, 4 proteins
were “Moderate” (blue), and 9 proteins were “Weak” associations
(grey) (Figure 2B). In ER-negative breast cancer, 6 proteins were
classified: PEX14 and MST1 showed “Strong” associations. Notably,
PEX14 not only showed the same trend as observed in breast cancer
(Z = 4.839, p = 0.0004) but also exhibited a notably stronger effect
(Z = 5.929, p = 2.02E-6). MST1 was not further analyzed due to
inconsistent trends in P/TWAS. The other 4 proteins were
categorized as “Weak” association (grey) (Figure 2C,
Supplementary Table S6).

It is crucial to highlight that, although PGD and TLR1 were
significant across all three outcomes in PWAS analyses (Figure 3A
and Supplementary Figure S2A, B), their absence from the
corresponding TWAS analysis relegated them to the “Weak”
association. Moreover, the results of these two proteins were not

sufficiently reliable in MR Analysis (Supplementary Figure S2C,
Supplementary Table S7).

3.5 Mendelian Randomization analyses

Upon determining the strength of associations, we
supplemented the causations with MR analysis (Supplementary
Table S8). We primarily focused on the causal effects of “Strong”
associated proteins. Among the 5 “Strong” associated proteins,
PEX14 was found to have a positive causation at the proteomic
(OR = 1.201, p = 0.017) and transcriptomic level (OR = 1.17, p <
0.001). CTSF demonstrated a positive causation in the ARIC cohort
(OR = 1.114, p < 0.001), and the consistent trends were also external
validated in INTERVAL cohort (OR = 1.144, p < 0.001) (Sun et al.,
2018) and AGES-Reykjavik cohort (OR = 1.159, p < 0.001)
(Gudjonsson et al., 2022) (Figure 3B). The remaining 3 proteins,
SNUPN (OR = 0.905, p < 0.001), CSK (OR = 0.962, p = 0.038), and
PARK7 (OR = 0.954, p < 0.001), all exhibited negative causations
with breast cancer. External validations from the deCODE cohort
further confirmed the causations for SNUPN (OR = 0.797, p < 0.001)
and PARK7 (OR = 0.844, p = 0.017). However, CSK’s causation at
the whole blood transcriptomic level was somewhat unsignificant
(OR = 0.84, p = 0.129) (Figure 3B, Supplementary Table S9).

FIGURE 2
Insights from Proteome/Transcriptome-Wide Association Analyses and Bayesian Colocalization. The association strength of proteins with breast
cancer is denoted by colors: red for strong, blue for moderate, and grey for weak associations. (A) Comprehensive P/TWAS for plasma proteins in breast
cancer susceptibility. Dot size signifies results from Bayesian Colocalization analysis, with color gradient reflecting the Z-value. Proteins are sequentially
arranged based on ascending p-value significance from left to right. (B) Comprehensive P/TWAS for plasma proteins in ER positive breast cancer
susceptibility. (C) Comprehensive P/TWAS for plasma proteins in ER negative breast cancer susceptibility.
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In ER-positive breast cancer, CSK (OR= 0.955, p = 0.038) and CTSF
(OR= 1.125, p< 0.001)maintained the same causal trends as observed in
breast cancer (Supplementary Table S10). Additionally, GDI2 was
identified as a newly negatively significant protein (OR = 0.92, p <
0.001).However, its causal effect was not significant at the transcriptomic
level (OR = 1.001, p < 0.981, Figure 4A). In ER-negative breast cancer,
PEX14 stood out as the sole “Strong” protein. Notably, its causal effect in
this subtype (OR = 1.645, p < 0.001, Figure 4B) was further pronounced
compared to breast cancer (OR = 1.201, p = 0.017). Meanwhile, we
expanded our MR analyses to include “Moderate” proteins. The results
revealed that their causal effects were generally less consistent and of
reduced significance compared to those of the “Strong” proteins
(Supplementary Figure S1, Supplementary Table S11).

3.6 Sensitivity analysis and functional
enrichment analysis

Considering that the pQTLs of most plasma proteins was a
single SNP, conducting sensitivity analyses for heterogeneity and
pleiotropy is typically not required. As result, in ER-positive breast
cancer, BTN3A3, EMILIN3, FOLR3, and NTN4 showed

heterogeneity, while in ER-negative cases, this was not observed
(Supplementary Table S10). BTN3A3 in ER-positive breast cancer
also displayed pleiotropy. The Steiger filtering test confirmed that
MR effects were due to plasma proteins affecting breast cancer
outcomes (Supplementary Table S8, S10). Importantly, our “Strong”
proteins exhibited neither heterogeneity nor pleiotropy.

Furthermore, the plasma proteins identified by PWAS were
subjected to Gene Ontology (GO) cluster analysis. This analysis
revealed a predominant association with biological processes related
to oxidative stress, such as “reactive oxygen species metabolic” and
“response to reactive oxygen species” terms. Additionally, for
cellular components, we observed a significant enrichment in the
“collagen-containing extracellular matrix” term (Supplementary
Figure S3). Besides, KEGG pathway enrichment did not reveal
any significantly enriched pathways (Supplementary Table S12).

3.7 Druggable target propensity for
significant proteins

Plasma proteins are not only crucial as diagnostic biomarkers
but also serve as potential drug targets. In our study, we evaluated

FIGURE 3
Distribution of plasma proteins and Mendelian Randomization analysis of “Strong” plasma proteins. (A) The Manhattan plot represented plasma
proteins with significant affiliations to breast cancer. The red horizontal line indicates the FDR corrected p-value threshold for significance. Chromosomal
designations populate the horizontal axis, contrasted with respective -log10 p-values on the vertical spectrum. (B) Two-sample Mendelian
Randomization analysis for “Strong” plasma proteins to breast cancer, including external validation at proteomic and transcriptomic levels.
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the significant proteins for their potential as drug targets. By aligning
our findings with the druggable genome database (Finan et al.,
2017), we determined that 16 of the 25 proteins have druggable
targets. These include 3 proteins in Tier 1; 3 in Tier 2, and 10 in Tier
3 (Supplementary Table S13, Left column). Furthermore, we
compared our results with the Therapeutic Target Database
(Zhou et al., 2022), 11 of these 16 proteins were identified as
targets of existing or potential drugs. This group comprised
3 Successful targets, 3 Patented-recorded Targets, 1 in clinical
trials, and 4 documented in literature (Supplementary Table S13
Right column). Among the “Strong” proteins, CSK and CTSF were
found to be drug targets with patent records, categorized under Tiers
1 and 2 respectively. CTSF has been documented to be used in the
treatment of bone cancer and chronic obstructive pulmonary disease
(Li et al., 2017) (Table 3). However, the remaining “Strong” proteins
have not yet been reported.

4 Discussion

Plasma proteins, due to their ease of detection and
reproducibility, are increasingly utilized to distinguish between
cancer patients and healthy individuals, enhancing the
effectiveness of screening programs (Huijbers et al., 2010). Recent
advancements in molecular technologies and techniques have
shown significant potential in utilizing plasma protein
biomarkers such as Adipsin and CA15-3 for early detection and
quantification for diagnostic and therapeutic applications in breast
cancer (Afzal et al., 2022; Rajkumar et al., 2022; Veyssière et al.,

2022). A recent high-throughput study identified 61 proteins
associated with various cancers (Gregga et al., 2023). While this
study provided valuable insights into pan-cancer associations, it did
not explore causation. Furthermore, research specifically targeting
plasma protein biomarkers for breast cancer is still limited.
Currently, Mendelian Randomization has emerged as an effective
method to establish causation in various diseases (Emdin et al.,
2017), including cholesterol-related cardiovascular disease
(Kathiresan et al., 2008), inflammatory diseases (Swerdlow et al.,
2012), metabolic disorders (Fall et al., 2015), and specific cancers
such as small cell lung cancer and colorectal cancer (Sun et al., 2023;
Wu et al., 2023).

Despite, the application of MR in identifying plasma proteins as
drug targets in breast cancer is still sporadic. For instance, one study
performed MR analysis on a single cohort of 732 plasma proteins,
where GDI2 and CTSF were identified as potential targets for breast
cancer (Ren et al., 2023), aligning with our research. However, it is
important to note that this study also focused on pan-cancer
research and lacked association analysis. Additionally, another
study focused on the causation found a causal link between
TLR1 and breast cancer (Mälarstig et al., 2023). This protein was
ranked significantly in our analysis, but it is noteworthy that
TLR1 lacks external cohort validation, and the study also did not
perform association analyses. Therefore, current research on plasma
proteins typically focuses on either association or causation, rarely
addressing both. Our study bridges this gap by integrating these two
approaches. We employed P/TWAS to identify associations and
used MR to establish causation. This approach successfully
pinpointed significant proteins related to breast cancer risk from

FIGURE 4
Mendelian Randomization for “Strong” plasma proteins in different ER Breast Cancer Subtypes. (A)Mendelian randomization results for ER-positive
breast cancer, including external validation at proteomic and transcriptomic levels. (B) Mendelian randomization results for ER-negative breast cancer,
including external validation at proteomic and transcriptomic levels.
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thousands of candidates in 5 large proteomics cohorts. To ensure the
robustness and generalizability of our findings, we adopted a
“discovery-confirmatory” analytical framework at both the
association and causation phases. Overall, we found 5 proteins
(PEX14, CTSF, SNUPN, CSK, PARK7) with strong causal links
to breast cancer. While, in ER-positive breast cancer, 3 proteins
(CSK, CTSF, GDI2) were identified. In contrast, only PEX14 was
linked to ER-negative breast cancer.

Among the 5 plasma proteins, SNUPN, CSK, and
PARK7 emerged as “Strong” negatively causative associated
proteins, indicating a protective effect against breast cancer
development. A study has highlighted the potential clinical
applications of SNUPN in acute lymphoblastic leukemia (Mata-
Rocha et al., 2019); however, research exploring its role in solid
tumors, including breast cancer, is currently limited. Despite the
current research limitations, SNUPN’s potential as a biomarker or
tumor suppressor is promising and warrants further exploration.
PARK7 is recognized for its neuroprotective role in Parkinson’s
disease (Kochmanski et al., 2022) and has been reported to
significantly regulate cell survival and cancer progression in
various cancers (Jin, 2020). It negatively regulates PTEN and
PKB/Akt phosphorylation, thus influencing cell survival and
death (Kim et al., 2005). In breast cancer, low PARK7 expression
was correlated with pathological complete response in 79.6% of
cases following neoadjuvant therapy (Kawate et al., 2013), and loss
of PARK7 function is associated with increased sensitivity to
doxorubicin in breast cancer cells (Zhang et al., 2015). The effect
of PARK7 in balancing tumor cell survival and normal cell

physiology merits further research. Lastly, as a key member of
the Src family kinases (SFKs), CSK plays a vital role in
combating cancer progression in various cancers (Sabe et al.,
1994). Recent study indicates that CSK maintains negative
regulation of Src through Tyr527 phosphorylation, inhibiting
breast cancer cells growth and spread (Dias et al., 2022).
Additionally, another study on ER-positive breast cancer found
that in cases of endocrine therapy resistance, reduced CSK leads
to enhanced PAK2 activity and subsequent non-estrogen-dependent
cancer growth (Xiao et al., 2018). The dual effect of CSK in both
tumor suppression and inducing endocrine treatment resistance
positions it as a notable target for research.

The other two “Strong” proteins are positively associated and
represent a risk factor in breast cancer onset. CTSF (cathepsin F)
plays a key role in the lysosomal protein degradation pathway (Wex
et al., 1999). Currently, it is reported as an effective diagnostic
biomarker in cervical cancer (Vazquez-Ortiz et al., 2005), gastric
cancer (Ji et al., 2018), and non-small cell lung cancer (Wei et al.,
2022). A recent study reported that CTSF may act as an independent
poor prognostic factor for basal-like breast cancer (Huang et al.,
2021). PEX14 (Peroxisomal Biogenesis Factor 14) is essential for
peroxisomal biogenesis (Neufeld et al., 2009). Our research reveals a
significant causal risk association of PEX14 with breast cancer (OR =
1.201), particularly in ER-negative subtype (OR = 1.645). Notably,
PEX14 has been identified as a key risk factor in triple-negative
breast cancer (TNBC) (Purrington et al., 2014) and is one of the top
five genes influencing adaptive anti-tumor immunity, as shown in a
TNBCmodel study using a whole-genome RNAi screening platform

TABLE 3 Comprehensive evaluation of strong associated proteins as potential druggable targets or existing therapeutics.

Gene UniProt Description Finan
et al

Therapeutic target database

Tier Target type Drug name Disease

Breast Cancer

PEX14 O75381 Peroxisomal Biogenesis
Factor 14

- - - -

SNUPN O95149 Snurportin 1 - - - -

CSK P41240 Tyrosine-protein kinase CSK Tier 1 Patented-recorded
Target

936,563-93-8 Not Available

CTSF Q9UBX1 cathepsin F Tier 2 Patented-recorded
Target

PMID27998201-
Compound-5

Bone cancer; Chronic obstructive
pulmonary disease

PARK7 Q99497 Parkinsonism Associated
Deglycase

- - - -

ER pos Breast Cancer

CSK P41240 Tyrosine-protein kinase CSK Tier 1 Patented-recorded
Target

936,563-93-8 Not Available

CTSF Q9UBX1 cathepsin F Tier 2 Patented-recorded
Target

PMID27998201-
Compound-5

Bone cancer; Chronic obstructive
pulmonary disease

GDI2 P50395 Rab GDP dissociation inhibitor
beta

- - - -

ER neg Breast Cancer

PEX14 O75381 Peroxisomal Biogenesis
Factor 14

- - - -
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(Shuptrine et al., 2017). These insights emphasize PEX14’s
importance in TNBC immunotherapy and drug target research.
Furthermore, PEX14 plays a crucial role in maintaining peroxisomal
functions, and its deficiency leads to ROS accumulation, lipid
peroxidation, and consequent cell death (Guo et al., 2023). Our
functional enrichment analysis corroborates this, highlighting
numerous pathways related to reactive oxygen species (ROS),
which are instrumental in promoting cell growth, cancer
progression, immune responses, and poorer survival outcomes in
breast cancer (Oshi et al., 2022). Additionally, studies have shown
that PEX14 knockdown increases intracellular H2O2 levels,
triggering ferroptosis and cell death (Guan et al., 2022). This
further underscores PEX14’s pivotal role in managing oxidative
stress and cell viability, marking its significance in breast cancer
research. Additionally, GDI2 was identified as a protein with a
“Strong” negative causal association in the ER-positive breast cancer.
A study suggested that GDI2 is associated with aggressive features
and poor patient survival in hepatocellular carcinoma (Zhang et al.,
2021). However, the inability to confirm its role through at
additional transcriptomic levels and the absence of external
validation has diminished our confidence in the significance of
this protein.

Given the proven effectiveness of MR in identifying drug targets
(Folkersen et al., 2020), we performed a drug-target evaluation on
these plasma proteins (Supplementary Table S13). Notably, CSK and
CTSF emerged as Tier1 and Tier2 proteins, respectively. CSK is
crucial in regulating cellular processes such as apoptosis, survival,
and proliferation. Its pivotal role in cancer cell signaling earmarks
CSK as a promising target for cancer therapy (Fortner et al., 2022).
Similarly, CTSF, known for its significant involvement in the
progression of various cancers (Wei et al., 2022),
neurodegenerative diseases (van der Zee et al., 2016), and skin
aging (Takaya et al., 2023), garners attention. Research on
inhibitors and modulators targeting CTSF is underway. Although
other strongly associated proteins currently lack clear therapeutic
applications, given their strong causal relationship with breast
cancer, it is worthwhile to further explore them for drug target
development.

This study is currently subject to several limitations yet. First, the
study only involves individuals of European descent, which
necessitates caution when applying these findings to more diverse
populations. Second, the precomputed functional weights for
plasma proteins are currently only available from the ARIC
cohort, future datasets expansion are expected to enhance the
precision and breadth of such analyses. In addition, as the
current BCAC molecular subtype data lacks rsID, matching
chromosomes and base pair positions results in significant
information loss. However, with the continuous expansion and
updating of the molecular subtype database, we anticipate a
deeper understanding of this content. Lastly, our analysis is
primarily data-based, hence we will design related basic scientific
research in the future to further investigate the etiological
association between plasma proteins and breast cancer.

In summary, our study successfully identified several plasma
proteins with strong association and causation to breast cancer and
its distinct ER subtypes. As non-invasive and dynamic monitoring
tools, plasma proteins hold significant potential as diagnostic
biomarkers and therapeutic targets. They offer a comprehensive

perspective on systemic health, which is crucial for early tumor
detection, assessing treatment responses, and continuous disease
monitoring. While these advancements are still in the early stages,
they hold valuable promise for future research and practical
applications in real-world scenarios.
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