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Linking machine learning and
biophysical structural features in
drug discovery
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Introduction: Machine learning methods were applied to analyze
pharmacophore features derived from four protein-binding sites, aiming to
identify key features associated with ligand-specific protein conformations.

Methods: Using molecular dynamics simulations, we generated an ensemble
of protein conformations to capture the dynamic nature of their binding sites.
By leveraging pharmacophore descriptors, the AI/ML framework prioritized
features uniquely associated with ligand-selected conformations, enabling
a mechanism-driven understanding of binding interactions. This novel
approach integrates biophysical insights with machine learning, focusing on
pharmacophoric properties such as charge, hydrogen bonding, hydrophobicity,
and aromaticity.

Results: Results showed significant enrichment of true positive
ligands—improving database enrichment by up to 54-fold compared to
random selection—demonstrating the robustness of this approach across
diverse proteins.

Conclusion: Unlike conventional structure-based or ligand-based screening
methods, this work emphasizes the role of specific protein conformations in
driving ligand binding, making the process highly interpretable and actionable
for drug discovery. The key innovation lies in identifying pharmacophore features
tied to conformations selected by ligands, offering a predictive framework for
optimizing drug candidates. This study illustrates the potential of combining ML
and pharmacophoric analysis to develop intuitive and mechanism-driven tools
for lead optimization and rational drug design.

KEYWORDS

drug discovery, machine learning, pharmacophore, conformational selection, docking,
ensemble docking, chemical biology

1 Introduction

Contemporary approaches in computational drug discovery and computational
chemical biology are mostly centered around protein: ligand predictions and
rationalizations, in particular through using docking approaches. Docking is not
only used to identify a specific binding mode for a particular ligand in a given
protein target, but it is also used, and maybe mostly so nowadays, as a virtual
screening tool that will “reduce the size of the chemical haystack” and allow a faster
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and more economical identification of drug candidate “needles.”
There are many approaches, tools, and scales of virtual screening
through docking. Our group and the groups of several colleagues
and collaborators have experienced success over the last few years
in ligand discovery by using more than one structure for the protein
targets (Evangelista et al., 2016; Amaro et al., 2018; Evangelista et al.,
2019). By success, we mean that the enrichment of a database in
actual ligands after docking is significantly increased compared to
the enrichment of the database in ligands prior to docking. We
and our collaborators have achieved these results by modeling
a conformational selection mechanism rather than an induced
fit mechanism for ligand binding. In conformational selection,
the ligands “select” specific protein conformations to form a
protein–ligand combination that is thermodynamically favorable.
The key to a successful docking campaign is as follows: like
other groups, we mostly have used an ensemble docking method,
where multiple protein conformations are generated using
MD and used for in multiple-protein conformation docking
calculations.

As specified above, this approach has not only proven valuable
to vastly increase database enrichment by identifying in retrospect,
from known ligands: decoys database, these protein conformations
that are indeed massively selected by the proteins’ ligand. Over
the last few years, our collaboration has used machine learning
approaches to identify the properties that such specific protein
conformations may possess that are associated with their selection
by ligands (Akondi et al., 2019; Sripriya Akondi et al., 2022;
Gupta et al., 2022a; Gupta et al. 2022b; Gupta et al. 2023). This was
successful, but the approach used combination protein descriptors
that are quite general and, not unlike the case of QSAR for ligand-
based discovery, not necessarily easily explainable in terms of
physical properties of the protein target’s selected conformations
(Gupta et al., 2023).

As stated by the editors in the description of this special
issue of Frontiers in Molecular Biosciences, there is a need for
“research that utilizes ML protocols/architectures but offers a detailed
and comprehensive interpretation of observed phenomena.” This
work is the first step toward applying sophisticated machine
learning approaches but, instead of processing arcane and obscure
protein descriptors occasionally, we have used pharmacophoric
descriptions of the protein target’s binding sites in this study
(Śledź and Caflisch, 2018). This has the advantage of allowing
a direct and straightforward rationalization of the binding site’s
features associated with conformation selection, in terms of
charges, hydrogen bond potential, hydrophobicity/hydrophilicity,
and resonance of the protein environment, which are indeed
concepts used to rationalize binding and optimize hits
and leads (Leach et al., 2009).

2 Methods

The four target proteins that were used in the present study
as extensive molecular dynamics trajectories and characterization
of the conformation, leading to ligand binding, are available
(Evangelista et al., 2019; Gupta et al., 2022a; Gupta et al., 2023).

TABLE 1 Target proteins and the PDB crystal structures used in
this study.

Protein name Gene name PDB ID Reference

Adenosine receptor
A2A

ADORA2A 3EML Jaakola et al. (2008)

β2-Adrenergic
receptor

ADRB2 2RH1 Cherezov et al.
(2007)

δ-Type opioid
receptor

OPRD1 4N6H Fenalti et al. (2014)

κ-Type opioid
receptor

OPRK1 4DJH Wu et al. (2012)

2.1 Molecular dynamics

In this study, we used the molecular dynamics conformations
obtained fromMD simulations of a previous work in our laboratory,
involving our four GPCR structures of interest [adenosine receptor
A2A, β2-adrenergic receptor, δ-type opioid receptor, and κ-type
opioid receptor, as listed in Table 1] (Evangelista et al., 2019). These
structures were downloaded from the RCSB Protein Data Bank
(RCSB-PDB) and were optimized by deleting non-native domains
and co-crystallized ligands, and buildingmissing loops.Theproteins
were then placed in a bilayer membrane with a lipid composition
of phosphatidylcholine (42%), phosphatidylethanolamine (25%),
phosphatidylserine (14%), and cholesterol (19%). Coarse-grained
models were used to reduce the systems from approximately 125,000
full atoms to around 14,000 CG particles. Gromacs v5.1.0 software
was used for 600-ns MD simulations, and frames were saved every
200 ps, representing 3,000 conformations for each protein. These
simulations ran on the MolDyn High-Performance cluster at the
UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee,
provided the structural basis for our pharmacophore and machine
learning analysis, offering insights into the dynamic nature of these
proteins’ binding sites. In the current study, we used a set of 3,000
MD conformations for each of the proteins (i.e., 12,000 structures in
total for the four proteins used here).

2.2 Conformation preparation

Allmolecular dynamics conformationswere imported in aMOE
database (Molecular Operating Environment, Chemical Computing
Group Ltd., Montreal, Canada, 2022). These conformations were
then superposed on the first MD frame based on heavy atoms of
the pocket residues. Atomic partial charges were assigned from the
MMFF94x force field, as implemented in MOE.

2.3 Pharmacophore generation

The SiteFinder facility from MOE was used to identify potential
active sites in the first conformation of the molecular dynamics
trajectories with a focus on the known ligand-binding sites to
concentrate on the most functionally significant areas of the
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TABLE 2 Number of active and decoy ligands to each protein.

Protein name Known ligands (actives) Decoys

Adenosine receptor A2A 844 10,899

β2-Adrenergic receptor 447 15,255

δ-Type opioid receptor 377 14,703

κ-Type opioid receptor 307 11,973

proteins. SiteFinder is based on the concept of alpha shapes, which
represent a more generalized form of convex hulls (Edelsbrunner
and Mücke, 1994).

Pharmacophore feature generationwas conducted using theDB-
PH4 facility in MOE within a 6.5-Å cutoff from the SiteFinder
binding site using the “unified scheme” pharmacophore definitions
in MOE: hydrogen bond donor (Don); hydrogen bond acceptor
(Acc); cation (Cat); anion (Ani); aromatic center or non-aromatic
π-system ring, in which each atom is sp2 hybridized (Aro); and
hydrophobic atoms and hydrophobic centers (Hyd).

The default pharmacophore radii sizes are set at 1.2 Å for
Acc and Don features, 1.4 Å for aromatic centers, and 1.6 Å for
hydrophobic features. Hydrophobic features that are within 1 Å to
one another are clustered into a single feature with an increased
radius, up to a maximum size of 3 Å. A Boolean “and” is defined for
overlapping of “Don & Cat” or “Don & Acc” features. Finally, using
the database autoPH4 facility in MOE, the pharmacophore features
extracted from all protein MD trajectories are clustered together
to create consensus features. These consensus features reflect the
frequency with which specific pharmacophore features occur in a
particular region of space in the database.

2.4 AI/ML feature ranking framework

The pharmacophores generated were first translated into a
binary encoded database by utilizing the available frequency data.
Later, it was then subjected to an AI/ML feature ranking framework
to identify and choose distinctive pharmacophoric characteristics
for each protein. The process of feature selection for developing a
predictive model entails reducing the number of input variables.
In some cases, limiting the amount of input variables may improve
model performance while also cutting modeling computing costs.

The key approach here is to identify the pharmacophore features
that are specifically associated with the protein conformations
selected by the ligands.These selected conformations were identified
and described in our previous work (Evangelista et al., 2019) and
used in our previous publications (Gupta et al., 2022a; Gupta et al.,
2023) to identify global protein properties correlated with ligand
binding. Here, as described above, we are attempting to identify
pharmacophore features associated with ligand binding rather than
global—and often obscure—protein descriptors.

To do so, we used four different ML feature selection algorithms
to identify the key pharmacophore properties and eliminate the
redundant properties to maximize the prediction of probable
protein-binding conformations while reducing dataset complexity.

Analysis of variance (ANOVA), mutual information (MI),
recurrence quantification analysis (RQA), and Spearman correlation
are the four approaches used to identify pharmacophore features.

The linear association between the various pharmacophore
features was determined using ANOVA, and the significant
pharmacophore features with the greatest F-values
were chosen (Johnson and Synovec, 2002).The F-value is a statistical
test used to determine whether the predicted values of a quantitative
variable among various pre-defined groups differ from one another.
It is determined as the difference between the variances of the sample
means and the variances of the individual samples. In our work, the
ANOVA technique is applied between each feature and the target
vector to obtain the F-value for each feature. The features are then
ranked based on their F-value, where the higher the F-value, the
more important the feature.

MI (Macedo et al., 2019) is a measure of how much information
can be learned about a variable ‘P’ by utilizing a different random
variable ‘Q.’ To understand the common information included in
all pharmacophore features, the MI value for all pharmacophore
descriptors is first calculated. If the MI value is ‘1,’ it is assumed that
all the pharmacophore features share the same information, and if
it is ‘0,’ it is assumed that none of the features share any common
(or special) information, and pharmacophore properties with the
greatest MI value were chosen.

In RQA, the measure utilized to rank the pharmacophore
properties was entropy, which is the probability distribution of
the diagonal line on the RQA plot (Eckmann et al., 1987). It
facilitates research on the relationship between the RQA-based
entropymeasure and the likelihood of discovering probable protein-
binding conformations in terms of the time–space evolution of
protein conformations. The method contributes to the exploration
of the relationship between RQA-based entropy and the likelihood
of discovering probable protein-binding conformations.

In the Spearman correlation coefficient (Hauke and Kossowski,
2011), pharmacophore properties are sorted using the absolute
value of the correlation coefficient. This approach facilitates the
identification of highly correlated pharmacophoric features. The
relevant formulas for the four feature selectionmethods are provided
in Supplementary Information.

To identify the important pharmacophore features, a feature
ranking score is computed based on the scores obtained from
each of the individual methods and the features with the highest
ranking score of ‘4’ are retained, indicating that all four ML feature
selection approaches identify such a feature as potentially significant
for binding.

2.5 Validation of pharmacophore models

The capacity of the pharmacophore models to identify the
targets’ ligands in ensemble-based docking was assessed using
databases of ligands and decoys.

2.5.1 Preparing DUD-E/GDD
database—conformation generation

Two widely used publicly accessible datasets were used: i) the
Directory of Useful Decoys, Enhanced (DUD-E) (Mysinger et al.,
2012) that contains “active” (known ligands) and “decoy”
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FIGURE 1
Flowchart illustrating the methodology employed in our study. The process begins with MD trajectory conformations and progresses through several
stages, including conformation preparation, pharmacophore generation, and validation of pharmacophore models. AI/ML feature ranking framework
integrates various statistical and analytical methods, resulting in a majority voting system to yield a refined set of features.

TABLE 3 Details of sets of known ligands/decoys used.

# Target receptor UniProt ID #PDB crystal Structures with a unique ligand GDD entry

1 Adenosine receptor A2A (ADORA2A) P29274 58 24 AA2AR_HUMAN

2 β2-Adrenergic receptor (ADRB2) P07550 39 17 ADRB2_HUMAN

3 δ-Type opioid receptor (OPRD1) P41143 5 5 OPRD_HUMAN

4 κ-Type opioid receptor (OPRK1) P41145 5 5 OPRK_HUMAN

FIGURE 2
All pharmacophore features generated for each protein receptor.
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TABLE 4 Number of pharmacophore features after applying thresholds of frequencies.

Frequency threshold range # of pharmacophore features for each protein

ADORA2A ADRB2 OPRK1 OPRD1

No threshold 282 542 697 329

Between 1% and 5% 108 153 279 99

Between 1% and 10% 125 183 342 119

Between 1% and 15% 134 201 368 128

Between 1% and 20% 143 213 382 141

Between 1% and 25% 148 223 388 146

TABLE 5 Important pharmacophore features selected using the AI/ML framework.

Frequency threshold range # of important pharmacophore features selected using the
AI/ML framework for each protein

ADORA2A ADRB2 OPRK1 OPRD1

No threshold 26 6 19 33

Between 1% and 5% 6 0 4 8

Between 1% and 10% 8 2 7 9

Between 1% and 15% 10 5 7 14

Between 1% and 20% 16 5 8 14

Between 1% and 25% 20 7 7 19

TABLE 6 Maximum enrichments in case of each protein.

Protein

ADORA2A ADRB2 OPRD1 OPRK1

Total number of features in the cloud of pharmacophores 282 542 329 697

Frequency threshold range Max enrichment

No threshold (original) 2.4 54.2 5.2 NA

Threshold between 1% and 5% 0.9 NA NA 1.2

Threshold between 1% and 10% 14.9 NA NA 3.9

Threshold between 1% and 15% NA 13.7 NA 3.9

Threshold between 1% and 20% NA 9.8 NA 0.0

Threshold between 1% and 25% NA 3.3 NA 8.1

Maximum enrichments are shown in bold.

compounds for multiple target receptors including ADORA2 and
ADRB2, and ii) the GPCR Decoy Database (GDD) (Gatica and
Cavasotto, 2011) that contains “active” and “decoy” molecules
for OPRK1 and OPRD1 (Table 2). All active and decoy datasets

were included in MOE databases, and their atomic charges were
assigned using the MMFF94x force field implemented in MOE.
Conformations of “active” and “decoys” were generated using
the conformer generation function of the open-source chemistry
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TABLE 7 Enrichment of pharmacophore models.

Protein Enrichment
Models by MD trajectories

Step 1
Pharmacophore

search

Step 2
Pharmacophore

dock

ADORA2A 14.25 14.90

ADRB2 15.93 54.27

OPRD1 4.78 5.26

OPRK1 5.57 8.12

TABLE 8 Comparison between the AI-ML model and ligand-based
pharmacophore models.

Protein Enrichment based
on ligand-based
pharmacophore

models

Enrichment based
on the AL-ML
workflow

ADORA2A 5.10 14.90

ADRB2 3.04 54.27

OPRD1 4.88 5.26

OPRK1 1.97 8.12

TABLE 9 Comparison between the AI-ML model and X-ray
structure-based pharmacophore models.

Protein Enrichment
based on X-ray

structure-
based

pharmacophore
models

Enrichment
based on the

AL-ML
workflow

ADORA2A 3.3 14.90

ADRB2 63.73 54.27

OPRD1 3.47 5.26

OPRK1 3.57 8.12

toolbox Open Babel (O’Boyle et al., 2011). A Python script was
developed in-house to process and automate conformer generation,
and up to 100 unique conformers for molecules were generated and
stored in an MOE database.

2.5.2 Pharmacophore search and enrichment
calculation

The pharmacophoric features identified, as described in
Section 2.4, were used to screen the compounds in the compounds’
databases described above. For every compound in the database,

TABLE 10 Selected PH4s from the AI/ML feature ranking framework.

ADRB2 ADORA2A OPRD1 OPRK1

F1_Don F1_Don 1_Don F1_Acc

F2_Acc F2_Don F2_Don F2_Don|Acc

F3_Acc F3_Don F3_Don F3_Acc

F4_Don F4_Aro|PiR F4_Acc F4_Acc

F5_Don F5_Acc F5_Don F5_Acc

F6_Don F6_Aro|PiR F6_Don|Acc F6_Acc

F7_Don F7_Hyd|HydA F7_Acc

F8_Don

FIGURE 3
Final pharmacophore models.

the conformation that showed the minimum RMSD between
the pharmacophore query features and their respective ligand
annotation points was defined as the best match (Lätti et al., 2016).
Although every conformation of a molecule was evaluated against
the pharmacophore model, only the best matched conformation
was retained and stored in an MOE database, ensuring one
representative conformation for each compound which passed the
pharmacophore filter.

Following the pharmacophore search, the enrichment
factor (EF) was calculated to evaluate the effectiveness of the
pharmacophore models in differentiating active ligands from
decoys. The EF was calculated using the below equation.

EF =
(activehits)/ (decoyhits)a fterPH4 search

(activehits)/ (decoyhits) in theDUD.EorGDDdatabase
. (1)

Frontiers in Molecular Biosciences 06 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1305272
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Ahmadi et al. 10.3389/fmolb.2024.1305272

FIGURE 4
Final pharmacophore model of ADRB2.

2.5.3 Docking and enrichment calculation
The molecules that successfully passed the pharmacophore

search were subsequently used for docking on their respective
target receptors. The potential binding sites from MOE SiteFinder
were used as binding sites for docking. The receptor was
treated as rigid, and the binding poses were scored initially by
London ΔG scoring, followed by a rescoring using GBVI/WSA
ΔG (Labute, 2008). For each compound, the five highest
ranked poses based on GBVI/WSA ΔG underwent refinement
through molecular mechanics minimization, utilizing the
MMFF94x force field followed by calculation of the MM-
PBSA interaction energy, as implemented in MOE, between
the docked compounds and the protein target. Docking was
performed with pharmacophore placement constraint, which
allows the binding modes: after the docking refinement stage,
only the poses that align with the pharmacophore model
are retained. Any docked pose that does not match the
pharmacophore query is eliminated. Given that some ligands might
be discarded during the docking calculations with pharmacophore
placement, the EF was recalculated using Equation 1. Docking
jobs were executed either on a local machine using 24
CPU cores or Alabama Supercomputer (ASC) using 60
cores.

The flowchart below (Figure 1) illustrates the methodology
employed in our study.

2.6 Control calculations

Our AL-ML workflow was compared with three
pharmacophore-based screening: ligand-based pharmacophores,
pharmacophore models generated based on a single crystal
structure, and models generated using multiple crystal structures.
To make a comparison between our AL-ML method and ligand-
based pharmacophore screening, the whole DUD-E or GDD/GLL
databases were used, and after superposing all ligands on the co-
crystallized ligand as the template, the consensus pharmacophore
models were generated with the same number of pharmacophore
features, as was achieved in the AL-ML workflow. These models
were used to filter the databases of conformers to DUD-E for
all four proteins. The AI-ML workflow was also compared to
standard X-ray structure-based pharmacophore models, and
the same method was followed but by using the co crystalized
ligand (of PDB crystal structures in Table 1) in order to generate
pharmacophore models. Enrichment was also calculated in the
same way. Finally, we generated pharmacophore models following
the same method proposed in Figure 1, excluding the AI/ML
feature ranking, and using all available PDB crystal structures of
the target receptors co-crystallized with unique ligands (Table 3).
Pharmacophore features were generated on all prepared crystal
structures within a 6.5-Å cutoff from the co-crystallized ligands.
These features were then clustered to generate consensus features
which summarize the pharmacophore features that are common
to multiple structures. Pharmacophore features were sorted by
their frequency (Equation 1). Final pharmacophore models were
constructed by choosing six to eight features, prioritized based
on their frequencies, from the top of the sorted feature list. The
enrichment calculations in screening of known active ligands versus
decoys were performed similarly as explained (Formula 1). No
docking calculations were performed.

3 Results

3.1 Pharmacophore models generated
using all available MD conformations

After superposition of all 3,000 available conformations from
MD trajectories for each of the four proteins of interest, the
pharmacophore features generated, as described in Methods, are
illustrated in Figure 2.

The number of pharmacophoric features listed in Figure 2
varies between ∼300 and ∼700, indicating that most binding site
pharmacophores in a protein trajectory were present in several
of the protein conformations. These pharmacophore features were
run through the AI/ML workflow described above, and the output
features were combined to create the final pharmacophore models,
which were then selected for validation through pharmacophore
search and docking, as described in Methods.

3.2 AI/ML framework

The number of pharmacophoric features identified as
‘important” for each of the four proteins is given in Table 5, line

Frontiers in Molecular Biosciences 07 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1305272
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Ahmadi et al. 10.3389/fmolb.2024.1305272

FIGURE 5
Examples of the top scoring ligand in the final pharmacophore model.

TABLE 11 Comparison between our current results and previous
calculations.

Protein Previous enrichment
(Gupta et al. 202b)

Current enrichment

ADORA2A ∼10–12.5 14.9

ADRB2 ∼18–24 54.27

OPRD1 ∼10–37 5.26

OPRK1 ∼13–27 8.12

“no threshold”, i.e., including all pharmacophore features in ML
processing.

In addition, we also used fractions of the pharmacophoric
features that are not widely represented in the entire trajectory.
The rationale behind that is that since the number of protein
conformations selected by the ligand is a fraction of the total number
of conformations sampled by the protein, the pharmacophore
features associated with such conformations may be found less
frequent but still passing the ML criteria and defined as ‘important.’
In other words, pharmacophore features found in most of the
conformations may not be relevant for binding and may lead to
oversampling.

We have, hence, used the ML approaches described above with
only pharmacophore features present in up to 5%, 10%, 15%, 20%,
or 25% of the total number of pharmacophores. The corresponding
number of pharmacophores for each of the four proteins is given in
Table 4, and the number of such pharmacophores passing the ML
criteria is given in Table 5.

3.3 Pharmacophore search and docking

The pharmacophore features listed in Table 5 were used as a
filter for the compound databases, as described in Methods, i.e.,
with pharmacophore screening only along with pharmacophore-
directed docking.

Table 6 shows the maximum enrichment by pharmacophore
search achieved from each threshold range, and these results are
summarized in Table 7. The overall enrichment varies from one
protein to the other from a relatively mediocre 5.2 to a very
high 54.3 The cloud of pharmacophoric features shown in Figure 2
is very large, in hundreds. For ADRB2, 6 out of 542 features
selected using the AI/ML framework on a dataset with no threshold
provided the best results in terms of enrichments, while in case
of ADORA2A, limiting the data between a frequency threshold
of 1% and 10% provided the highest enrichment. In the case of
OPRK1, the best enrichment from the full 697 pharmacophores
is found when processing pharmacophores present in up to 25%
to achieve the highest enrichment ratio. In some cases, shown
with NA in Table 6 below, we could not obtain any enrichment
(either 0 actives or 0 compounds passed the pharmacophore
filter). In the case of OPRD1, no clear results could be obtained
without selecting manually seven pharmacophore features from
the “no threshold” 34 features, suggesting a possible imbalance
ratio of binding vs. non-binding conformations in the OPRD1 MD
trajectory.

The comparison between our AI-ML approach and ligand-
based pharmacophore models is summarized in Table 8, which
shows a significant improvement in using the AI-ML platform
in case of ADORA2A, ADRB2, and OPRK1, while a slight
improvement in case of OPRD1 receptors. The comparison
between our AI-ML approach and X-ray structure-based
pharmacophore models, as shown in Table 9, showed improvement
in screening actives versus decoys using our AI-ML workflow.
Although in case of ADRB2, we observed a slight decrease in
enrichment numbers, although both methods provided significant
enrichment.

Additional research is necessary to more effectively and
systematically handle the vast amount of available data, eliminate
data redundancy and noise, and enhance the enrichment ratios.
Potential strategies could include more fine-grained and bins
of the number of pharmacophore features processed by ML,
or clustering MD conformations prior to their use in this
ensemble pharmacophore generation workflow, rather than using
the whole MD trajectories, to limit potential data imbalance.
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The output of AI/ML feature ranking is shown in Table 10 and
Figure 3.

In addition, a detailed example of one of these models with
top scoring active ligands matching the pharmacophore features is
shown in Figures 4, 5.

The advantages of the results shown in Figure 3 are clear:
a limited number of pharmacophores, leading to an enrichment
of databases in ligands versus decoys, which can be easily
interpreted in terms of chemical and structural features. As
shown in Figure 3 and Table 10, the number and locations of the
pharmacophores are not identical for each of the four proteins. On
one hand, this is not unexpected since the GPCR proteins used here
have their own set of ligands. However, on the other hand, it is
not possible to assertively assess, at this early stage of the research,
howmany other possible combinations of pharmacophores could be
identified.

4 Discussion/conclusion

The work presented here is a first step toward using ML to
process an ocean of structural and chemical protein properties
to be used in ML in a way that makes the ML analysis easy,
intuitive, and actionable for lead optimization. In Gupta et al.
(2022a), we used feature scoring to identify unique descriptors
that can aid in distinguishing between binding and non-binding
protein descriptors, whereas in this work, we use the unique
pharmacophores to be better able to identify actives from a dataset
that consists of both actives and decoys. The aim of the AI/ML
approach is to make the dataset less complex in both situations
so that instead of requiring a supercomputer, we can perform
all the computations locally. Table 11 shows the comparison of
our current results to our previous (Gupta et al., 2022b) findings,
where the enrichment ratio values were computed to validate
the ML protein conformation selection/prediction framework.
The results proposed here show that this is a possible goal
that such medicinal chemistry-friendly properties lend themselves
well to the kind of ML processing that is usually efficient for
purely numerical—and very arcane—“haystacks of numbers.” Yet
much more work is needed for 1) identifying the optimum
ways to combine the pharmacophores and 2) characterize the
specificity of not only the protein conformations selected by
their ligands but also how the selected conformations differ
between them. The ultimate goal, in fine, will be to identify—if
they exist—the structural and chemical features that will lead
to ligand binding of the trajectory of a novel protein, about
which no or very little binding data are already known. This
is a difficult, maybe distant, goal, but the road to success
will undoubtedly require significant ML-based data analysis,
justifying the efforts the community invests in ML and AI,
as illustrated in this special issue of Frontiers in Molecular
Biosciences.
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