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Annexin A11 (ANXA11) is a calcium-dependent phospholipid-binding protein
belonging to the annexin protein family and implicated in the
neurodegenerative amyotrophic lateral sclerosis. Structurally, ANXA11 contains
a conserved calcium-binding C-terminal domain common to all annexins and a
putative intrinsically unfolded N-terminus specific for ANXA11. Little is known
about the structure and functions of this region of the protein. By analogy with
annexin A1, it was suggested that residues 38 to 59within the ANXA11 N-terminus
could form a helical region that would be involved in interactions. Interestingly,
this region contains residues that, when mutated, may lead to clinical
manifestations. In the present study, we have studied the structural features of
the full-length protein with special attention to the N-terminal region using a
combination of biophysical techniques which include nuclear magnetic
resonance and small angle X-ray scattering. We show that the N-terminus is
intrinsically disordered and that the overall features of the protein are not
markedly affected by the presence of calcium. We also analyzed the
38–59 helix hypothesis using synthetic peptides spanning both the wild-type
sequence and clinically relevant mutations. We show that the peptides have a
remarkable character typical of a native helix and that mutations do not alter the
behaviour suggesting that they are required for interactions rather than being
structurally important. Our work paves the way to a more thorough
understanding of the ANXA11 functions.
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Introduction

The length of neurons, the main components of the nervous system, can range from less
than a millimeter to over a meter in some cases. In some animals, such as certain species of
whales, axons can be up to 30 m in length. However, whatever their lengths, neurons must
sense and respond to stimuli and readily transfer signals to all their regions in the order of
milliseconds. To fulfil this need, neurons rely on specialized machines that permit the
synthesis of proteins locally and deliver mRNAs from the cell body to the different remote
locations (Fernandopulle et al., 2019). An elegantly regulated way to transport mRNA
involves the formation of discrete RNA granules (Redpath and Ananthanarayanan, 2023),
which are membraneless organelles that contain both RNA and RNA-binding protein
aggregates (Hyman and Brangwynne, 2011; Hyman et al., 2014). Organelle transport inside
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the cells usually requires both the molecular motor proteins kinesin
and dynein and microtubules that provide polarized tracks which,
depending on the molecular motor, allow movement from/to the
dendrites and the axon (Cason and Holzbaur, 2022). Any
impairment of this information leads to neurodegenerative
diseases, including Alzheimer disease and amyotrophic lateral
sclerosis (ALS) (Fallini et al., 2016; Brown and Al-Chalabi, 2017).

Recently, a novel mechanism, termed “hitchhiking,” was
described, in which organelles can traffic along the microtubules
not by directly interacting with the motors but by temporarily
“hitchhiking” being bound to other organelles that are already
moving and that act as “vehicles” to support the movement of
other cargos (Salogiannis and Reck-Peterson, 2017). This
mechanism needs other molecules to act as a tether. One of the
proteins that has been described as a molecular tether between RNA
granules and lysosomes is annexin A11 (ANXA11) (Fernandopulle
et al., 2021). ANXA11 has also been linked to amyotrophic lateral
sclerosis (ALS), an incurable progressive motor neuron disease. ALS
has been associated to many different genes that encode RNA-
binding proteins, mostly involved in RNA trafficking, that, when
mutated, can lead to irreversible protein aggregation and disease
(Brown and Al-Chalabi, 2017; Fernandopulle et al., 2019; Zaepfel
and Rothstein, 2021).

ANXA11 is a 56 kDa widely expressed protein, that belongs to
the annexin protein family whose members play an important role
in cell division, calcium signalling, vesicle trafficking and apoptosis
(Vedeler and Hollås, 2000; Filipenko et al., 2004; Vedeler et al., 2012;
Bharadwaj et al., 2013). Annexins are calcium-dependent proteins
whose primary function is binding to phospholipids. In a recent
elegant work, it was also conclusively shown that ANXA11 binds to
RNA and that RNA-binding seems to be a common feature of the
whole annexin family, suggesting a general role of these proteins in
granule trafficking (Patil et al., 2023). The annexin structure
comprises a conserved C-terminal core domain that is formed by
four helical repeats (annexin repeats) well distinct from other
calcium-binding motifs (Scheme 1 and Supplementary Figure
S1). Each annexin motif contains ~70 amino acids and is
arranged into five α-helices, termed A–E (Gerke and Moss,

2002). The loops connecting the AB and DE helical hairpins
contain the Ca2+ binding sites, with helix C packed against the
other components of the bundle orthogonally. Lipid binding
involves the core domain and seems to be coupled, at least in
some members of the family, to a conformational change
induced by Ca2+ binding (Gerke et al., 2005). The core domain is
preceded by a highly variable region both in sequence and
N-terminus length that is thought to mediate interactions. The
recent paper by the Vedeler’s group demonstrates that RNA-
binding is mostly contributed by the C-terminus of
ANXA11 although we do not know where or how, whereas the
N-terminus has some minor role in modulating the interaction
(Patil et al., 2023).

The structure of the C-terminal domain of ANXA11 has been
solved (Lillebostad et al., 2020) and, as expected, superposes with the
corresponding region of other annexins within 1.2 Å. The
N-terminal domain of ANXA11 is ~200 residues (one of the
longer in the annexin family) and contains low complexity
regions dominated by prolines which account for 1/3 of the
residues. Several mutations were identified in a thorough
screening of a large cohort of familial ALS patients in the non-
conserved N-terminus, including the p.D40G and p.G38R variants
in the N-terminus (Smith et al., 2017; Teyssou et al., 2021). Although
unique to ANXA11, the N-terminus contains a motif that is
reminiscent of the N-terminus of annexin A1 (ANXA1) (de
Souza Ferreira et al., 2023). In this protein, residues 2–26 form a
helix and fold back to pack against the core domain in the absence of
calcium. Calcium binding causes a conformational rearrangement of
the core domain and the release of the helix which becomes available
for interactions with other proteins (Réty et al., 2000; Rosengarth
et al., 2001; Rosengarth and Luecke, 2003). A similar mechanism of
regulation was suggested for ANXA11, and a putative helical motif
was identified around residues 38–59 (Smith et al., 2017). It was also
suggested that regulation of interactions with the apoptosis-linked
gene-2 protein (ALG-2) and S100A6 (calcyclin) (Rintala-Dempsey
et al., 2008) occurs through a Ca2+-induced conformational
rearrangement of the C-terminus that leads to release of the
N-terminus, making it proficient for interaction with its partners
(Smith et al., 2017). These two interacting proteins seem to be potent
regulators of ANXA11-based liquid-liquid phase separation which
affects formation of ribonuclear granules (Nixon-Abell et al., 2023).
This phenomenon is thought to be at the very basis of mRNA
transport in neurons (Brangwynne et al., 2009; Kato and McKnight,
2018). Accordingly, a ANXA11 p.D40G ALS-related mutation was
proven experimentally to abolish calcyclin binding (Smith et al.,
2017), whereas no effect was observed with a p.G38R mutant.
Despite this evidence, definite validation of the 38–59 helical
hypothesis may only be achieved by solving the structure of full-
length ANXA11.

In the present study, we used a hybrid approach based on a
combination of spectroscopic methods and small-angle X-ray
scattering (SAXS) to characterize the structure of full-length
ANXA11. We proved that the N-terminal domain is intrinsically
disordered and determined its relative orientation as compared to
the C-terminal core domain in a calcium-dependent manner. We
then structurally characterized synthetic peptides encompassing the
sequence of the region 38–59 of wild-type and mutated
ANXA11 and proved that they both adopt a helical structure.

SCHEME 1
Crystal structure of the partially Ca2+ loaded C-terminal core
domain of ANXA11 (6tu2, residues 188–-503). The N and C termini are
indicated. Ca2+ ions are shown in blue. In other annexins each repeat
can bind up to 2 Ca2+ ions. Shown is only one monomer of the
three in the asymmetric unit. Sequence of the proline-rich
N-terminal domain.
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Finally, we used advanced computational tools (Bolognesi et al.,
2016; Livi et al., 2016) to predict regions with RNA-binding
properties and granule-forming tendencies. Our evidence fully
supports the helix hypothesis and suggests a distinct and specific
role of the N-terminal domain of ANXA11 in its
tethering functions.

Materials and methods

Sample preparation

Four peptides were studied, spanning the sequence of the
residues 38–61 of wild-type ANXA11 and mutated versions (WT,
G38R, and D40G). The peptides were purchased from
PEPCEUTICALS Ltd. (Leicester, United Kingdom). The
molecular weights were validated by mass spectrometry.

ANXA11 expression and purification

The coding sequence for full-length human ANXA11 in the
plasmid pMCSG7-MBP-ANXA11 was kindly sent by Boris Rogelj’s
laboratory (Jožef Stefan Institute, Ljubljana, Slovenia). The
ANXA11 N-terminus (residues 1–191) was donated by Salvatore
Adinolfi (University of Turin, Italy) in a pET His6 TEV LIC plasmid
with an N-terminal thioredoxin tag. The constructs were expressed
in E. coli BL21 (DE3) cells.

Transformed cultures of the proteins were grown in Luria broth
(LB) supplemented with 100 μg/mL ampicillin at 37°C until the
optical density at 600 nm reached 0.6 and induced with 1 mM
isopropyl β-d-1-thiogalactopyranoside (IPTG) at 20°C. Cells were
collected by centrifugation and resuspended in lysis buffer and lysed
by sonication. The soluble proteins were recovered in the
supernatant by centrifugation at 4°C, and purified by nickel
affinity chromatography using 300 mM imidazole in the elution
buffer. The tag of ANXA11 was cleaved by incubating the construct
with tobacco etch virus protease (1:50 enzyme/protein) overnight at
4°C, while dialyzing the mixture in SEC buffer. Pure ANXA11 was
obtained after a reverse Ni-NTA chromatography step, and a further
size-exclusion chromatography step on an Äkta pure system
(HiLoad 16/600 Superdex 200 column, GE Healthcare). Each
purification step of the full-length protein was carried out at 4°C,
at pH 8.5 in 20 mM Tris-HCl buffer, 150 mM KCl, and additional
5 mM EDTA and 1 mM DTT in the SEC buffer.

Pure ANXA11 N-terminus with an N-terminal Thioredoxin-
(His)6 tag was obtained after a further step of size-exclusion
chromatography on an ÄKTA Prime Plus system (HiLoad 26/
600 Superdex 75 prep grade column, GE Healthcare). Attempts
to purify the untagged ANXA11 N-terminus in 20 mM HEPES,
20 mM NaCl buffer at pH 7.0 without the Thioredoxin-(His)6 tag
led to quantitative precipitation. Protein purity was assessed by SDS-
PAGE (Supplementary Figure S2). Protein identity was validated by
LC-MS/MS with 86% of sequence coverage. The proteins were
aliquoted, flash-frozen and stored at −80°C. 15N-labelled samples
were obtained by growing the cells in minimal media using 15N
ammonium sulphate as the sole source of ammonium.

Spectroscopic measurements

Far-Ultraviolet (UV) CD spectra were recorded on a JASCO-
1100 spectropolarimeter equipped with a temperature control
system, averaged over 10 scans and deconvoluted with the online
analysis software K2D3 and BestSel. Measurements were carried out
in 1 mm path-length quartz cuvettes (type S3/Q/1; Starna Scientific),
applying a constant N2 flush at 4.0 L/min.

NMR measurements were carried out on 200 µM non-labelled
peptides in a 10 mM sodium phosphate buffer, at pH 6.8 and on
100 µM 15N-labelled Thioredoxin-tagged ANXA11 N-terminus
sample in 20 mM HEPES, 20 mM NaCl buffer at pH 7.0. D2O
(10%) was added to the samples. NMR spectra were recorded on
Bruker 800 spectrometers at 5°C and at 25°C, respectively, and
processed with NMRPipe (Delaglio et al., 1995). Spectra were
analyzed and assigned with NMR-Fam Sparky (Lee et al., 2015)
and CARA 1.9.1.7 (Keller, 2004). TOCSY spectra were measured
using the ‘dipsi2esfbgpph’ pulse sequence. NOESY spectra were
recorded with a mixing time of 250 ms. Both experiments and COSY
spectra (cosydfesgpphpp) were recorded with 4,096 data points in
t2 and 1,024 data points in t1. For the assignment of the Thioredoxin
tag a set of three spectra were recorded: 1H-15N HSQC
(hsqcfpf3gpphwg_f1180), TOCSY-HSQC (dipsihsqcf3gpwg3d)
and NOESY-HSQC (noesyhsqcf3gpwg3d_cpds).

Molecular dynamics simulations

The standard iterative protocol was used with the ARIAweb
07d7d10a (2021-06-08) service (Brünger et al., 1998; Allain et al.,
2020) on the Pasteur@Galaxy cluster (doi 10.7490/f1000research.
1114334.1) using default settings. ARIAweb implements the latest
release of ARIA version 2.3 (Rieping et al., 2007) in combination
with CNS version 1.21 (Brunger, 2007) modified with dedicated
ARIA routines. 143 NOE based distance restraints were used
(75 intra-residue and 68 sequential). The number of structures
calculated was twenty for iterations 0–8 of which the seven best -
based on the total energy - were used in the proceeding iteration.
After nine iterations were completed, the 10 lowest energy
conformers were refined in a shell of water molecules.

Further Molecular dynamics (MD) simulations were
performed using the NAMD 2.13 package (Phillips et al.,
2020) with the CHARMM36m force field. Input files were
generated with CHARMM-GUI (Jo et al., 2008; Lee et al.,
2016). The structures were solvated with the TIP3P water
model in a rectangular box such that the minimum distance
to the edge of the box was 10 Å under periodic boundary
conditions. An appropriate number of Na+ counterions were
added to neutralize the protein charge. The replicas were used for
three separate production runs: ii) one imposing all NOE
restraints, ii) one imposing only NH-NH NOE restraints, and
iii) one with no restraints. For all active restraints the lower and
upper walls were defined below and above 2.5 and 5.5 Å, with
constants of 2 and 10 kcal mol−1 Å−2 respectively. Each replica
was subject to 1 ns of equilibration at 278.1 K and normal
pressure. The production runs (100 ns) were performed under
the same conditions.
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The structure evaluation and analysis procedures were
performed with NMRBox (Maciejewski et al., 2017). Ten
thousand structures were generated.

Computer-assisted predictions

Structure predictions were carried out either running AlphaFold
2.2.0 in NMRBox (https://nmrbox.nmrhub.org/) or running the
prediction on the Baker’s lab Robetta server (https://robetta.
bakerlab.org/results.php?id=550799) using the full-length protein.
Per-residue estimates of the confidence of the models for the
AlphaFold models are given by per-residue predicted local
distance difference test (pLDDT) scores of the final model. This
score is a scale 0–100 and represents the confidence of the predicted
structure compared to the “true” (ground truth) structure. Likewise,
confidence in RosETTAFold models is given by the global distance

test (GDT) (100.0 good, 0.0 bad). The structures were visualized
using Pymol (Schrödinger, L. & DeLano, W. (2020), retrieved from
http://www.pymol.org/pymol).

Structure predictions of the peptides based on chemical shift
information was achieved by CS-Rosetta (https://csrosetta.
chemistry.ucsc.edu/) (Shen et al., 2008). CS-Rosetta produces
reliable structural ensembles from NMR observables (chemical
shifts, J-couplings, NOEs, residual dipolar couplings, etc.). To do
this, it performs a selection of protein backbone fragments from
high-resolution structures from the PDB, which are used in
conjunction with Rosetta’s high-resolution energy function to
model the structures of proteins up to 35 kDa.

The catGRANULE software (http://service.tartaglialab.com/
new_submission/catGRANULE) was used to predict the protein
tendency to phase separate (Bolognesi et al., 2016). catRAPID
signature was used to predict the propensity of TDP-43 to interact
with RNA and identify RNA-binding domains (Livi et al., 2016).

FIGURE 1
Characterization of the N-terminus of ANXA11. Top panel: amino acid sequence of the N-terminus of ANXA11 (residues 1–191). The position of the
putative helix is indicated in green. The clinically important residues 38 and 40 are underlined. Bottom panel: 1H-15N HSQC spectrum of the thioredoxin-
His-tagged ANXA11 N-terminus at 298 K and 800 MHz. Crosses indicate the resonances of Thioredoxin according to the BMRB assignment. Most of the
spread of the spectrum thus correspond to the Thioredoxin contributions.
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SAXS measurements

SAXS experiments were performed at the BM29 beamline at
the ESRF in Grenoble, France (Tully et al., 2023). The wavelength
of the beamline was 0.99 Å (12.5 KeV), with the distance between
sample and detector (PILATUS3 2M) set to 2,812 mm, giving the
scattering vector q 0.007–0.55 Å−1. This vector is defined as q = 4π
sin(θ)/λ, where 2θ is the scattering angle and λ is the wavelength
of the incident beam. Ten successive frames of the scattering
from the samples were recorded in batch mode with an exposure
time of 2 s for each frame due to 75 mA beam intensity. The
scattering from the corresponding buffer was measured before
and after each sample for the same exposure time, and subtracted
from the sample scattering. Measurements were performed at
20°C, and the forward scattering, I0, was converted to an absolute
scale by water calibration. The data were automatically reduced
using FreeSAS (Kieffer et al., 2022) and further processed and
analyzed using the Scatter IV (Tully et al., 2021) and ATSAS
program packages (Manalastas-Cantos et al., 2021). I0, Dmax and
Rg were determined from P(r), although the Guinier approach
was also used for comparison. The molecular weight of the
species in solution was determined from I0.

Solutions of full-length ANXA11 were measured at protein
concentrations of 3.8, 3.0, 1.9 mg/mL (70.0, 55.3, 35.0 µM) in the
absence of calcium and at 3.6, 2.6 and 1.8 mg/mL (66.4, 47.9,
33.2 µM) in the presence of calcium (500 µM). Interparticle
interactions were seen at higher concentrations. The curves were
extrapolated to 0 and scale-merged using the PRIMUS software. Ab
initio models were constructed using the programs DAMMIN
(Svergun, 1999), DAMMIF (Franke and Svergun, 2009) and
GASBOR (Svergun et al., 2001). DAMMIN and its
reimplementation DAMMIF represent the protein molecule by
compact beads connected to each other. In GASBOR, proteins
are represented as an ensemble of dummy residues instead of
dummy atoms. The crystal structure of rat ANXA11 (6tu2) as a
monomer was fitted manually into the GASBOR bead-model to
observe the volume occupied by the N- and C-terminus. Molecular
ensemble models were generated by the Ensemble Optimization
Method (EOM) software (Bernado et al., 2007; Tria et al., 2015). This
package generates an ensemble of protein conformations and a
theoretical average scattering intensity curve based on the ensemble.
Finally, it fits the theoretical curve onto the experimental SAXS data.
High-resolution structures of individual protein domains can be
used as rigid bodies, while intrinsically disordered protein segments
are modelled with completely random configurations. The RANCH,
FFMAKER and GAJOE programs, all available at https://www.
embl-hamburg.de/biosaxs/, allow respectively generation of an
ensemble of models, computation of the scattering intensities
based on PDB structures, and the selection of the ensemble of
conformations whose computed scattering curve best-fits the
experimental SAXS curve. We separated the sequence of
ANXA11 to an N-terminal (chain B) disordered region and a
C-terminal globular domain (chain A). The C-terminal part was
fixed as rigid body using the PDB file 6tu2 as a monomer. The last
residue of the N terminus was kept in steric proximity of the first
residue of the C-terminus by defining a 5–7 Å distance constraint
between them. The input scattering curves were extrapolated to
0 concentration in the absence and presence of calcium. The raw
data were deposited to the SASBDB database with accession codes
SASDTV5 (apo) and SASDTW5 (holo).

Results

The N-terminal domain is intrinsically
disordered

We produced the recombinant N-terminal domain of
ANXA11 by E. coli expression of a fusion protein with an
N-terminal thioredoxin tag. Since attempts to cleave the tag
led to quantitative precipitation of the protein, we decided to
keep the tag and analyze the fusion protein by NMR. The
spectrum of this 15N-labelled protein showed a good
dispersion but with a large number of resonances overlapping
in the center of the spectrum (Figure 1). Comparison of the
spectrum with the spectral assignment of thioredoxin retrieved
from the BMRB data base (27636) allowed us to establish that the
vast majority of the resonances with good chemical shift
spreading correspond to residues in the thioredoxin tag,
indicating that the residues of the ANXA11 N-terminus

FIGURE 2
CD analysis of the synthetic peptides spanning residues 38–59 of
ANXA11. The spectra correspond to WT (A), G38R (B) and D40G (C)
mutant peptides at 298 K, in 10 mM sodium phosphate, pH 6.8 and
different TFE concentrations: 0%—black, 1%—red, 5%—blue,
10%—green, 30%—purple.
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mainly contribute to the spectrum by the overlapping resonances.
Absence of appreciable shifts of the thioredoxin peaks from their
positions in the isolated protein indicated lack of significant
interactions between the two proteins. This observation tells
us that the ANXA11 N-terminus is mostly unstructured, as
expected from the sequence composition.

Synthetic peptides have intermediate
features between random coil and helical
structures

We then analyzed the structure of the region 38–59 using synthetic
peptides: we used a peptide spanning the sequence of wild-type
ANXA11 (hereafter referred to as WT) and three peptides in which
the clinically important mutations G38R and D40G were introduced.
These mutants are hereafter indicated as G38R and D40G peptides. We
screened different pH, temperatures, and buffer conditions by far-UV
CD to understand how they could affect the WT peptide. When the
peptide was dissolved in 10 mM phosphate buffer, it gave a CD
spectrum with a negative minimum in ellipticity at 200 nm
(Figure 2). This behavior is typical of an unfolded conformation.
However, the spectrum also had a weak negative band around
220 nm which was compatible with a residual helical structure in
equilibrium with a random coil conformation in the CD time scale
(native helix) (Dyson et al., 1988a). Changes in temperature and buffer/
pH did not significantly affect the amount of secondary structure of the
peptide. The K2D3 webserver (Louis-Jeune et al., 2012) estimated 3%–
6% α-helical and 15%–17% beta strand content. When 1%–30% (v/v)
trifluoroethanol (TFE) was added, the minimum at 223 nm became
deeper, corresponding to an appreciable increase in the propensity to a
helical secondary structure. This alcohol is known to stabilize helical
structure in peptides and is often used to enhance their helical

propensities (Vincenzi et al., 2019). The G38R and D40G mutant
peptides did not show appreciable differences to the WT. These results
support the hypothesis of a helical element in this region of the
ANXA11 N-terminus.

The 38–59 region has a strong helical
tendency as observed by NMR

CD spectroscopy is an excellent technique to screen conditions, but
NMR is a muchmore powerful means as it works in a different average
time scale and can provide sequence-specific information on the
structure of peptides. We thus studied the structural behavior of the
peptides byNMR.Virtually complete assignment of theNMR spectrum
of the non-labelled WT peptide in aqueous buffer was obtained using
standard 2D techniques (Wuthrich, 1986; Redfield, 1993), except for the
highly mobile and solvent exchangeable first and second N-terminal
residues. Numerous Nuclear Overhauser Effects (NOEs) were observed
that are typical of an α-helical conformation. This is unusual for a
peptide of this relatively small size in aqueous solutions, even more at
neutral pH and without the addition of co-solvents. In particular, an
almost uninterrupted network of sequential HN-HN effects was
observed along the whole sequence (region L39-N69) (Figure 3).
This behavior indicated a strong tendency of the peptide to fold in a
helical conformation throughout the sequence and confirmed an overall
behavior typical of a nascent helix (Dyson et al., 1988b). The 10 lowest
energy models of the WT peptide obtained by CS-Rosetta, a structure
prediction program that uses chemical shift information, contained
flexible termini (residues 37–38, 66–69), two distinct alpha-helices
(residues 39–47, 52–65) and a short turn connecting the helices.
This prediction does not however reflect the uninterrupted NH-NH
sequential NOE cross-peak pattern. Accordingly, no long-range NOEs
characteristic for a hairpin-like structure was identified. A plot of the

FIGURE 3
NOE effects observed for the ANXA11 peptides. (A)Amide region of a 2DNOESY spectrumof thewild-type peptide. (B)Diagrammatic representation
of the sequential NOE HN-HN connectivities along the ANXA11 peptides. Connectivities marked in gray indicate that the sequential amide-amide NOE
peak was close to the diagonal or had low intensity and thus was ambiguous. (C) Plot of the secondary chemical shifts, that is the difference between the
observed chemical shifts and the random coil values of the same residue, along the sequence, averaged according to Pastore and Saudek (1990).
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secondary chemical shifts of the Hα of the peptides as defined by
Pastore and Saudek (1990), a simple but effective method to detect
secondary structural tendencies, suggested an uninterrupted helical
structure for the isolated peptide. Conversely, extensive restrained
and unrestrained molecular dynamics simulations provided
trajectories with only transient formation of local helical regions, in
agreement with the transient nature of a native helix (Supplementary
Figure S3). Taken together, these results indicate that the peptides have a
uniform tendency along the sequence to fold as a helix, but this
secondary structure is not stably formed in water in the absence of
stabilizing tertiary contacts.

When we analyzed the mutants, only minor chemical shift
differences were observed at and around the residues affected by
the mutations. Accordingly, the overall NOE patterns remained
unchanged, indicating that the mutations do not affect the peptide
structure and thus suggesting that D40 has a functional role. This is
in agreement with the observation that the D40Gmutation abolishes
calcyclin binding (Smith et al., 2017).

Structural predictions of the full-
length protein

To gain more information on the full-length protein, we first
consulted AlphaFold (Jumper et al., 2021; Varadi et al., 2022) and
RoseTTAFold predictions (Yang et al., 2020). Both predictions
detect the presence of two distinct domains. The reliability of the

C-terminus is high, which reflects high pLDDT values, whereas the
non-conserved N-terminal domain has low confidence (Figure 4A).
This is reasonable since, while the multiple alignment of the
C-terminus comprises sequences and structures from all
members of the vast annexin family, the N-terminus is specific to
ANXA11 and the domain is intrinsically disordered as shown
above by NMR.

The predictions by the two servers are different but have one
feature in common (Figure 4B): all models predict an overall
disordered structure for the N-terminus with a helix around
residues 38–59. In the Alphafold structures, the helix tends to be
interrupted around residues 47–49, whereas in the
RosETTAFold structures the helix is uninterrupted. In the
AlphaFold structures, the N-terminus consistently wraps
around the C-terminal domain creating a more globular,
though expanded, structure with the possibility of making
contacts also between the region 38–59 and the first two
annexin repeats. In the RosETTAFold structures, the
N-terminus is completely separated from the C-terminus and
does not form interactions with it.

SAXS suggests a conformational ensemble
dominated by more globular species

SAXS is a low-resolution structural technique which can provide
information about overall shape and domain orientation of proteins

FIGURE 4
Structural predictions of ANXA11 by RosETTAFold and AlphaFold. (A) The best-score prediction from AlphaFold (left), a bundle of the best-score
predictions (middle), and a plot of the score confidence (pLDDT) versus the amino acid sequence (right). Values of pLDDT >90 indicate a model with high
accuracy; values 70 to 90 a generally good backbone prediction; 50 to 70 low confidence, and <50 not reliable. (B) The best-score prediction from
RosETTAFold (left), bundle of the best-score predictions (middle), and error estimate (right). The two plots provide a different but complementary
version of the prediction reliability. In both sets of models, the reliability of the C-terminus is high, reflecting the level of conservation, whereas the
N-terminal domain has much lower reliability.
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and is well suited to investigating flexible or intrinsically disordered
proteins (Kachala et al., 2015; Lenton et al., 2023). We characterized
full-length ANXA11 both in the presence (holo) and in the absence
(apo) of a 5 M excess of CaCl2. The excluded volumes of the
hydrated particles (Vp) for the holo and apo ANXA11 were
reasonably consistent with the values expected for a monomeric

species and with the masses estimated from the primary sequence
(Table 1). The higher than expected, estimated values of the
molecular weight, ~74–62 kDa, as compared to the theoretical
one (54.4 kDa) are likely explainable by the flexibility of the
system and to a minor degree of aggregation that appeared to be
more accentuated in the calcium-free samples, as it is evident from

TABLE 1 Summary of the SAXS paramaters.

Data-collection parameters

Instrument ESRF BM29

Wavelength (Å) 0.99

q-range (Å−1) 0.007–0.5

Sample-to-detector distance (m) 2.8

Concentration range (mg/mL) 1–4

Temperature (K) 293

Detector Pilatus P3-2M

Flux (photons/s) 1a1013

Beam size (µm) 500a200

Structural parameters (absence of Ca2+) 3.8 mg/mL 3.0 mg/mL 1.9 mg/mL 0mg/mL, extrapolated

I0 (kDa) [from Guinier] 2.4 1.7 0.9 1.9

I0 (kDa) [from real space] 2.3 1.6 0.9 1.9

Rg (Å) [from Guinier] 42.5 ± 0.7 40.8 ± 0.7 37.3 ± 0.7 35.5 ± 0.7

Rg (Å) [from real space]a 44.8 41.5 38.7 38.4

qmin—qmax used for Guinier (Å−1) 1.2 × 10−2–3.1 × 10−2 8.3 × 10−3–3.2 × 10−2 8.9 × 10−3–3.5 × 10−2 6.8 × 10−3–3.7 × 10−2

Volume (Å3) real space 1.1 × 105 1.0 × 105 9.9 × 104 9.8 × 104

Dmax (Å)
a 172.5 166.0 142.0 154.5

Calculated MW (kDa) 74 67 64 63

Calculated theoretical MW monomer (kDa) 54 54 54 54

Structural parameters (presence of Ca2+) 3.6 mg/mL 2.6 mg/mL 1.8 mg/mL 0mg/mL, extrapolated

I0 (kDa) [from Guinier] 2.4 1.5 0.9 2.0

I0 (kDa) [from real space] 2.1 1.4 0.8 1.8

Rg (Å) [from Guinier] 43.6 ± 1.0 40 ± 0.8 38.94 ± 0.6 37.52 ± 0.6

Rg (Å) [from real space]a 43.6 41.5 38.1 38.0

qmin—qmax used for Guinier (Å-1) 1.1 × 10−2–3.0 × 10−2 1.3 × 10−2–3.2 × 10−2 6.8 × 10−3–3.4 × 10−2 7.3 × 10−3–3.5 × 10−2

Volume (Å3) real space 1.0 × 105 1.0 × 105 9.4 × 104 9.5 × 104

Dmax (Å)
a 172.0 166.0 140.0 150.0

Calculated MW (kDa) 66 65 61 61

Calculated theoretical MW monomer (kDa) 54 54 54 54

Software employed

Primary data reduction BM29 autoprocessing pipeline

Data processing Scatter IV, PRIMUS, DAMMIN, DAMMIF, GASBOR, EOM

aUncertainties are not given by the program Scatter IV.
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some concentration dependence of the SAXS observables in the
experiments in the absence of calcium.

The log I(q) versus q curves showed a high degree of similarity at
low q, with the holo form having a slightly larger Rg. A small
deviation was seen at high q (Figure 5A and Supplementary Figure
S4) that is consistent with small changes in buffer matching. The
main peak of the normalized Kratky plots has an approximately
gaussian shape that indicates a globular, elongated domain, whereas
the tail suggests an unfolded region (Figure 5B), as explained in
more detail below. Pair-distribution curves for the holo and apo
forms showed a similar bell-shape with elongated tails with an
increased Dmax 154.5 ± 0.5 Å for the apo form as compared with
150 ± 0.5 Å with the holo form. The computed distance distribution
functions P(r) displayed a single peak with a tail, a pattern that is
typical of proteins with elongated shapes (Figure 5C).

Shape reconstruction of full-length ANXA11 was performed
by ab initio modelling using two complementary programs,
DAMMIN (Svergun, 1999) and GASBOR (Svergun et al.,
2001). The crystal structure of the C-terminus (6tu2) fitted
well into one end of the more detailed GASBOR model
leaving a region of extra density for one possible
conformation in the ensemble of flexible N-terminus
intrinsically disordered region to fill (Figure 5D).

The flexibility of the N-terminus was further investigated
using two different approaches. For a qualitative approach, we
used the normalized Kratky plot (Figure 5B) (Durand et al.,
2010), that allows direct comparison of objects with different

shapes and sizes. In this plot, folded compact globular proteins
provide a bell-shaped curve at low angles with a maximum at
q*Rg of 1.75 (Durand et al., 2010). We observed instead Kratky
plots with maxima at q*Rg of 2.6 and 2.8 for the apo and holo
ANXA11. These deviations from the standard behaviour are
consistent with an appreciable level of flexibility. Both plots
showed a broadening of the bell-shaped curve and a shift of
the maxima to larger q*Rg values, as expected for extended and
flexible molecules. The plots were also characterized by upward
trends at higher q*Rg values (i.e., higher scattering angles), which
is also indicative of flexibility. To obtain a more quantitative
approach, the ensemble optimization method (EOM) (Bernado
et al., 2007) was used to analyze the flexibility and size
distribution of possible multiple configurations and to obtain
optimized ensembles with a fit to the experimental scattering data
(χ2 ~1.68 and 1.95) (Figure 6). The values of the ensemble average
Rg from the EOM analysis were 39.7 and 39.8 Å in the absence
and in the presence of calcium. Likewise, no significant variation
was observed between the ensemble average Dmax values,
148.4 and 149.2 Å. The values showed reasonable agreement
with the experimental data. The degree of flexibility of apo
and holo ANXA11 was estimated by comparing the
corresponding Shannon entropy Rflex values of the ensemble
distributions to that of a random pool and is a reference for
flexibility. The comparison between apo and holo
ANXA11 revealed almost identical ensemble Rflex values (77%
versus 74%, respectively) and confirmed random motions of the

FIGURE 5
SAXS analysis and ab initiomodel of full-length ANXA11 in the presence and absence of calcium. (A) Plot of the Log10 SAXS intensity versus scattering
vector, q. Dark blue: ANXA11 in the absence of calcium. Dark red: ANXAA11 in the presence of 500 µM calcium extrapolated to 0 mg/mL protein
concentration. (B) Dimensionless Kratky plot. Cross-hair marks the Guinier-Kratky point (1.7, 1.1), the main peak position for globular particles. (C) Pair-
distance function, P(r). The maximum dimension, Dmax, is the largest non-negative value that supports a smooth distribution function. (D) GASBOR
ab initio models from scattering curves extrapolated to 0 concentration.
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N-termini. Looking in greater detail to the Rg distributions of
these ensembles, we see the ensembles were shifted to the left of
the distribution of randomly generated models of the initial pool
(Figure 6). This indicates that the ensemble of conformations is
more often at a lower Rg and thus more globular rather than
completely elongated, suggesting that the flexible regions may be
predominately around the core than fully extended
(Supplementary Figure S5). This conclusion leads us to
consider the solutions from the Alphafold server more
dominant within the conformational ensemble compatible
with the SAXS measurements.

Altogether, these results tell us that there is little difference
between the structures of the apo and holo forms of ANXA11,
suggesting that calcium regulation does not involve major
conformational changes between the calcium free and calcium
loaded forms. This is in agreement with what is observed in
other members of the annexin family with a much shorter
N-terminus (Burger et al., 1996; Sopkova et al., 2002; Rosengarth
and Luecke, 2003; Hong et al., 2020). It also tells us that the
N-terminus does not appreciably participate to the calcium
regulation of ANXA11 which seems to involve mainly
the C-terminus.

Functional peculiarities of the N- and
C-termini of ANXA11

Finally, we analyzed the question of which region(s) of
ANXA11 is/are involved in soluble (liquid-to-liquid) phase
separation and in RNA-binding. We assessed the potential of
ANXA11 to form protein granules using the catGRANULE
approach (Bolognesi et al., 2016). catGRANULE is a machine

learning software trained on granule-forming proteins, utilizing
features such as RNA binding, structural disorder, and amino
acid composition to predict phase separation propensity. It
specifically considers factors such as structural disorder,
nucleic acid binding affinity, and amino acid motifs like
arginine-glycine and phenylalanine-glycine as indicative of a
protein’s tendency to coalesce into granules (Bolognesi
et al., 2016).

The catGRANULE analysis indicated a strong propensity for
granule formation, predominantly localized within the first
~200 N-terminal residues, with limited contribution from the
remainder of the protein (Figures 7A, B). This finding aligns with
recent research proposing that the N-terminus is both necessary
and sufficient for driving concentration-dependent
ANXA11 phase transitions from dispersion to condensation
(Nixon-Abell et al., 2023). Notably, the region with the
highest phase separation propensity contains a proline-rich
domain (MSGTFGGANMPNLYPGAPGAGYPPVPPGGF). This
is noteworthy as proline-rich domains have been implicated in
phase separation (Zhang et al., 2020) and RNA binding (Wang
et al., 2006) as observed in the case of Tau.

To complement these findings, we conducted an analysis with
the catRAPID signature program, which predicts RNA-binding
regions within a protein sequence. catRAPID signature leverages
physicochemical properties, secondary structure characteristics, and
hydrophobicity profiles (Livi et al., 2016). The analysis identified
three regions in the C-terminal core domain with the potential for
RNA binding, while suggesting minimal RNA-binding capability at
the N-terminus (Figure 7C). The absolute maximum is around
residue 290 that is in the second annexin repeat. The other two
lower maxima are in repeats 3 and 4. Notably, the last maximum
encompassing residues around position 460 contains a sequence

FIGURE 6
EOM analysis. (A, B) Fitting of an averaged theoretical scattering intensity derived from an ensemble of conformations using EOM (black) to
experimental SAXS data extrapolated to 0 mg/mL protein concentration (blue: in the absence of calcium, red: 500 µM in the presence of calcium). (C, D)
Plot of Rg distributions from EOM analysis, pool frequency (grey) and selection frequency (blue and red, absence and presence of calcium, respectively).
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homologous to the consensus motif (F/Y)XXX (F/Y)XKSL, known
to interact with nucleic acids/RNA in ANXA2 and ANXA6
(Bandorowicz-Pikula et al., 2003; Aukrust et al., 2007). Two
smaller maxima were observed, one of which is in the
N-terminus. They are however very close to the threshold and do
not support a strong tendency to stoichiometric interactions. The
one in the N-terminus is detected only in the context of the full-
length protein.

These results point towards a primary role of
ANXA11 N-terminus in granule formation, primarily triggered
by structural disorder rather than RNA binding.

Discussion

We have studied the structure of ANXA11, an underexplored
member of the annexin family. Discovered in the nineties (Towle
and Treadwell, 1992), ANXA11 has only recently moved into the
spotlights because of its potential biological role in hitch-hiking and
putative involvement in the ALS pathology. ALS-associated
missense mutations seem to disrupt formation of the molecular
tether that connects the N-terminus to RNP granules, and the
C-terminus to lysosomes (Liao et al., 2019; Lillebostad et al.,
2020). As a consequence, spinal cord neurons of ALS patients

FIGURE 7
Sequence-specific prediction of the tendency of ANXA11 to promote liquid-liquid phase separation and bind to RNA. (A) catGranule profile of the
tendency to have phase transitions having a basic minimum threshold of 0.0 for phase transition propensity. (B) Plot of cumulative distribution function
(CDF) as a function of the propensity score. CDF describes the probability of a random variable having values less than or equal to x. It is a cumulative
function that sums together the total likelihood of an event up to that point. Its output ranges between 0 and 1. (C) catRAPID profile that predicts the
tendence of full-length ANXA11 to bind RNA along its sequence. A horizontal line indicates the threshold for RNA binding. Note that each position on the
x-axis corresponds to +/− 25 amino acids. Vertical lines help locating the positions along the sequences of the three higher peak maxima. The last
maximum above the threshold contains a sequence semi-conserved in other annexins (indicated in the onset) that has been proven to be involved in RNA
binding (Aukrust et al., 2007). The amino acid indicated in green in the alignment corresponds to residue 460 that is the local maximum in this region.
Residues marked in red correspond to positions that have been shown to affect RNA binding when mutated in ANXA11 from rat (Aukrust et al., 2007).
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with ANXA11 mutations have abundant cytoplasmic aggregates
(Smith et al., 2017). Accordingly, in vitro biophysical studies have
shown that ANXA11 undergoes reversible phase transition into
liquid droplets and hydrogels in a process that requires the
N-terminal low-complexity domain (Fernandopulle et al., 2019).
The specific peculiarity of the ANXA11 sequence is its unique
N-terminus that contains, within its ~190 residues, almost one-
third of prolines. In the present study we have carried out different
biophysical techniques on full-length ANXA11 to characterize the
protein, a task not achieved before. The full-length ANXA11 is
undoubtedly a difficult protein to resolve structurally, given the
presence of the long potentially flexible N-terminus and its amino
acid composition. It is thus not surprising that the protein does not
crystallize, while it is too small for cryo-EM studies. NMR is
affordable but it requires techniques tailored for proteins proline-
rich as the ANXA11 N-terminus: since prolines do not have amide
groups, assignment protocols and NMR pulse sequences have been
designed that specifically enable sequential assignment of proline-
rich segments (Kanelis et al., 2000; Hellman et al., 2014; Karjalainen
et al., 2020). They are based on modified versions of a pulse scheme
that correlates intra-residue 1Halpha, 13Calpha/13Cbeta chemical
shifts with the 15N shift of the subsequent residue (Wang et al.,
1995). Structure predictions of the N-terminus, using computation
programs such as AlphaFold and RosETTAFold approaches, can
only perform with low confidence, given the relatively little number
of sequences and structures that could be used in the machine-
learning process.

We first showed direct evidence that the N-terminus is
intrinsically disordered. Our data are independently supported by
an archive preprint which draws the same conclusion on the full-
length protein (Nixon-Abell et al., 2023). We then turned to study
the structural features of the putative helix spanning residues 38–59.
Rather than attempting to assign the spectrum of full-length
ANXA11, we adopted a different strategy based on the use of
synthetic peptides spanning the region under question. A similar
strategy has been extensively adopted also in studies of the
interactions between ANXA11 and calcyclin, and other partners
(Lee et al., 2008; Rintala-Dempsey et al., 2008). We found that the
WT peptide has all the features typical of a nascent helix (Dyson
et al., 1988a): we observed an almost uninterrupted pattern of
sequential HN-HN connectivities in the NOESY spectrum of the
peptide, although medium-range NOEs characteristic of a helix
could not be detected, nor could a helix be observed by CD.
Upon addition of small percentages of TFE, the CD spectrum of
the peptide became effectively helical. When we plotted the averaged
secondary chemical shifts of the α protons according to a simple but
effective method (Pastore and Saudek, 1990) which provides
independent probing of secondary structure, the plot indicated
the presence of a potentially uninterrupted helix. According to
this evidence, all predictions detect a helical signal in the region
38–59. Interestingly, no differences were observed between the WT
peptide and its clinically important mutants (Smith et al., 2017),
strongly suggesting that any difference observed in in vivo binding of
this region to partners is not due to structural but functional reasons:
the p.D40G mutation which has been reported to abolish binding
with calcyclin is likely to cause disruption of a direct interaction
between the two proteins by replacement of a negatively charged

residue with a smaller non-charged glycine which will weaken or
completely abolish binding.

We then resorted to SAXS, a technique that, albeit at low
resolution, provides information on the general features of a
protein structure, to characterize the overall shape of ANXA11.
SAXS has also been successfully used to define the conformational
ensembles of intrinsically disordered proteins (Cordeiro et al., 2017).
We compared the results in the presence and absence of calcium,
probing important parameters such as Dmax, Rg and flexibility. We
observed differences between the two datasets but overall the protein
does not undergo major conformational changes upon calcium
binding. If anything, it seems that the calcium-free ANXA11 has
slightly higher tendency to aggregate, a behaviour not uncommon in
calcium-binding proteins (Travé et al., 1995). This means that the
N-terminus does not appreciably participate to the calcium
regulation, suggesting the question of what is the role of this
long low complexity region that is specific for this protein within
the whole annexin family.

In a comprehensive preliminary paper, it was shown that the
N-terminal domain is necessary and sufficient to promote liquid-
liquid phase separation of the whole molecule which incorporates
RNA into granules while interacting at the same time with
lysosomes in a calcium-dependent way (Nixon-Abell et al., 2023).
ANXA11 should thus act as a trait-d’union between lysosomes,
which are the carriers of this hitchhiker, and RNA granules (Liao
et al., 2019). It was also suggested that regulation of interactions with
other proteins, such as ALG-2 and calcyclin (Rintala-Dempsey et al.,
2008), occurs through a Ca2+-induced local conformational
rearrangement of the C-terminus that propagates to the
N-terminus, making it proficient for interaction with its partners
(Smith et al., 2017). Our data are consistent with this possibility but
could also suggest a regulation distinct from that observed in
ANXA1, considering that we have no evidence of an
intercalation of the N-terminus into the C-terminal core domain.
Also, it should be noted that, although not supported by any direct
evidence or indirect suggestion, some expectation has been created
that the N-terminal domain could bind itself to RNA to establish a
geographical specificity in which the C-terminal core domain binds,
as in all annexins, lipids and thus liposomes, whereas the
N-terminus could be specialised in binding to RNA. This
possibility is reasonable although the sequence of the N-terminus
does not contain any motif that could favour a stoichiometric well-
defined RNA-binding. We hypothesize instead that non-specific
RNA binding could be achieved by recruitment of ANXA11 in the
transient granule in a non-stoichiometric way through the liquid-
liquid phase separation process. Indeed, a mechanism of proline
promoted trapping of RNA could actually be very interesting and in
line with observations that have demonstrated the importance of
prolines, the only amino acid that can exist in both conformations,
and prolyl isomerases in liquid-liquid phase separation (Babu
et al., 2022).

While more extensive testing is required to clarify this important
aspect, it seems safe to say that the N-terminal domain of
ANXA11 is an excellent example of a bona fide intrinsically
disordered domain in which disorder is essential for the
formation of phase transition probably co-adjuvated by protein-
protein interactions.
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