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Regulator of G-protein signaling (RGS) proteins are regulators of signal
transduction mediated by G protein-coupled receptors (GPCRs). Current
studies have shown that some molecules in the RGS gene family are related
to the occurrence, development and poor prognosis of malignant tumors.
However, the RGS gene family has been rarely studied in gastric cancer. In
this study, we explored the mutation and expression profile of RGS gene family in
gastric cancer, and evaluated the prognostic value of RGS expression. Then we
established a prognostic model based on RGS gene family and performed
functional analysis. Further studies showed that RGS4, as an independent
prognostic predictor, may play an important role in regulating fibroblasts in
the immune microenvironment. In conclusion, this study explores the value of
RGS gene family in gastric cancer, which is of great significance for predicting the
prognosis and guiding the treatment of gastric cancer.
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1 Introduction

Gastric cancer is one of the most common malignant tumors of the digestive tract
worldwide, with high incidence rate of 5.6% and cancer-related mortality rate of 7.7%
(Suzuki et al., 2016; Sung et al., 2021). In spite of improvements in the clinical treatment
strategies (Smyth et al., 2020), patients with gastric cancer still face a dire survival situation
due to the high heterogeneity of tumor cells (Jiang et al., 2022) and the complex tumor
microenvironment (TME) composed of stromal and immune cells (Kumar et al., 2022). As
a result of gastric cancer’s high heterogeneity, it is important to explore precise and
individualized predictive biomarkers at the molecular level for the clinical precision
treatment and prognostic monitoring of gastric cancer.

The current drug targets of extremely interest are G protein-coupled receptors (GPCRs)
(Nieto Gutierrez and McDonald, 2018; Sriram and Insel, 2018), which play key roles in the
regulation of cell homeostasis, cell signal transduction, immune system and nervous system
(Calebiro et al., 2021; Nagai et al., 2021; Cheng et al., 2022). There is increasing evidence that the
expression and activation of GPCR family proteins are involved in the development of
numerous types of tumors (Chaudhary and Kim, 2021). The regulator of G-protein
signaling (RGS) is a diverse family of functional proteins, share a domain with a conserved
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core that includes 120 amino acid residues, that accelerate the
deactivation of heterotrimeric G-protein and modulate signaling
initiated by GPCRs (Hurst et al., 2009; Hurst and Hooks, 2009;
Guda et al., 2020; Li C. et al., 2021). Previous studies have
demonstrated that many molecules in RGS gene family are
associated with the occurrence, development and prognosis of
malignant tumors (Hurst and Hooks, 2009; Guda et al., 2020; Yang
et al., 2023). At present, the studies on RGS gene family in gastric cancer
are rare and the pathogenic mechanism has not been fully investigated.
Its regulation on the proliferation, metabolism, immune regulation and
prognosis of gastric cancer has been preliminarily studied (Wang et al.,
2017; LiW. et al., 2020; Yang et al., 2022). High expression of RGS1 and
RGS3 is associated with poor prognosis in patients with gastric cancer
(Wang et al., 2017; Li S. et al., 2021). RGS2 deposition in gastric cancer is
associated with increased tumor stage (Yang et al., 2022). The
expression of RGS5 was negatively correlated with microvascular
density, which may be related to abnormal formation of blood
vessels (Wang et al., 2010). Our work comprehensively explored
important role of RGS gene family in gastric cancer for the first
time and speculated that the RGS gene family, particularly RGS4,
could be a prognostic and therapeutic target for gastric cancer.

In this study, we aimed to comprehensively evaluate the
mutation and expression profiles of RGS gene family and explore
the relationship between the expression and survival outcomes for
patients with gastric cancer. A risk score model was constructed
based on RGS gene family data to predict the survival of patients
with gastric cancer. In addition, we investigated the function of RGS
gene family, especially RGS4, in regulating gastric cancer formation
and tumor microenvironment.

2 Materials and methods

2.1 Data processing

GSE66229, GSE13861 and GSE84433 were downloaded from
the Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov). The transcriptome and somatic mutation data of
stomach adenocarcinoma (STAD) were downloaded from TCGA
database (https://portal.gdc.cancer.gov). Tumor Immune Single-cell
Hub (TISCH, http://tisch.comp-genomics.org) was used to analyze
the single cell sequencing dataset GSE167297 (Sun et al., 2021). The
drug data were downloaded from CellMiner database (https://
discover.nci.nih.gov/cellminer/home.do) (Reinhold et al., 2012).

2.2 Somatic mutations and copy number
alterations of RGS family

Summary analysis of somatic mutation frequency in the
22 RGS genes was performed using cBioPortal for Cancer
Genomics (https://www.cbioportal.org) (Cerami et al., 2012).
Additionally, we calculated the percentage of the population
with increased and missing somatic copy numbers of RGS
family genes in the TCGA-STAD cohort and plotted them
using the R language function “barplot”. The “RCircos”
package was further used to visualize the chromosomal
locations of family genes (Zhang et al., 2013).

2.3 Survival analysis of RGS genes and
construction of a prognostic signature

The box diagram showed the expression of RGS family genes in
normal and tumor tissues by the “ggboxplot” R software package.
Kaplan-Meier analysis was used to evaluate the prognostic value of
RGS family and the forest map was drawn using the “forestplot” R
software package, of which a p-value of less than 0.05 were
considered the genes that significantly impact the survival for
patients with gastric cancer. A risk prognosis model composed of
3 genes was established based on the multivariate Cox regression
analyses of training set GSE66229. The median value of risk score
was used to separate samples into high- and low-risk groups in the
training set and the other three test cohorts. Survival curves were
drawn by the “survival” and “survminer” R packages.

2.4 DEG identification and
functional analysis

Differentially expressed genes (DEG) were selected between the
different risk groups using wilcox test with a p-value<0.05. To identify
the functions and biological processes of each subgroup, gene set
variation analysis (GSVA) was performed, which was based on the
hallmark gene set downloaded from theMSigDBdatabase (Hänzelmann
et al., 2013; Liberzon et al., 2015). Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) pathway analysis was
performed by R software to assess the potential functions of genes. The
“clusterprofiler” R package was used for GSEA (https://www.gsea-
msigdb.org/gsea/index.jsp) (Subramanian et al., 2005; Yu et al., 2012).

2.5 Immune landscape

The Stromal and Immune Scores were calculated using the
“estimate” R package (Yoshihara et al., 2013). Higher ESTIMATE
Scores correspond to lower tumor purity. Tumor-infiltrating
immune cells across cancers were analyzed using the
“MCPcounter” R package (Becht et al., 2016).

2.6 Correlation analysis and intersection
gene acquisition

Spearman correlation analysis was implemented to analyze the
correlation between RGS4 and other continuity variables by using
“cor.test” function. The intersection genes of the RGS4-related genes
in the training and validation sets were obtained by the “venn” R
package. And the filtering criterion of correlation coefficient is 0.4.
In addition, we use “ggplot” function to plot correlation scatter plots.

2.7 Statistical analyses

R 4.2.0 software (https://www.R-project.org) and Adobe
Photoshop CS6 were used for statistical analysis and graphing in
this article. Statistical significance was considered p < 0.05, and all
p-values were two tailed.
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FIGURE 1
Somatic Mutations and Copy Number Alterations of RGS Family in gastric cancer. (A) The graphical abstract. (B)Type and frequency ofmutations. (C)
The copy number increase or decrease ratio of RGS family genes in patients with gastric cancer in STAD. (D) The location of RGS family genes on different
chromosomes.
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3 Results

3.1 Mutation landscape and expression
analysis of RGS gene family in gastric cancer

A total of 21 RGS genes were included for mutations analysis,
showing different mutation frequencies and types, among which the
main mutation type was amplification (Figure 1B). Among RGS
gene family, RGS22 had relatively higher mutational frequencies of
11%. Different CNV frequencies of all RGS genes were showed by
the assessment of copy number variations (CNV) (Figure 1C).
RGS22, RGS3, RGS4 and RGS5 exhibited a significant increase of
copy number gain. Figure 1D shows the locations of all 21 RGS genes
in different chromosomes.

Then we analyzed the mRNA expression of RGS gene family of
gastric cancer from the GEO and STAD databases (Figure 2A). The
boxmap showed that the expression of RGS1, RGS3, RGS12, RGS14,
RGS16, RGS19, RGS20 was significantly upregulated in the gastric
tissues, while the expression of RGS2, RGS4, RGS5, RGS6, RGS7,
RGS8, RGS9, RGS10, RGS13, RGS17 was significantly lower.

3.2 Prognostic value of RGS genes in
gastric cancer

To uncover the association between the expression of RGS
family genes and prognosis, we performed Cox survival analysis.
The univariate Cox analysis showed that the expression of RGS4,
RGS5, RGS8, RGS9 and RGS22 was associated with poor prognosis

in the train set GSE66229 (Figure 2B). Subsequent multivariate Cox
regression was performed and 3 prognostic RGS genes was used to
construct prognostic features, including RGS4, RGS5 and RGS22.
Kaplan-Meier survival analysis revealed that patients with high risk
had poorer prognosis in both the train set and three test sets
(Figure 2C). Further, the risk score was significantly different
between different tumor stages for patients in GSE66229 and
GSE13861 (Figure 2D).

3.3 Pathway enrichment analysis

Based on the prognostic risk model made up of three RGS genes,
we further explored possible mechanisms to explain the higher risk
of death and poorer clinical stage in the high-risk
subgroup. Figure 3A shows that pathways such as angiogenesis,
hypoxia, apical junction, epithelial mesenchymal transformation,
and myogenesis, which are involved in matrix remodeling of tumor
microenvironment and promote tumor cell metastasis, are highly
enriched in the high-risk subgroup. This is consistent with the
tendency of high-risk populations to have worse clinical staging as
shown in Figure 2D. In addition, signaling pathways closely related
to tumor cell proliferation and differentiation, such as upregulation
of KRAS signaling, dysregulation of hedgehog signaling, NOTCH
signaling and TGFβ signaling, were also highly enriched in the high-
risk subgroup. The pathway analysis of KEGG (Figure 3B) and GO
(Figure 3C) confirmed above results. The results of functional
analysis suggest that the prognostic signal constructed by RSG
family genes may play an important role in the occurrence,

FIGURE 2
Prognostic analysis of RGS genes expression in gastric cancer. (A) The expression of RGS gene family of normal tissue and gastric cancer in
GSE66229, GSE13861 and STAD. (B) Cox analysis of RGS gene family in GSE66229, GSE13861, GSE84433 and STAD. (C) Kaplan-Meier survival analysis of
prognostic features constructed by RGS genes. (D) Risk scores for patients at different stages. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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development and metastasis of tumors, and the patients with high
scores have worse clinical stage and shorter survival time.

3.4 Correlation between risk score and
immune infiltration

TME is a complex system consisting of immune
microenvironment dominated by immune cells and non-immune
microenvironment dominated by fibroblasts. To evaluate the

correlation between risk score and features of the TME, we
calculated the immune scores, stromal scores and tumor purity.
As shown in Figure 4A, patients with high risk had higher stromal
score and lower tumor purity. We evaluate the infiltration of
different types of immune cells and found that fibroblasts and
endothelial cells were higher in patients of high-risk group in all
four sets (Figure 4B). We hypothesized that the RGS family genes
might be able to reshape a stromal cell-rich immune
microenvironment. Further analysis also showed that the risk
score was associated with genes in the fibroblast, epithelial

FIGURE 3
Gene enrichment analysis by bioinformatics analysis. (A) Pathway enrichment and correlation analysis of prognostic features. KEGG (B) and GO (C)
analyses of differential genes in high and low risk groups in GSE66229.
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interstitial transformation, and angiogenesis pathways (Figure 4C
and Supplementary Figure S1).

3.5 Analysis of the relationship between
RGS4 expression and prognosis in GC

Cox analysis showed that the expression of RGS4 was associated
with poor prognosis in all four sets (Figure 2B). However, for
RGS5 and RGS22 in part of the validation cohort, univariate cox
analysis results did not meet the statistical difference. We further
analyzed the effect of RGS4 on prognosis in all gastric cancer

cohorts. Kaplan-Meier survival analysis and time-dependent ROC
curves of the expression of RGS4 were plotted in Figure 5. Further
analysis found that RGS4 expression was closely associated with
tumor stage, increased from stage I to other stages (Figure 5C).

3.6 Role of RGS4 in remodeling CAF-
enriched tumor microenvironments

Function analysis was performed and showed that RGS4-related
genes were enriched in matrix formation-related pathways, which
was consistent with the above results (Figure 6 and Supplementary

FIGURE 4
Identify the immunemicroenvironment landscape associated with prognostic features in GSE66229, GSE13861, GSE84433 and STAD. (A) Evaluation
of the ESTIMATE Scores. (B) Quantity of immunological infiltration cells as determined by MCPcounter. (C) Correlation heatmap of risk score with
fibroblast, EMT and angiogenesis associated genes. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure S2). Further analysis showed that RGS4 expression was
positively correlated with matrix score and fibroblast expression
(Figure 7A and Supplementary Figure S3). The expression of genes
related to fibroblast and epithelial interstitial transformation was
highly consistent with that of RGS4 (Figure 7B). The GSEA analysis
showed that patients with high RGS4 expression were highly
enriched in pathways related to angiogenesis and EMT
(Figure 7C). Single cell sequencing dataset GSE167297 confirmed
that RGS4 was highly expressed in fibroblasts (Figures 7D–F).

3.7 Drug sensitivity analysis

The drugs related to the RGS4 were downloaded from the
CellMiner database. The results showed that patients with high
RGS4 expression were more sensitive to Lapatinib, Tamoxifen, RO-
5126766 and AT-13387, while patients with low RGS4 expression were
more likely to benefit from Axitinib and Lenvatinib (Figure 7G).

4 Discussion

Recently, more and more studies have shown that RGS family
genes, as regulators of GPCRs, play an important role in the

occurrence, development and prognosis of many cancers and has
been proved to be potential drug targets for the treatment of
malignant tumors (Hurst and Hooks, 2009; Dasgupta et al., 2021;
Weisshaar et al., 2022; Zhang et al., 2022). Here, we systematically
analyzed the role of RGS family genes in the tumor
microenvironment and the prognostic value of gastric cancer for
the first time. The results showed that amplification and missense
mutations of RGS family genes are common in gastric cancer. Most
RGS genes, especially RGS22, RGS3, RGS4, and RGS5, have copy
number amplification. Previous studies have shown that gene
mutations and abnormal DNA copy number changes are
important molecular mechanisms of many human diseases (Tang
and Amon, 2013; Martincorena and Campbell, 2015; Hollox et al.,
2022). Genome-wide CNV is often used for disease detection,
visualizing the deletion or amplification of genomic DNA from
tumors and hereditary diseases (Panda et al., 2020). For tumors, the
missing fragment may contain tumor suppressor genes, while the
amplified fragment may contain oncogenes. The amplified RGS
family genes may be closely related to the pathogenesis of cancer,
which arouses our interest to further explore the role of RGS family
genes in the occurrence and development of gastric cancer.

Further studies confirmed that some RGS family genes are
associated with poor prognosis of gastric cancer. High expression
of RGS1, RGS2 and RGS3 in patients with gastric cancer has been

FIGURE 5
Evaluation of prognostic value and clinical features of RGS4 expression. Kaplan-Meier survival analysis (A) and time-dependent ROC curve (B) of
RGS4 expression in GSE66229, GSE13861, GSE84433 and STAD. (C) Expression of RGS4 in patients with different clinical stages or depth of invasion.
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shown to be associated with poor prognosis or poor tumor stage
(Wang et al., 2017; Li S. et al., 2021; Yang et al., 2022). Our results
suggest that RGS1 and RGS2 are adverse prognostic factors in some
gastric cancer cohorts. RGS3 does not appear to be associated with
prognosis in patients with gastric cancer, whereas RGS5, which has
been shown to be associated with abnormal vascular formation, is a
prognostic risk factor in three gastric cancer cohorts (Wang et al.,
2010). We further constructed a 3 RGS genes-related prognostic
signature to predict the prognosis of patients with gastric cancer, and
found that the high-risk subgroup having a worse prognosis and
higher tumor stage.

The occurrence, development and prognosis of tumors are
closely related to the activation of tumor signals and the
remodeling of the surrounding microenvironment. In the high-
risk group, a variety of pathways involved in remodeling tumor
microenvironment matrix and promoting tumor metastasis (such as
angiogenesis, hypoxia, apical junction, epithelial mesenchymal
transformation, myogenesis, etc.) and pathways closely related to
tumor cell proliferation and differentiation (upregulation of KRAS

signal, dysfunction of hedgehog signal, NOTCH signal and TGFβ
signal, etc.) were highly enriched. These pathways contribute greatly
to tumor genesis, progression and metastasis (Shimo, 2020; Song
and Zhou, 2021; Xing et al., 2021; Qing et al., 2022). At the same
time, the results of tumor microenvironment analysis showed that
the high-risk group had higher interstitial scores and fibroblast
infiltration. It is well known that the tumor microenvironment is
composed of tumor cells and their surrounding immune and matrix
components, which play different roles in the development of
tumors (Xiao and Yu, 2021). The interaction of non-neoplastic
stromal cells, particularly cancer-associated fibroblasts, with tumor
cells contributes to the formation and spread of malignant solid
tumors (Huang et al., 2022; Jenkins et al., 2022). Our results suggest
that the RGS family may be involved in the regulation of the stromal
components of the tumor microenvironment.

Considering that RGS4 is associated with poor prognosis in four
gastric cancer data sets, we then focused on exploring the effect of
RGS4 on the prognosis and treatment of gastric cancer. At present,
RGS4 family proteins as a new regulatory factor of malignant

FIGURE 6
Functional enrichment analysis of RGS4-related genes. (A) Veen plot of the intersection of RGS-related genes. GO (B) and KEGG (C) analyses of
RGS4-related genes.
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tumors, its role has not been well proved. RGS4 has recently been
studied as a tumor promoter in glioblastoma (Bao et al., 2020; Guda
et al., 2020), non-small cell lung cancer (He et al., 2019) and
osteosarcoma tumors (Liu et al., 2020), and is reported to be a
potent driver of cell proliferation, invasion and migration. Studies
have shown that overexpression of RGS4 is associated with the
development and poor prognosis of glioblastoma (Bao et al., 2020)
and non-small cell lung cancer (He et al., 2019). However, some
studies have reported that increased RGS4 protein significantly
inhibits cell migration and invasion in breast cancer (Xie et al.,
2009) and loss of RGS4 is associated with poor prognosis in pediatric
nephroblastoma (Liu et al., 2017). Our study found that RGS4 is
closely related to signaling pathways related to tumor formation and
metastasis.

Here, for the first time, we studied the correlation between
RGS4 and fibroblasts, and found that RGS4 was significantly
positively correlated with fibroblast infiltration in the tumor immune
microenvironment. The expression of RGS4 was significantly positively
correlated with the expression of CAFs biomarkers (ACTA2, FAP,
PDGFRB) and EMT markers (FGF2, Twist2, Twist1). Recent studies

have shown that gastric cancer patients with high expression of
ACTA2 have poor prognosis and poor response to immunotherapy
(Park et al., 2023). Previous studies have shown that the main function
of FGF2 is related to cell adhesion and angiogenesis, and patients with
high FGF2 expression level have poor TNM stage and prognosis (Li Y.
et al., 2020). Zhao et al. found that Twist1 was an independent factor
affecting the pathological response to neoadjuvant chemotherapy for
gastric cancer, and the expression of FAP inCAFwas a significant factor
for poor prognosis in patients with gastric cancer (Tong et al., 2022;
Zhao and Zhu, 2023). The expression of PDGFB has been reported to
be closely related to tumor metastasis in patients with gastric cancer
(Han et al., 2020; Du et al., 2022). In addition, single-cell sequencing
data further confirmed the high expression of RGS4 in fibroblasts. Our
results suggest that high expression of RGS4 is closely related to
fibroblast infiltration and stroma formation in the tumor immune
microenvironment, which may promote tumor development and
metastasis.

In addition, there are some limitations in this study. There may
be population selection bias based on public datasets. Further cell
and animal experiments are needed to further investigate the

FIGURE 7
Modulation of RGS4 on tumormicroenvironment. (A) The stromal score and the infiltration of fibroblasts of the RGS4 high- and low-group in GSE66229.
(B) Evaluation of the expression of fibroblast and EMT-related genes in different RGS4 expression groups in GSE66229. (C) GSEA analysis in different
RGS4 expression groups. (D)Distribution of different immune cells in GSE167297. (E) Expression distribution of RGS4 in different immune cells in GSE167297. (F)
Violin diagram of RGS4 expression distribution in different immune cells of GSE167297. (G)Drug susceptibility analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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molecular mechanism of RGS gene family regulation. In conclusion,
our study provides a new perspective for exploring the mechanism
of RGS family genes in the development of gastric cancer and
proposes possible therapy through drug sensitivity studies, which
is critical for precision medicine in gastric cancer.
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