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Esophageal cancer (EC) remains a significant health challenge globally, with
increasing incidence and high mortality rates. Despite advances in treatment,
there remains a need for improved diagnostic methods and understanding of
disease progression. This study addresses the significant challenges in the
automatic classification of EC, particularly in distinguishing its primary
subtypes: adenocarcinoma and squamous cell carcinoma, using
histopathology images. Traditional histopathological diagnosis, while being the
gold standard, is subject to subjectivity and human error and imposes a
substantial burden on pathologists. This study proposes a binary class
classification system for detecting EC subtypes in response to these
challenges. The system leverages deep learning techniques and tissue-level
labels for enhanced accuracy. We utilized 59 high-resolution histopathological
images from The Cancer Genome Atlas (TCGA) Esophageal Carcinoma dataset
(TCGA-ESCA). These images were preprocessed, segmented into patches, and
analyzed using a pre-trained ResNet101 model for feature extraction. For
classification, we employed five machine learning classifiers: Support Vector
Classifier (SVC), Logistic Regression (LR), Decision Tree (DT), AdaBoost (AD),
Random Forest (RF), and a Feed-Forward Neural Network (FFNN). The
classifiers were evaluated based on their prediction accuracy on the test
dataset, yielding results of 0.88 (SVC and LR), 0.64 (DT and AD), 0.82 (RF), and
0.94 (FFNN). Notably, the FFNN classifier achieved the highest Area Under the
Curve (AUC) score of 0.92, indicating its superior performance, followed closely
by SVC and LR, with a score of 0.87. This suggested approach holds promising
potential as a decision-support tool for pathologists, particularly in regions with
limited resources and expertise. The timely and precise detection of EC subtypes
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through this system can substantially enhance the likelihood of successful
treatment, ultimately leading to reduced mortality rates in patients with this
aggressive cancer.
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Introduction

Esophageal cancer (EC), which has seen a concerning rise in
prevalence over the past 4 decades (Napier et al., 2014), now
ranks as the eighth most common cancer and the sixth leading
cause of cancer-related mortality worldwide (Pakzad et al., 2016).
This aggressive disease presents a formidable challenge, with 5-
year survival rates between 15% and 25% (Pennathur et al., 2013).
In 2020 alone, approximately 600,000 new EC cases were
reported, tragically resulting in an estimated 540,000 fatalities
(Sung et al., 2021). The origins of this malignancy typically lie in
the mucosa, the innermost layer of the esophagus, and from
there, it can infiltrate various vital organs, including the stomach,
liver, lungs, chest, blood vessels, and lymph nodes. EC comprises
two primary subtypes: Esophageal Squamous Cell Carcinoma
(SCC) and Adenocarcinoma (ADC), along with a handful of
relatively uncommon small-cell carcinomas like melanoma,
sarcoma and lymphoma (Abbas and Krasna, 2017; Yang
et al., 2020).

In medical diagnostics, histopathological image analysis is the
gold standard for cancer diagnosis (Gurcan et al., 2009;
Tomaszewski, 2021). Histopathological images provide a
comprehensive view of diseases, capturing many cytological
features that furnish detailed diagnostic insights. These features
encompass heightenedmitotic activity, cellular enlargement, nuclear
hyperchromasia, irregular nuclear chromatin distribution,
prominent and sizable nucleoli, cellular and nuclear
pleomorphism, increased cellularity, abnormalities in nuclear
membranes, cellular discohesiveness, and the presence of tumor
necrosis in the background, also known as tumor diathesis. Unlike
mammography or CT scans, these cytological characteristics are not
easily discernible through other imaging techniques (Al-Abbadi,
2011). Nevertheless, conventional methods employed to analyze
histopathology whole-slide images (WSI) have limitations, notably
in time consumption and observer variability. Traditionally,
pathologists scrutinize tissue samples under a microscope, having
stained them with Haematoxylin and Eosin (H&E) to enhance tissue
organ contrast (He et al., 2012). However, this labour-intensive
visual inspection and subjective interpretive process require
pathologists to examine multiple regions of interest within
each slide.

Furthermore, the inherent subjectivity in visual interpretation
can introduce variations among different observers, leading to
inconsistent diagnoses and assessments (Allison et al., 2014).
Hence, a compelling need exists for more efficient and objective
approaches to WSI analysis, such as advanced digital pathology
techniques that leverage image analysis algorithms, artificial
intelligence, and machine learning. These cutting-edge methods
aim to automate and streamline the analysis process, diminishing

the reliance on manual examination and enhancing efficiency,
consistency, and accuracy in evaluating histopathology WSI.

Artificial intelligence (AI) and deep learning (DL) diagnostic
systems are becoming increasingly popular, opening up new
possibilities in image analysis (Guo et al., 2023; Muller et al.,
2023; Wang et al., 2023; Xiao et al., 2023). By harnessing shape
and texture attributes alongside higher-order spatial features that
capture intricate pixel-level relationships, these systems elevate
images into high-dimensional features, vastly enhancing their
capability for detection and classification (Kumar et al., 2012).
While feature extraction-based classification systems, which rely
on handcrafted features to characterize cancer subtypes, have seen
advancements, researchers increasingly recognize the potency of
deep neural networks (DNN) for automatic feature extraction and
comprehensive visual analysis (Kermany et al., 2018; Shimizu and
Nakayama, 2020; Zhou et al., 2020). Unlike traditional manual
approaches, deep learning’s automatic feature extraction through
multiple non-linear transformation layers empowers it to capture a
broad spectrum of generalizable and high-level features, particularly
suited for intricate tasks like medical image analysis. Remarkably,
both DL and machine learning (ML) have been deployed in
intriguing ways for the diagnosis, prognosis prediction (Tran
et al., 2021), and classification of various cancer types, utilizing
diverse imaging modalities such as histopathology, CT scans, and
MRI imaging. Their ability to handle vast medical data and discern
complex patterns promises to revolutionize cancer diagnosis and
treatment. In the context of EC patients, correct staging, treatment
planning, and prognostication are pivotal for improving patient
outcomes and survival rates (Huang et al., 2022). Unfortunately, EC
is frequently diagnosed at advanced stages, owing to its non-specific
early symptoms and the challenge of accessing the esophagus,
resulting in a bleak prognosis. Thus, the importance of early
detection cannot be overstated, as it holds the key to timely
interventions, exploration of a broader range of treatment
options, and, ultimately, better long-term survival for patients.

A recent investigation (Wagner and Cosgrove, 2023) utilized
ResNet-18 for endometrial subtype classification, employing Tissue
level annotation of WSIs from the (TCGA-UCEC) dataset. This
study achieved the best AUC of 0.82 in predicting the subtypes of
cancer. In another research (Zhao et al., 2023), a DL model based on
ResNet50, utilizing 523 annotated whole-slide images, demonstrated
the capability to classify invasive non-mucinous lung
adenocarcinoma subtypes with an AUC of 0.80. A study has
employed transfer learning to extract features, subsequently
utilizing various machine learning models for classification,
achieving an accuracy of 0.93 (Kumar A and Mubarak, 2022).
Another study presents a two-stage deep transfer learning
method for subclass classification in histopathology images,
overcoming limitations in traditional patch-based approaches.
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While employing patch-based classification, the results are
aggregated for slide-level classification. The study attains
automatic classification of epithelial ovarian carcinoma WSIs
with an accuracy of 0.87 (Wang et al., 2020).

Contemporary studies on esophageal cancer (EC) subtype
classification predominantly rely on patch-level annotations,
introducing different challenges. The reliance on such
annotations has been associated with inter-observer variability
and limitations in capturing the comprehensive spatial and
morphological distinctions inherent in esophageal cancer tissues
(Paul and Mukherjee, 2015). The imperative for direct pathologist
involvement in the annotation process not only imposes heightened
time and resource demands but also intensifies the potential for
divergent annotation practices. The repeated emphasis on direct
pathologist involvement extends the temporal and resource
investment and underscores the susceptibility to variations in
annotation practices. These variations further challenge the
integration and comparability of results across diverse research
studies, hindering the establishment of a cohesive and
standardized understanding of EC subtypes (Evans et al., 2023).

Addressing this gap, we aimed to develop an advanced DL-based
automated diagnostic system, leveraging state-of-the-art deep
learning techniques for feature engineering and machine learning,
to accurately classify different subtypes of esophageal cancer using
H&E images of the esophagus. While adhering to fundamental
predictive modelling procedures, we have introduced an

innovative approach by incorporating a median-based technique
to effectively address the inherent variability in the number of tumor
tiles across Whole Slide Images (WSIs) and demonstrate resilience
to outliers, enhancing the stability and reliability of our model. We
trained our model on a dataset comprising 42 high-resolution WSI
and subsequently validated it using 17 additional images.

Methodology

Data collection

The Cancer Genome Atlas Esophageal Carcinoma Collection
(TCGA-ESCA) cohort comprises diagnostic and tissue slides for
182 subjects. Diagnostic slides, which provide detailed information
about tissue phenotypic heterogeneity (Chen et al., 2022), were
exclusively focused upon due to their significance in histologic
analysis. This study did not consider tissue slides, often used for
genomic analysis (Gutman et al., 2013). As such, only 156 subjects
with diagnostics slides available in TCGA-ESCA were selected, as
shown in Figure 1. Following rigorous filtering criteria by excluding
the WSIs with poor visual quality, extensive blurring, abnormal
staining, and ink marks. Finally, 59 high-quality diagnostic WSIs
were obtained from the TCGA-ESCA cohort. This curated dataset,
consisting of H&E stained WSIs categorized into SCC and ADC,
ensured consistency and quality for subsequent research and
analysis. Significantly, the TCGA cohort’s open accessibility
without authentication requirements greatly facilitated our
investigative activities.

Preprocessing of histopathology images

Training DNN and ML models directly on entire gigapixel H&E
WSI presents substantial computational challenges with current
standard computing resources. We adopted strategies such as
tiling and down-sampling (Srinidhi et al., 2021). High-resolution
images are broken down into smaller, more manageable patches.
Within these WSIs, there were both informative and non-
informative regions. The Canny edge detection algorithm was
employed for its ability to differentiate and outline tissue
boundaries, leveraging its capability to identify noisy edges
effectively. The method offers criteria of strong edge detection,
precise localization, and single response, making it a suitable
choice for our purpose (Canny, 1986). Subsequently, masks were
generated to demarcate the boundary between the background and
the tissue (foreground) using a graph-based segmentation method.
The method was chosen due to its adeptness in handling pixel
intensity variations, ensuring resilience against challenges posed by
staining and tissue characteristic variations, and fostering consistent
and reliable boundary demarcation (Felzenszwalb and
Huttenlocher, 2004). These mask images were then organized
into a grid of tiles based on specified dimensions to form
patches. Patches comprising background information were
discarded, while those primarily containing tissue (foreground)
information were retained for further analysis. Various
techniques, including random sampling, Otsu, and adaptive
thresholding, can be used to eliminate background tiles (Otsu,

FIGURE 1
Exclusion criteria: The complete data selection process,
incorporating exclusion criteria and showcasing the data distribution
in train and test sets.
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1979; Kalton, 2011; Roy et al., 2014). We utilized the Otsu method, a
widely used thresholding algorithm (Goh et al., 2018; Huang et al.,
2021; Singh et al., 2021), to discard unwanted background images
from the generated patch set due to its thresholding capability for
varying image characteristics, allowing for optimal discrimination
between tissue and background in an unsupervised manner. Tiles
containing less than 10% tissue were excluded and classified as
background by setting the threshold to 0.1. Histology images were
preprocessed using PyHIST (Muñoz-Aguirre et al., 2020), a TIFF/
SVS file format segmentation tool. Nonoverlapping patches
measuring 512 × 512 pixels were extracted from each WSI, and
H&E images with a magnification greater than ×20 were only
considered for this study.

Data normalization

Histopathology images exhibit inherent color variations
stemming from differences in staining concentration, varied
equipment usage, and occasional inconsistencies in tissue
sectioning. These color disparities within WSI introduce
increased variability into the training data, potentially impacting
the model’s efficacy during training. Various methods exist for
image color normalization, including the Reinhard Algorithm
(RA) (Reinhard et al., 2001), Histogram Specification (Hussain
et al., 2018), and Structure-Preserving Color Normalization

(Vahadane et al., 2016), with RA notably demonstrating superior
performance in DL models. The RA method computes a chosen
reference image’s mean and standard deviation. During the color
correction process, the color characteristics of one image are aligned
with those of another. Careful consideration was given to the
reference image selection, as normalization outcomes can be
influenced if the chosen reference image exhibits darker colors
(Roy et al., 2021). The application of Reinhard color
normalization to our dataset is based on established practices in
the literature (Lakshmanan et al., 2019; Qu et al., 2021),
demonstrating its superior performance compared to other
techniques. This normalization method effectively mitigated the
complexity of the extracted features, thereby enhancing the overall
quality of our analysis.

Model training and evaluation

We employed a two-step approach for classification, as outlined
in Figure 2. In the initial step, we performed feature extraction on all
the tiles within the WSI using a pre-trained CNN (ResNet101) (He
et al., 2016). This process generated a 2048-dimensional feature
vector for each tile in the WSI. Consequently, we constructed a
feature matrix of size N x 2048 for each subject, where N represents
the number of tumor tiles within theWSI. This variable significantly
differs across WSIs. The variance in the number of patches

FIGURE 2
Experimentation pipeline: The process involves taking each color-normalized tile and passing it through a pre-trained model to obtain a 2048-
dimensional feature vector. These feature vectors from all tiles belonging to the same patient are then combined into a single feature vector of size
2048 and used as input for various machine-learning models to make predictions about esophageal cancer (EC) subtypes.
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generated during the tiling process impacts the model’s prediction
efficiency. To address this, we calculated the median of the stacked
feature vectors from all the WSI tiles along the vertical axis, thereby
creating a single feature vector with a size of 2048. These feature
vectors were subsequently input into various classification
algorithms to predict the EC subtypes. The experimentation was
conducted on an NVIDIA Tesla V100 GPU with 32 GB memory,
boasting 15,360 CUDA Cores and a processing power of
2.976 TFLOPS. On average, normalization per tile required
0.25 s, and Feature extraction exhibited an average time of 0.03 s
per tile. These metrics underscore the computational efficiency of
the algorithms on the specified high-performance GPU architecture.
We employed performance metrics such as Accuracy, AUC, Recall,
F1-score, and Precision to assess the proposed model’s efficacy in
classifying EC subtypes. Accuracy provides a comprehensive
assessment of correctness in both classes, particularly effective in
balanced class distributions. AUC evaluates the model’s
discriminatory ability across various thresholds. Recall quantifies
the model’s efficacy in identifying positive instances out of total
positive instances, which is crucial in scenarios prioritizing
sensitivity. Precision measures the accuracy of actual positive
predictions, offering insights into the model’s specificity. Lastly,
the F1 score strikes a balance between precision and recall,
furnishing the evaluation of overall model performance in
classification tasks.

During the model training and evaluation, we utilized a Feed-
Forward Neural Network (FFNN) configured with only two layers.
The first layer, with a size of 2048, was designed to accept the input
feature vector, preserving compatibility with the size of the extracted
features obtained during the feature extraction process using
pretrained models. The second layer was employed for
classification, strategically reintegrating the last layer of the
pretrained model, which was initially removed during the feature
extraction process. This approach allows for an efficient utilization
of the deep hierarchical representations learned by the model. The
choice of two dense layers with Rectified Linear Unit (ReLU)
activation function (Agarap, 2018), a learning rate of 10–3 over
800 epochs, and the Adam as optimizer (Kingma and Ba, 2015) was
opted due to the ability of DL to complex information through
multiple layers (Bebis and Georgiopoulos, 1994). In addition to
FFNN, we utilized various machine learning classifiers for
comparative analysis following the previous studies (Singh et al.,
2023; Saxe and Berlin, 2015). AdaBoost, an ensemble learning
method, was chosen for its ability to combine weak classifiers,
such as decision trees, to form a robust classifier (Freund and
Schapire, 1997). Decision Tree, a non-parametric algorithm, was
also employed for its tree-like structure and adaptability to handle
noise and missing data (Cycles, 1989). Random Forest, another
ensemble method was selected to enhance classification
performance by combining multiple decision trees through
bootstrap sampling and feature subsetting (BREIMAN, 2021).
Logistic Regression, a binary classification algorithm, served as a
widely used and interpretable model, estimating probabilities for
esophageal carcinoma subtypes based on input feature vectors (Peng
et al., 2002). Finally, the Support Vector Classifier (SVC), known for
its robustness and versatility in handling both linear and non-
linearly separable data, was applied for effective classification
between esophageal cancer subtypes (Busuttil, 2003). Each model

brought a unique strategy to the analysis, contributing to a
comparative analysis of our proposed approach, which provides
valuable insights into the suitability of various machine learning
algorithms.

Results

High-resolution histopathological dataset of
ADC and SCC

Following a meticulous qualitative analysis that excluded
small-sized images and those with significant blurring artefacts
and ink marks, we systematically organized a dataset comprising
59 high-resolution histopathological H&E stained images of ADC
and ESCC. This dataset was then divided into distinct training and
testing sets, maintaining a balanced 70:30 ratio. After extracting
WSI tiles and carefully selecting tumor tiles, the training and
testing sets for EC comprised 191,798 and 48,665 tiles,
respectively. The distribution of these tiles is visually depicted
in Figure 3 for both the train and test sets. Moreover, the
demographic and other characteristics of all patients included
in our experimentation are summarized in Table 1.

Enhancing digital pathology by data-
preprocessing

Preprocessing of digital pathology played a crucial role in
addressing differences among images, including variations in color,
illumination, and imperfections like artefacts or noise (Figure 4). These
variations and imperfections can be effectively minimized or corrected
by applying preprocessing techniques, ensuring more consistent and
reliable image quality across diverse datasets. The advantages of digital
pathology still need to be increased to overcome its limitations: WSI
requires considerably large storage volumes (since each image can need
2–3 GB). Moreover, as depicted in Figure 5, these WSIs exhibit
undesirable blank backgrounds, which were eliminated during this
stage. Despite efforts toward standardization, attaining impeccable color
calibration across all samples remains challenging (Lyon et al., 1994).
This challenge drives the adoption and implementation of color
normalization techniques, which have led to increased efficiency in
our model. Figure 6 provides a visual difference before and after color
normalization, and the general normalization process is shown
in (Figure 7).

Performance evaluation and
comparative analysis

We utilized confusion matrices, as illustrated in Figure 8, to
assess the overall accuracy of our classification models. Calculating
recall, precision, and F1 score from the confusion matrix values
provided a comprehensive evaluation of model performance for
both SCC and ADC classes. This approach aligns with established
practices, reflecting evaluation matrices utilized in previous studies
(Le and Ou, 2016; Le et al., 2017). The FFNN stands out as the top-
performing model, achieving an impressive classification rate of 86%
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for SCC patients and 100% for ADC patients in the validation set.
Our feature-based classification method successfully demonstrated
the use of machine learning in accurate classification of esophageal
squamous cell carcinoma and adenocarcinoma. The SVC and LR
models also demonstrated strong performance, achieving prediction
accuracies of 86% for SCC patients and 90% for ADC patients. The
RFC provided acceptable predictions of 71% for SCC patients and
90% for ADC patients. AdaBoost achieved a perfect prediction rate
(100%) for SCC patients but presented the lowest performance of
40% only for ADC patients. The Decision Tree model also exhibited
the least effectiveness, with correct classification rates of 85% for
SCC patients and 50% for ADC patients.

Due to the large size, WSIs were divided into smaller patches
for analysis, and image features were extracted at
a ×20 magnification level. The results from different ML
classification methods, utilizing identical methodology and
data distribution, were compared while maintaining the
training and test ratio. These classifiers use the feature vectors
of size N x 2048 as input, extracted using ResNet101. The
evaluation considered essential performance metrics such as
precision, recall, F1-score, accuracy, and AUC. The results in
Table 2 demonstrated that the feed-forward neural network
(FFNN) model outperformed other ML models with an
accuracy of 94.11% and an AUC score of 92%.

Similarly, the SVC and LR models displayed comparable
performance, achieving an accuracy of 88% and an AUC of
0.87, surpassing the performance of the remaining models.
Notably, the DT and AdaBoost models exhibited the lowest
accuracy at 64%. We observed that while FFNN outperforms
all other algorithms in terms of accuracy, the imbalance in the
dataset was better handled by SVC and LR, where the difference
in recall between SCC and ADC is the least, showing that both
classes have a similar number of misclassifications and accurate
classifications. These metrics offer a holistic assessment of the
model’s performance, highlighting its strengths and weaknesses.
Such insights are invaluable for refining and advancing
classification models in subsequent studies. Additionally,
hyperparameters were carefully tuned using a grid search
approach in our model training process, except for FFNN.
They were optimized for each model to achieve the best
performance on the test set (Table 3).

For a comparative analysis (refer to Table 2) involving transfer
learning, we employed pre-trained InceptionV3 and
ResNet50 models for feature extraction. The results showed that
our proposed architecture outperformed other models, utilizing
ResNet101 for feature extraction. The accuracy of our proposed
model was 0.94, surpassing the best classification accuracy of

FIGURE 3
Patch Variation and Distribution: This figure visually presents the patch variation after preprocessing, showing the data distribution between training
and testing sets. Patch counts range from as high as 6,000 patches per slide to as low as 1,200 patches per slide. The variation is handled by calculating the
median of all the features per WSI to form a single feature vector.

TABLE 1 Patient characteristics on the 59 cases from TCGA - ESCA cohort.

Characteristics Data set

ADC SCC

Gender Male 26 25

Female 5 3

Age ≤60 9 21

>60 22 7

Vital Status Dead 14 8

Alive 17 20

Alcohol History Yes 26 19

No 5 9

Location Lower Third 29 11

Middle Third - 12

Upper third 2 3

Unspecified Location - 2
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0.82 achieved by the other two models, thereby establishing the
suitability of ResNet101 for the classification of esophageal cancer
into Adenocarcinoma and Squamous Cell Carcinoma from
histopathology images.

Discussion and conclusion

Manual histopathological diagnosis of esophageal cancer
subtypes poses challenges, emphasizing the need for a

FIGURE 4
WSI Noise and Artefacts: (A) an example of noise in WSI (random or unwanted variations in image data), (B) an example of artefact in theWhole Slide
Image of our dataset. (Artefacts can include staining artefacts, tissue folding or tearing, scanner artefacts, or any other unintended alterations that may
occur during slide preparation, scanning, or digitization).

FIGURE 5
Preprocessing Steps: This figure outlines the preprocessing steps using PyHIST. Panel (A) displays an H&E WSI from TCGA, (B) illustrates a mask
generated during preprocessing, (C) presents a Mask Grid created for patching WSI, and (D) shows a zoomed view of tiles selected from the grid.
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sophisticated and automated classification system. Our study adopts
a tissue-level diagnostic approach leveraging deep learning and
machine learning techniques to construct a reliable model,
aiming to alleviate the limitations associated with manual
diagnosis, providing a more efficient and objective solution.

We precisely curated the dataset TCGA-ESCA, ensuring
consistency and quality while addressing potential variations in
size, color intensities, and equipment usage. The preprocessing
phase involved strategic techniques such as tiling, down-
sampling, and edge detection to manage computational
challenges and enhance the model’s efficiency. These methods
facilitated the extraction of informative patches from high-
resolution whole-slide images (WSI) for further analysis.
Moreover, a data normalization technique was adopted, where
inherent color variations in histopathology images are addressed
using the Reinhard Algorithm. This normalization process proves
crucial in reducing variability and enhancing the model’s overall
efficacy during training.

Our study emphasizes tissue-level classification rather than
patch-level analysis. While patch-level annotations (Hou et al.,

FIGURE 6
Tile Transformation: The figure exhibits the normalization process for ADC and SCC tiles. Panel (A) displays an original tile of ADCWSI after patching,
(B) shows the ADC tile after normalization, (C) presents an original tile of SCC WSI after patching, and (D) illustrates the SCC tile after normalization.

FIGURE 7
Color Normalization Flowchart: The figure provides a flow chart
representing the color normalization process for images with different
color variations. This process enhances the consistency of color
across images, ensuring uniformity in the dataset.
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2016; Mi et al., 2021) have gained popularity for cancer sub-type
detection in digital pathology, relying solely on them has notable
drawbacks. A primary concern is the substantial manual annotation
effort required for this approach, involving the careful marking and
annotation of individual patches within the WSIs, making the
process time-consuming and labour-intensive. However,
depending solely on patch-level analysis may result in
overlooking crucial contextual information within the slide. By
focusing exclusively on isolated patches, there is a risk of missing
important features and spatial relationships between regions in the
slide. This limitation can lead to inaccurate or incomplete detection,
as the analysis may fail to capture the full extent of the disease and its
characteristics. Moreover, a patch-level analysis may be susceptible
to sampling bias (Hägele et al., 2020), as the selected patches may not
adequately represent the entire slide, potentially causing the
omission of critical regions of interest crucial for accurate cancer
subtype identification.

Furthermore, the challenges of intratumoral heterogeneity pose
a significant obstacle for patch-level cancer subtype detection.
Cancer subtypes can exhibit spatial variability within a single
tumor, with distinct regions displaying different cellular
characteristics and molecular profiles. By relying solely on patch-
level analysis, there is a risk of obtaining inconsistent or ambiguous
results, as the selected patches may not fully capture the
heterogeneity present within the tumor. This limitation can
impact the reliability and accuracy of the cancer subtype

detection, particularly when attempting to classify tumors with
diverse intratumoral characteristics. We assessed the method’s
effectiveness in detecting esophageal subtype carcinoma from
H&E WSIs. We found that ML can accurately classify cancer
subtypes in EC from H&E WSIs. Pathologists, who have a
laborious, time-consuming, and easily misinterpreted diagnostic
process, could benefit significantly from automated cancer
subtype detection by having less work to do.

Recognizing that patch-level cancer subtype detection can be
integrated with additional contextual information fromWSI, such as
slide-level annotations, can help overcome the limitations associated
with patch-level analysis. By incorporating a broader perspective
and considering the overall tissue architecture and spatial
relationships within the slide, the accuracy and reliability of
cancer subtype detection can be improved. Further research and
development efforts are necessary to address these limitations and
refine the performance of patch-level cancer subtype detection
methods in the context of a digital pathology-based cancer
diagnosis. Addressing data scarcity in tasks linked to
histopathology is also crucial to maximizing the effectiveness of
deep learning systems. High-quality and massive amounts of disease
data with detailed tile annotations will be required to accelerate
model building. DL models, are particularly suitable for large-scale
data analysis (Jan et al., 2019), depending on the amount of data
provided, making it challenging to apply them to real-world
circumstances. Unfortunately, having enough data for DL models

FIGURE 8
Confusion matrices illustrating the performance of five ML classifiers [represented as (A, B, D, E, F)]. (C) shows the confusion matrix of the FFNN
classifier with the best values for classifying esophageal cancer subtypes. Thematrices display the true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) values for each model, offering insights into their predictive capabilities and error distributions.
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TABLE 2 Results of WSI classification.

Feature extraction Algorithms
Precision Recall F1-score

ACC AUC
SCC ADC SCC ADC SCC ADC

Resnet101

SVC 0.86 0.9 0.86 0.9 0.86 0.9 0.88 0.87

LR 0.86 0.9 0.86 0.9 0.86 0.9 0.88 0.87

DT 0.55 0.83 0.86 0.5 0.67 0.62 0.64 0.68

AdaBoost 0.54 1 1 0.4 0.7 0.57 0.64 0.7

RFC 0.6 0.86 0.86 0.6 0.71 0.71 0.82 0.72

FFNN 1 0.91 0.86 1 0.92 0.95 0.94 0.92

InceptionV3

SVC 0.75 0.89 0.86 0.80 0.80 0.84 0.82 0.82

LR 0.70 1.0 1.0 0.70 0.82 0.82 0.82 0.85

DT 0.67 0.73 0.57 0.80 0.62 0.76 0.71 0.68

AdaBoost 0.71 0.80 0.71 0.80 0.71 0.80 0.76 0.75

RFC 0.67 0.73 0.57 0.80 0.62 0.76 0.71 0.68

FFNN 0.67 0.88 0.86 0.70 0.75 0.78 0.76 0.77

Resnet50

SVC 0.80 0.75 0.57 0.90 0.67 0.82 0.76 0.73

LR 0.62 0.78 0.71 0.70 0.67 0.74 0.71 0.70

DT 0.57 0.70 0.57 0.70 0.57 0.70 0.65 0.63

AdaBoost 0.67 0.88 0.86 0.70 0.75 0.78 0.76 0.77

RFC 0.67 0.73 0.57 0.80 0.62 0.76 0.71 0.68

FFNN 0.75 0.89 0.86 0.80 0.80 0.84 0.82 0.82

TABLE 3 Hyperparameters settings for selected models.

Model Hyperparameter Search space Best value

AdaBoost

max_depth [2, 11] 6

min_samples_leaf [5, 10] 10

learning_rate [0.01, 0.1] 0.1

n_estimators [10, 50, 250, 1,000] 50

Decision Tree (DT)

max_features [‘auto’, ‘sqrt’, ‘log2’] auto

ccp_alpha [0.1, 0.01, 0.001] 0.01

criterion [‘gini’, ‘entropy’] gini

Random Forest (RF)
max_depth [10, 15] 11

max_features [0, 14] 4

Logistic Regression (LR)

C [0.1, 1, 10, 100] 0.1

penalty [‘l1’, ‘l2’] l1

solver [‘newton-cg’, ‘lbfgs’, ‘liblinear’] liblinear

Support Vector Classifier (SVC)

C [0.1, 1, 10, 100] 0.1

kernel [‘rbf’, ‘linear’] linear

gamma [‘scale’, ‘auto’] scale
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in most real-world circumstances is not feasible, especially in
medical science (Zewdie et al., 2021). As an alternative, transfer
learning has shown promising results for computer vision problems
where only a few training samples are available (refer to Table 4). A
feature extractor trained on various pathological datasets may
produce better outcomes than our cancer sub-type-specific model.

Utilizing transfer learning with ResNet101 on histopathological
imagery, our study achieved superior performance with a Feed Forward
Neural Network, boasting 94% accuracy and 0.92 AUC. Support Vector
Classifier and Logistic Regression followed closely with an 88%
accuracy, outperforming Random Forest Classifier (RFC) at 82%,
while Decision Tree (DT) and AdaBoost lagged with 64% accuracy.
This approachwas centred on examiningH&E stainedWSIs, renowned
for their capacity to preserve intricate microscopic tissue properties,
thereby providing a robust foundation for detailed cancer tissue
analysis. Looking ahead, we propose the inclusion of WSIs from
additional databases in future investigations. These datasets should
ideally share resolutions and characteristics similar to those used in this
study to ensure consistency and reliability in comparative analyses. A
thorough assessment of these representations and their parameters
could offer insightful perspectives on the accuracy and repeatability of
diagnostic algorithms, especially considering the distinctive nature of
realistic versus pathological imagery domains. To sum up, our research
proves that ResNet101-based transfer learning outperforms other
methods in analyzing histopathological images and presents new
opportunities for improving cancer diagnosis techniques. By utilizing
the capabilities of sophisticated neural network architectures, there is
considerable potential to increase the precision and speed of cancer
detection from histological images. In addition, we recognize the
importance of addressing the interpretability of the proposed model
and plan to incorporate explainable AI techniques as part of our
future research.
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TABLE 4 Comparison of studies with proposed architecture.

Study Organ Approach Classifier Dataset Patients Results

Wagner and Cosgrove (2023) Uterus Image level annotation CNN TCGA-UCEC 657 0.82 (AUC)

Zhao et al. (2023) Lung pixel-level annotation CNN Beijing Chest Hospital 523 0.80 (AUC)

Kumar A and Mubarak (2022) Esophagus Image level annotation SVM Kvasir dataset 1800 0.93 (ACC)

Wang et al. (2020) Ovarian Cancer Patch level annotation Random Forest Vancouver General Hospital 305 0.87 (ACC)

Proposed Method Esophagus Image level annotation FFNN TCGA-ESCA 59 0.94 (ACC)
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