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Sex-specific nociceptor
modulation of the apical
periodontitis transcriptome

Katherine V. Lillis, Ruta Grinceviciute and Anibal Diogenes*

Department of Endodontics, University of Texas Health at San Antonio, San Antonio, TX, United States

Introduction: Apical periodontitis (AP) is a painful disease that develops quickly
following dental infections and is primarily characterized by robust inflammation
surrounding the tissues of the affected tooth, resulting in disruption of bone
homeostasis and periradicular bone loss. Moreover, there are distinct clinical
presentations, symptoms, and responses to AP treatment between male and
female subjects, creating a desperate need to further understand the sex-specific
mechanisms of AP.

Methods: With the growing evidence that nociceptors modulate AP development,
we utilized RNA sequencing in nociceptor-ablated (Nav1.8 <*/~, diphtheria toxin
A7) transgenic mice to study the nociceptor regulation of the periapical lesion
transcriptome using a rodent model of AP in female mice over 14 days.

Results: Overall, we found that female mice exhibit unique patterns of
differentially expressed genes throughout AP infection compared to male
mice and that the expression of these genes is regulated by nociceptors.
Additionally, nociceptor ablation results in a more significant enrichment of
biological processes related to immune responses earlier compared to cre-
control (Navl.8 <=*/7) females and greater expression of genes involved in
inflammatory processes and osteolytic activity.

Discussion: Therefore, while nociceptor ablation augments inflammatory and
bone resorption responses in both males and females in a mouse model of AP,
transcriptomic analyses demonstrate that the mechanisms through which
nociceptors modulate AP are distinct between sexes. These studies will provide
the foundation needed to study further mechanisms of sex differences in AP, an
area with a desperate need for investigation to treat current AP patients.
Understanding these mechanisms can ultimately inform treatment options to
alleviate suffering for millions of patients suffering from AP.
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1 Introduction

Apical periodontitis (AP) is a painful disease that develops quickly following
dental infections and is primarily characterized by robust inflammation surrounding
the affected tooth, disrupting bone homeostasis, thereby resulting in bone loss
(Graunaite et al., 2012). Moreover, there are distinct clinical presentations, symptoms,
and responses to AP treatment between male and female individuals (Polycarpou et al.,
2005; Khan etal., 2007; Estrela et al., 2011). Female subjects have been shown to have greater
AP prevalence than male subjects, as determined by the frequency of apical radiolucency
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(Berlinck et al., 2015). Clinical studies have reported a consistent sex
difference in odontalgia, with females reporting greater pain
(Polycarpou et al, 2005; Estrela et al, 2011), greater analgesic
consumption (Nusstein and Beck, 2003), and less analgesic pain
relief compared to males (Nusstein and Beck, 2003). Overall, clinical
reports are consistent with those in preclinical studies, in which
mechanical allodynia was assessed in mice, following a pulp
exposure procedure, where female mice exhibited significantly
lower baseline mechanical thresholds compared to male mice

(Mohaved et al., 2020). These clinical and preclinical studies

10.3389/fmolb.2024.1338511

demonstrate a desperate need to further understand the sex-
specific mechanisms of AP to enhance future treatment options.
In recent years, preclinical studies have focused on investigating
key hallmarks of AP: periapical inflammation and bone loss. As
such, there has been extensive work studying the crosstalk between
immune and bone cells throughout the development of the disease
(Silva et al., 2007; Garlet, 2010; Benedetto et al., 2013; Yucel-
Lindberg and Bage, 2013). Dental infections leading to AP trigger
the recruitment of immune cells and their subsequent release
of inflammatory mediators, such as cytokines, chemokines,
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FIGURE 1

Nociceptor-ablated females express a greater number of differentially expressed genes after 14 days of infection compared to cre-control females.
Enriched gene expression in either cre-control (Control) or nociceptor-ablated (ablated) females at day O (A), day 7 (B), and day 14 (C). Differentially
expressed (genes) are plotted as expression in average reads per kilobase of transcript per million mapped reads (RPKM) against the fold change (FC)
between nociceptor-ablated expression and cre-control expression. DEGs were defined as fold change (FC) > 1.5 and p < 0.05. n = 3-4/strain/

time point.
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FIGURE 2
Male and female differentially expressed genes share a minimal overlap except for nociceptor-ablated mice after 14 days of infection. Venn
diagrams depicting the total number of DEGs enriched in either cre-control (left column) or nociceptor-ablated (right column) mice for males and
females at day O (A), day 7 (B), and day 14 (C). DEGs were defined as fold change (FC) > 1.5 and p < 0.05. Examples of male DEGs are listed on the left;
examples of female DEGs are listed on the right; and common DEGs within each strain are listed in the middle (if applicable). A full male
transcriptomic dataset can be found at GEO #GSE205195 (Lillis et al., 2023). n = 3—-4/sex/strain/time point.

prostaglandins, and proteolytic enzymes (Benedetto et al., 2013;  receptor activator of NF-kB (RANKL), the cytokine responsible
Yucel-Lindberg and Bige, 2013). This inflammatory environment  for initiating osteoclastogenesis (Benedetto et al., 2013).

stimulates bone resorption via differentiation and activation of Our laboratory has shown that the regulation of AP inflammation
osteoclasts, primarily resulting from increased levels of the  and osteolytic activity is tightly regulated by nociceptors densely
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innervating the teeth and surrounding periapical tissue, demonstrating
their active role in the disease (Austah et al., 2022; Lillis et al., 2023). First,
we established that nociceptor ablation increases periapical bone loss and
the early influx of immune cells in vivo using a mouse model of AP
(Austah et al, 2022). We also demonstrated that nociceptors enhance
osteoblast mineralization and inhibit osteoclast resorption activity
in vitro (Austah et al, 2022). Later, we showed that nociceptor
ablation enhances the expression of inflammatory genes throughout
the course of infection using transcriptomic analyses in male mice (Lillis
etal,, 2023). Given the unique clinical and preclinical presentations of AP
in male and female subjects, we used RNA sequencing of periapical
lesions in a mouse model of the disease to test the hypothesis that
nociceptors modulate the periapical transcriptome in a sex-specific
manner to further study sex-specific changes in the transcriptomic
profile of AP tissue and its regulation by nociceptors in the present study.

2 Materials and methods

We generated nociceptor-ablated transgenic mice, as described
previously, following the UT Health San Antonio IACUC and
ARRIVE guidelines (Austah et al,, 2022; Lillis et al., 2023). Mice
were housed two to five per cage with food and water available ad
libitum. For all experiments, we used 8—12-week-old female mice,
and identical experiments were carried out simultaneously in a male
cohort, published earlier (Lillis et al., 2023). In brief, cre-control
(Nav1.8 “*7) and nociceptor-ablated (Nav1.8 <"~ DTA**'") mice
were generated by crossing heterozygous Nav1.8" mice with
homozygous Rosa26"™ T H9* a5 previously established (Stirling
et al., 2005; Austah et al., 2022; Lillis et al., 2023).

We used a well-characterized model of apical periodontitis in mice,
as described previously (Austah et al., 2022; Lillis et al.,, 2023). In brief,
we performed a pulp exposure in the mandibular and maxillary first
molars and allowed for infections to develop over the course of 0, 7, or
14 days (n = 3-4 mice/strain/timepoint, # = 20 mice total). Then, at the
respective time points, mice were briefly anesthetized with isoflurane
and euthanized via cervical dislocation. The first molars were dissected
and immediately snap-frozen in liquid nitrogen. As previously
described, we extracted RNA using the RNeasy Kit (QIAGEN;
Valencia, CA), according to the manufacturer’s recommendation
(Lillis et al, 2023). RNA was quantified using the NanoDrop
instrument (Thermo Scientific; Rockford, IL) and stored at —80°C.

Total RNA was submitted to the Genome Sequencing Facility at
UT Health San Antonio, where RNA sequencing and blinded
bioinformatics analysis were performed (Mecklenburg et al., 2020).
Total RNA was sequenced and analyzed, as described previously (Lillis
etal, 2023). In brief, the KAPA Stranded RNA-Seq Kit with RiboErase
(HMR) (Cat. #, KR1151, KAPA Biosystems) was used to prepare the
RNA-Seq library. The TopHat2 default settings were used to align
RNA-seq FastQ reads with the UCSC mouse build mm9 reference
genome, and the aligned BAM files were sorted (SAMTools) and then
processed using HTSeq-count to obtain the counts per gene to generate
reads per kilobase of the transcript per million mapped reads (RPKM).
We then used the R package “DESeq” to normalize data and perform
pairwise comparisons within strains between days 0, 7, and 14 and
between strains at each time point. The cutoffs for up- and
downregulated differentially expressed genes (DEGs) were fold
change (FC) > 1.5 with a p-value <0.05. Gene Ontology biological
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process analyses were performed, as described previously (Austah et al,,
2022; Lillis et al,, 2023). We used the PANTHER overrepresentation
test (Mi et al,, 2019) to analyze enriched biological processes for DEGs
between time points, including generation of the fold enrichment
score, number of genes per process, and p-values (Bonnot et al,, 2019).

2.1 Real-time PCR

We validated our findings with real-time PCR, as described
previously (Lillis et al., 2023). In brief, cDNA was synthesized from
total RNA using the High-Capacity RNA-to-cDNA kit, based on the
manufacturer’s instructions (Thermo Fisher Scientific; Waltham, MA).
We then used the TagqMan™ Fast Advanced Master Mix (Thermo
Fisher Scientific; Waltham, MA) and TaqMan™ gene expression
assays to conduct real-time PCR experiments on an ABI 7500 Fast
Real-Time PCR System (Thermo Fisher Scientific; Waltham, MA).
Relative gene expression was determined using the comparative
delta—delta cycle threshold method (AACt), normalizing each gene
of interest to GAPDH and cre-control Day 0 samples as the calibrator,
as previously described (Schmittgen and Livak, 2008). Statistical
analysis was performed using unpaired t-tests using GraphPad
Prism software with the statistical significance set at p < 0.05.

3 Results

3.1 Nociceptor-ablated females express a
greater number of differentially expressed
genes after 14 days of infection compared to
cre-control females

Immediately after pulp exposure, there were 148 differentially
expressed genes (DEGs; fold change [FC] >1.5 and p < 0.05) in
nociceptor-ablated females compared to cre-control females
(28 DEGs) at day 0 (Figure 1A). After 7 days of infection,
nociceptor-ablated females exhibited 12 DEGs in contrast to the
51 DEGs in the cre-control periapical lesions (Figure 1B). Cre-
control females had greater expression of genes, including prolactin
(Prl). However, at 14 days, nociceptor-ablated females showed a
more significant number of DEGs at 128 genes total, yet cre-control
females exhibited 16 DEGs at this time point (Figure 1C). Genes
with greater expression in nociceptor-ablated females after 14 days
included the wingless-type MMTV integration site family (Wnt),
member 7B (Wnt7b), Wnt4, chemokine (C-X-C motif) ligand 2
(Cxcl2), and Cxcll. Interestingly, cre-control females demonstrated
greater Prl, growth hormone (Gh), and dickkopf Wnt signaling
pathway inhibitor 1 (Dkk1) levels within apical periodontitis lesions
at 14 days post-pulp exposure.

3.2 Male and female differentially expressed
genes share a minimal overlap except for
nociceptor-ablated mice after 14 days

of infection

We have previously reported male AP lesion transcriptomics at
0-, 7-, and 14-day post dental infection induction in nociceptor-
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FIGURE 3

Nociceptor-ablated females exhibit unique changes in gene expression over the course of AP infection compared to cre-control females. Volcano
plots comparing gene expression over time for cre-control and nociceptor-ablated female mice. Data are presented as FC (later vs earlier time point)
against the p-value for day O vs. 14 (A), day O vs. 7 (B), and day 7 vs. 14 (C). DEGs were defined as FC > 1.5 and p < 0.05. n = 3-4/strain/time point.

ablated and cre-control mice (Lillis et al., 2023). When compared to
males, females exhibited distinct patterns of DEGs at each time
point, and nociceptors modulated these effects. At day 0, female cre-
control mice had 27 DEGs, whereas male cre-control mice expressed
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56 DEGs, with only paired box 1 (PaxIl) shared between sexes
(Figure 2A, left). For DEGs from nociceptor-ablated mice at day 0,
females had 148 DEGs, while males had 155 unique DEGs, with no
overlap between sexes (Figure 2A, right). After 7 days of infection,
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female cre-control mice exhibited 51 DEGs (e.g., Prl) and males had
10 DEGs (e.g., dentin sialophosphoprotein [Dspp]), with no DEGs in
common (Figure 2B, left). In contrast, nociceptor-ablated females
presented fewer DEGs at day 7, with only 12 DEGs, in contrast to
43 DEGs from nociceptor-ablated males (Figure 2B, right). At day
14 post-pulp exposure, cre-control females showed fewer DEGs,
with 15 DEGs (e.g., Prl and Gh), compared to the 220 DEGs male
cre-control mice possessed (Figure 2C, left). However, cre-control
males and females shared one DEG in common, DDB1 and CUL4-
associated factor 12-like 2 (Dcaf1212). For nociceptor-ablated mice,
day 14 was the time point where the most DEGs were shared
between sexes, with 50 DEGs in common between males and
females (Figure 2C, right). Overall, nociceptor-ablated males had
209 DEGs at day 14 (e.g., interleukin 1 beta [Il1b] and tumor
necrosis factor [Tnf]), while females had 78 DEGs (e.g., Wnt4
and Wnt7b).

3.3 Nociceptor-ablated females exhibit
unique changes in gene expression over the
course of AP infection compared to cre-
control females

After 14 days of infection, nociceptor-ablated females exhibited
158 unique upregulated (FC > 1.5, p < 0.05) genes, whereas cre-control
females had 614 upregulated genes when compared to day 0 expression
(Figure 3A). A total of 170 genes were upregulated in both nociceptor-
ablated and cre-control females between 0 and 14 days. Among these
common upregulated genes, nociceptor-ablated mice had greater FC
for secreted frizzled-related protein 4 (Sfrp4), tumor necrosis factor
(ligand) superfamily, member 11 (Tnfsf11), and chemokine (C-C
motif) ligand 3 (Ccl3). Notably, Prl and Gh were upregulated only
in AP of female mice between 0 and 14 days. During this timeframe,
115 genes were downregulated uniquely in nociceptor-ablated females,
and 184 were downregulated only in cre-control females, while
71 genes were commonly downregulated in both strains. Of the
common downregulated genes, cre-control females had greater FC
downregulation for genes, including Dspp and fibroblast growth factor
9 (Fgf9). Nociceptor-ablated females showed exclusive downregulation
of genes like sclerostin (Sost), whereas genes like bone morphogenetic
protein 7 (Bmp7) were only downregulated in cre-control.

Upon investigating changes in the gene expression earlier in AP
females had
upregulation of 297 common genes between 0 and 7 days

infection, nociceptor-ablated and cre-control
(Figure 3B). Nociceptor-ablated females presented exclusive
upregulation of 240 genes, whereas cre-control females had
upregulation of 478 unique genes. Of the commonly upregulated
genes, nociceptor ablation led to greater FC for genes including Sfrp4
and Ccl2. Cre-control females had greater FC for upregulated genes
including CxclI3 and Prl. Genes exclusively upregulated in
nociceptor-ablated females included Tnf, Ccl3, and Il1b, and cre-
control females showed upregulation of genes including Tnfsf11, the
tumor necrosis factor receptor superfamily, member 11a, NFKB
activator (Tnfrsfl1a), matrix metallopeptidase 8 (Mmp9), cathepsin
K (Ctsk), acid phosphatase 5, tartrate-resistant acid phosphatase 5
(Acp5), and Il6. For genes downregulated between 0 and 7 days,
there were 135 genes shared between the two strains, and
nociceptor-ablated females had 270 unique downregulated genes
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compared to 233 for cre-control, where Dspp was more
downregulated in nociceptor-ablated females. Notably, only cre-
control females had downregulation of Wnt10b and Bmp7 between
0 and 7 days.

Later in the AP infection, 51 genes were commonly upregulated
between nociceptor-ablated and cre-control females when comparing
expression between 7 and 14 days (Figure 3C). Nociceptor-ablated
females expressed 279 exclusively upregulated genes, and cre-control
females had a unique upregulation of 183 genes. Of the shared genes,
the phosphate-regulating endopeptidase homolog, X-linked (Phex)
and collagen, type II, alpha 1 (Col2al) showed a greater fold change
increase in nociceptor-ablated females compared to cre-control. Only
nociceptor-ablated females demonstrated a downregulation of Prl, Gh,
and pro-opiomelanocortin-alpha (Pomc) between 7 and 14 days.

3.4 Nociceptor ablation results in a greater
enrichment of biological processes related
to immune responses compared to
control females

After 14 days of infection, Gene Ontology biological processes
(BPs) were enriched in both nociceptor-ablated and cre-control
females. Between 0 and 14 days, nociceptor-ablated mice had a
greater enrichment for processes related to the chemotaxis of
lymphocytes, macrophages, neutrophils, and granulocytes
(Figure 4A, left). Nociceptor-ablated mice also had ~2.4x greater
enrichment of processes, including the toll-like receptor signaling
pathway, acute inflammatory response, and pattern recognition
receptor signaling pathway. Additionally, nociceptor-ablated
females had ~1.5x more significant enrichment of osteoclast
downregulated DEGs,
substantial

differentiation. For only cre-control

females had a enrichment of odontogenesis,
odontogenesis of the dentin-containing tooth, and regulation of
biomineralization between 0 and 14 days (Figure 4A, right).

Earlier in the infection, nociceptor-ablated mice had enriched
upregulation of biological processes related to immune responses
and inflammation between 0 and 7 days following pulp exposure.
Notably, many processes related to immune cell activation had
greater upregulation enrichment in nociceptor-ablated females
compared to cre-control (Figure 4B, left). For instance, mast cell
activation, macrophage activation, and myeloid leukocyte activation
were processes with a greater enrichment in nociceptor-ablated
females. There was also ~1.7x greater enrichment of leukocyte
activation involved in inflammatory response and ~1.3x greater
enrichment of regulation of osteoclast differentiation in nociceptor-
ablated mice. In contrast, many of the earlier downregulated
biological processes in both strains involved mineralization
(Figure 4B, right). Of the processes commonly downregulated,
regulation of biomineral tissue development, regulation of
biomineralization, ossification, and tissue development had a
similar fold enrichment between nociceptor-ablated mice and
cre-control.

During the later stages of the infection, cre-control mice started
to exhibit greater expression of immune response biological
processes compared to nociceptor-ablated mice, particularly for
upregulated genes (Figure 4C, left). Between days 7 and 14, cre-
control mice had a greater enrichment in processes related to B cells,
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Nociceptors regulate the expression of genes related to inflammation and bone homeostasis throughout the course of AP infection. Heatmap of
selected DEGs at day 14 based on the calculated Z-score of individual gene RPKM values separated by biological process for cre-control (top) and
nociceptor-ablated (bottom) samples (n = 3/strain) (A). Time course of gene expression throughout AP progression plotted as days post-pulp exposure
vs. RPKM for selected genes for cre-control (circle) and nociceptor-ablated (square) mice (B). RT-PCR validation of selected genes for cre-control
(circle) and nociceptor-ablated (square) mice (C). n = 3—4/strain/time point. *p < 0.05, **p < 0.01, and ***p < 0.001.

including regulation of B-cell proliferation, differentiation, and
activation. There was also a greater enrichment of leukocyte
differentiation and activation. Furthermore, cre-control mice had
enriched processes related to immune system process and immune
response later in the infection compared to nociceptor-ablated mice.
Conversely, the downregulated processes at this stage were more
related to secretion and cellular communication pathways
(Figure 4C, right).

Nociceptors regulated the expression of genes related to
inflammation and bone homeostasis throughout the course of
AP infection.

After 14 days of infection, there were prominent differences in
the gene expression between nociceptor-ablated and cre-control
females (Figure 5A). Within genes related to the inflammatory
nociceptor-ablated mice had significantly greater
Cxcl2, and Cxcl3.
Nociceptor-ablated mice also had greater expression of genes

response,
expression of genes including Cxcll,
involved in response to the bacterium, while cre-control mice
had greater expression of Car3. There were also significant
differences within genes involved in bone metabolism. Within
the Wnt signaling pathway, nociceptor-ablated mice had higher
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expression of Wnt7b, Wnt4, and porcupine O-acyltransferase
(Porcn) after 14 days, whereas cre-control mice had greater
expression of carboxypeptidase Z (Cpz) and Dickkopf Wnt
signaling pathway inhibitor 1 (DkkI). Further analyses of bone
metabolism genes revealed that nociceptor-ablated mice had
greater expression of C-type lectin domain family 2, member g
(Clec2g), whereas cre-control females had significantly greater
expression of Prl and Gh after 14 days (Figure 5B). Day 14 RT-
PCR validation revealed similar patterns of gene expression, where
nociceptor-ablated mice showed greater expression of Cxcll, Cxcl2,
Whnt4, and Wnt7b, whereas cre-control showed greater expression of
Gh (Figure 5C).

4 Discussion

Apical periodontitis is a prevalent, debilitating disease affecting
the lives of millions of patients every day. Despite a greater
prevalence and unique presentation in females, there has been a
gap in knowledge regarding the mechanisms driving sex-specific
differences in the disease (Polycarpou et al., 2005; Berlinck et al.,
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2015). In this study, we utilized RNA sequencing to study the
transcriptomic profile of periapical lesions in female mice over
the course of 14 days. Furthermore, we investigated the role of
nociceptors in modulating the disease in a sex-specific manner.
Overall, we found that female mice exhibit unique patterns of
differentially expressed genes throughout AP infection compared
to male mice and that nociceptors regulate the expression of these
genes. Additionally, nociceptor ablation results in a greater
enrichment of biological processes related to immune responses
earlier compared to cre-control females and greater expression of
genes involved in inflammatory processes and osteolytic activity.
Therefore, while nociceptor ablation augments inflammatory and
bone resorption responses in both males and females in a mouse
model of AP, transcriptomic analyses demonstrate that the
mechanisms through which nociceptors modulate AP are distinct
between sexes.

Initial comparisons between nociceptor-ablated and cre-control
periapical lesion transcriptomes revealed that nociceptor-ablated
females expressed a greater number of differentially expressed genes
after 14 days of infection. Notably, nociceptors regulated the
expression of key genes in Wnt signaling pathways, a mechanism
known to be crucial in bone development and homeostasis
(Gonzélez-Quintanilla et al., 2021). After 14 days of infection,
nociceptor-ablated females exhibited greater levels of Wnt7b and
Whnt4, whereas cre-control females expressed more significant levels
of DkkI. There is growing evidence that both Wnt7b and Wnt4
promote the differentiation of stem cells within dental tissues, and
Whnt4 has also been shown to inhibit osteoclast formation (Lv et al.,
2018; Chen et al, 2019; Xu et al., 2022). Conversely, DkkI is a
secreted inhibitor of Wnt signaling and known to play a role in
negative feedback within this pathway (Cao et al, 2015). These
findings suggest that at day 14, there is activation of bone
mineralization differentiation via Wnt signaling, and nociceptor
ablation could inhibit early stimulation of these pathways since
cre-control females are already showing evidence of the negative
feedback of Wnt signaling. Interestingly, both nociceptor-ablated
and cre-control mice exhibited upregulation of Sfrp4, another Wnt
inhibitor, from days 0 to 7 and 0 to 14 (Haraguchi et al., 2016).
However, nociceptor-ablated females exhibited a greater fold
change in this gene, suggesting this could account for early
inhibition of Wnt signaling pathway activation in nociceptor-
ablated mice. As such, we have demonstrated the regulation of
Wnat-related gene transcription by nociceptors in female mice
modeling AP.

While Wnt signaling is a key pathway in bone formation, there
are a variety of other genes regulated by nociceptors related to bone
homeostasis in AP. When examining changes in gene expression
from day 0 to 14, both nociceptor-ablated and cre-control mice
showed upregulation of Tnfsfl1, the gene encoding RANKL, the
cytokine necessary for osteoclast differentiation (Benedetto et al.,
2013). However, the fold change in Tnfsf11 expression was greater in
nociceptor-ablated mice, reinforcing increases in osteolytic activity
we have previously shown in nociceptor-ablated mice (Austah et al.,
2022). Other genes known to promote bone resorption, including
Tnfrsfl1a (encodes RANK), Mmp9, Ctsk, and Acp5 (encodes TRAP),
were exclusively upregulated in cre-control mice between 0 and
7 days, suggesting an earlier osteolytic response in cre-control mice.
Conversely, over the course of 14 days, there was significant
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downregulation of osteoblast genes in both strains, including
Dspp and Fgf9, with their fold changes being greater in cre-
Moreover, nociceptor-ablated mice exhibited
Bmp7 was

downregulated in cre-control females. Furthermore, we have

control mice.

exclusive downregulation of Sost, while only
shown that cre-control females demonstrated a tremendous
increase in Prl and Gh (both ligands of the prolactin receptor)
expression throughout AP progression, whereas nociceptor-ablated
females showed much lower expression of these two genes. Male
mice exhibited minimal Prl and Gh transcription in periapical
lesions. This is particularly of interest, given the growing
understanding of the role of prolactin receptor signaling in bone
homeostasis, inflammation, and pain in a sex-specific manner
(Ledesma-Colunga et al., 2017; Chen et al, 2020; Paige et al,
2020). Together, these results suggest that nociceptors regulate
the kinetics of bone homeostasis genes, inhibiting mineralization
and promoting bone resorption, throughout AP infection.

Furthermore, we have demonstrated that nociceptors modulate
the kinetics of gene expression related to immune and inflammatory
processes. Over 14 days of infection, nociceptor-ablated females
consistently showed a greater fold enrichment of biological
processes, including those related to inflammatory response and
immune cell differentiation, activation, and chemotaxis. However,
we have shown that while these processes had a greater enrichment
in nociceptor-ablated mice early on the infection (i.e., day 0-7), cre-
control mice showed a greater enrichment of these processes later in
AP progression (i.e., day 7-14). This complements our early work
demonstrating nociceptor ablation results in an earlier influx of
immune cells in AP (Austah et al., 2022). Notably, at day 14, both
nociceptor-ablated females and males exhibited greater expression
of chemokines, including Cxcll, Cxcl2, and Cxcl3, suggesting that
increased chemotaxis is a common consequence of nociceptor
ablation between males and females. Key AP inflammatory genes,
including Tnf and Il1b, are also tightly regulated by nociceptors in a
sex-specific manner. Nociceptor-ablated males exhibited greater
expression of these two genes at 14 days compared to cre-control
males. In contrast, nociceptor-ablated females demonstrated
exclusive upregulation of these genes between days 0 and
7 compared to cre-control females. These findings demonstrate
that nociceptor ablation results in an enhanced inflammatory
response in both males and females, but the targets and kinetics
of modulation differ between sexes.

In summary, we have shown that males and females
demonstrate unique transcriptomic profiles within the periapical
lesions of AP infections. Furthermore, nociceptors sex specifically
modulate gene expression, particularly related to osteolytic activity
and inflammatory processes. These studies will further provide the
foundation needed to study mechanisms of sex differences in AP.
Understanding these mechanisms can ultimately inform treatment
suffering for millions of patients

options to alleviate

suffering from AP.
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