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Background: Capillary ultrastructure in human skeletal muscles is dynamic and
prone to alterations in response to many stimuli, e.g., systemic pathologies such
as diabetes mellitus and arterial hypertension. Using transmission electron
microscopy (TEM) images, several studies have been conducted to quantify
the capillary ultrastructure by means of morphometry. Deep learning
techniques like convolutional neural networks (CNNs) are utilized to extract
data-driven characteristics and to recognize patterns. Hence, the aim of this
study was to train a CNN to identify morphometric patterns that differ between
capillaries in muscle biopsies of healthy participants and patients with systemic
pathologies for the purpose of hypothesis generation.

Methods: In this retrospective study we used 1810 electron micrographs from
human skeletal muscle capillaries derived from 70 study participants which were
classified as “healthy” controls or “patients“ in dependence of the absence or
presence of a documented history of diabetes mellitus, arterial hypertension or
peripheral arterial disease. Using these micrographs, a pre-trained open-access
CNN (ResNet101) was trained to discriminate between micrographs of capillaries
of the two groups. The CNN with the highest diagnostic accuracies during
training were subsequently compared with manual quantitative analysis of the
capillary ultrastructure to distinguish between “healthy” controls and patients.

Results: Using classification into controls or patients as allocation reference,
receiver-operating-characteristics (ROC)-analysis of manually obtained BM
thickness showed the best diagnostic accuracy of all morphometric indicators
(area under the ROC-curve (AUC): 0.657 ± 0.050). The best performing CNN
demonstrated a diagnostic accuracy of 79% (sensitivity 93%, specificity 92%).
DeLong-Test of the ROC-curves showed a significant difference (p < 0.001)
between the AUC of the best performing CNN and the BM thickness. The
underlying morphology responsible for the network prediction focuses mainly
on debridement of pericytes.

Conclusion: The hypothesis-generating approach using pretrained CNN
distinguishes between capillaries depicted on electron micrographs of
“healthy” controls and participants with a systemic pathology more accurately
than by commonly used morphometric analysis.
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GRAPHICAL ABSTRACT

Introduction

Capillaries are the sections of the vascular system with the most
narrow diameter (Tuma et al., 2011). They branch from arterioles
to meander through the tissues and then drain into collecting
venules and ensuing veins. According to the law of Hagen-
Poisseuille, which states that the blood flow velocity is
proportional to the fourth power of the vessel radius, this
transition from the arterioles into the capillary network is
accompanied by a significant reduction in the velocity of the
blood flow. Of note, as the transition into smaller vessels results
in a significant increase in the overall diameter of the arterial
vascular system, the total blood flow remains constant, i.e., the
cardiac output. The reduction of the blood flow velocity in the
capillary system ensures that the red blood cells release ample
oxygen amounts to supply the surrounding tissues during their
microcirculation passage and, in addition, facilitates the essentially
balanced exchange of energy substrates and metabolic end
products between the vascular system and the tissue.

As most clearly visualized using transmission electron
microscopy (TEM), capillaries are of simple structure.
Endothelial cells (ECs) close together as the vessel wall in such a
way that a capillary lumen is formed. The abluminal surface of the
ECs is covered by a continuous basement membrane (BM) mainly
consisting of collagen type IV and other extracellular matrix (ECM)
components such as laminin, heparan-sulphate proteoglycans
(HSPGs) and nidogen/entactin (Kalluri, 2003). Pericytes (PC) are
embedded in this BM and wrap their protrusions abluminally
around the ECs. These contractile cells may influence the
capillary blood flow in many tissues and communicate with the
underlying ECs to influence the functional integrity of the capillaries
(Armulik et al., 2011; Yamazaki and Mukouyama, 2018).

The capillary phenotype is dynamic. Inflation of the ECs volume
during ischemia highlights the structural versatility of capillaries
(Egginton and Hudlická, 1999). Furthermore, the thickness of the
peri-capillary BM in human skeletal muscles increases in common
cardiovascular diseases such as peripheral arterial disease (PAD),
diabetes mellitus or arterial hypertension (Baum et al., 2020), but
decreases in response to physical activity (Williamson et al., 1996).
Strikingly, the BM thickening is accompanied by significant changes
in the pathophysiology of the capillaries (Baum and Bigler, 2016).

Sophisticated methodological approaches have been developed
in recent years that significantly improved the ultrastructural
analysis by means of TEM been applied for more than 50 years.
However and despite some simplifications (e.g., tablet-based image
analysis (TBIA) (Bigler et al., 2016)), the quantitative evaluation of
the images is still largely manually performed, posing a challenge for
the morphometric processing of large amounts of data. In addition,
the morphometry rules stipulate that the morphological features to
be assessed are defined in advance, which means that changes in the
capillary structure related to the pathophysiology could remain
undetected during the analysis due to a selection bias. In
contrast, deep learning methods such as convolutional neural
networks (CNN) are not affected by this selection bias. Instead,
the algorithm tries to find patterns in data sets to solve a pre-defined
task without observer guidance (LeCun et al., 2015; Goodfellow
et al., 2016).

We hypothesized that a deep learning-based approach with
transfer learning of open-available, pre-trained CNN allows the
identification of morphometric patterns that differ between
capillaries in muscle biopsies of healthy participants and patients
with systemic pathologies for the purpose of hypothesis generation.
Thus, the aim of the study was to train a CNN and subsequently
visualize its activation patterns to demonstrate the triggering
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morphology for the network prediction. In a second step, we
compared the results obtained applying the deep learning-based
approach with data based on classic morphometry (i.e., the
conventional method).

Methods

Study participants and muscle biopsies

For this retrospective study electron micrographs of capillaries
were used, that were taken by transmission electron microscopy on
biopsies of the vastus lateralis muscle (VL). The biopsies were derived
from human participants of five studies conducted at the Department
of Anatomy, University of Bern (Rosler et al., 1986; Suter et al., 1995),
the University of Copenhagen (Nyberg et al., 2012; Winding et al.,
2018), or the University of the sunshine Coast, Australia (Walker
et al., 2016).Written informed consent was obtained in each case prior
to the study beginning. In all investigations, the criteria and ethical
guidelines for treatment of human participants conform to the
principles outlined in the Declaration of Helsinki were fulfilled.
Each study protocol was approved by the local ethics committee
responsible for supervision at the time of study execution, as described
earlier (Rosler et al., 1986; Suter et al., 1995; Nyberg et al., 2012; Hoier
et al., 2013; Walker et al., 2016; Winding et al., 2018).

The VL muscle biopsies were taken by authorized medical
practitioners using Bergstroem needles after local subcutaneous
analgesia and immediately fixed in 6.25% (v/v) glutaraldehyde
buffered with 0.1 M sodium cacodylate–HCl (pH 7.4) to be stored
at 4°C until analysis. Ultrathin sections of the muscle biopsies were
prepared and subjected to TEM analysis to record electron
micrographs, as previously described in detail (Baum et al., 2020).

For this analysis, participants were classified as “healthy”
controls or ‘patients’ in dependence of the absence or presence of
a documented history of diabetes mellitus, PAD or arterial
hypertension. Application of these criteria resulted in 42 controls
and 28 patients, providing a total of 1810 electron micrographs of
capillary profiles. In the patient group, 9 patients had a documented
history of arterial hypertension, 10 patients had diabetes mellitus
and 9 patients had clinically relevant PAD.

Capillary morphometry

Study parameters were adopted from the original studies, i.e., lumen
radius (in nm), thickness of the endothelial cell (in nm), thickness of the
BM (in nm) as well as capillary radius (in nm). Furthermore, all study
parameters including pericyte cells were calculated as fraction of the
capillary area (in %) (Baum and Bigler, 2016).

General principle of the applied deep-
learning based method

The construction and training of a complex CNN architecture
requires a large dataset and training over a considerable period of
time, even for the establishment of general pattern recognition. To
streamline this process, we employed openly accessible pre-trained

CNN models that were trained using an extensive dataset from the
ImageNet Large Scale Visual Recognition Challenge (Deng, 2009;
ILSVRC; http://www.image-net.org/challenges/LSVRC/).
Consequently, this approach enables the utilization of a complex
network architecture even with a limited dataset. However, a
drawback of this method is the pre-defined input layer, which
requires data adjustments such as resizing to match the selected
networks. In a next step, the output layers of these pretrained CNN
are replaced to fit the new task. After the training phase during
which the CNN learns to perform the new task, its performance is
evaluated using a new dataset. Subsequently, in the final step, the
CNNs exhibiting the highest performance are subjected to
additional analysis in order to visualize the specific regions
within the images that contribute to the CNN’s decision-making
process (i.e., the trigger morphology).

Computational hardware

Network training was simultaneously performed on two
computers (Intel® Core™ i7-7700 CPU@3.60GHz, 8GB RAM
respectively Intel® Core™ i7-8550U CPU@1.80GHz, 8GB RAM)
using customized software (written in Matlab R2019b and R2020a).

Randomization, image allocation and
preparation

Initially, randomization on participant level intro training,
validation and examination data (75% respectively 25% (validation +
examination) as recommended by Goodfellow et al. (Goodfellow et al.,
2016)) was performed using a random number vector to avoid
overfitting of single participants, resulting in 52 participants in the
training group, 13 in the validation group and five in the examination
group. Electron micrographs (Figure 1 upper panel) were then plotted
in Matlab, saved as jpg-images with predefined image size (224 × 224 ×
3 pixels, Figure 1 lower panel) and stored in group-specific folders
(880 control and 930 pathologic images).

Prior to each training iteration, all training images were
randomly shuffled and processed by adding data noise to prevent
overfitting (Goodfellow et al., 2016; Trask, 2020). Therefore, the
images were randomly rotated in a range between ±45° and
translocated ±10 pixels in each direction.

Selection and preparation of the pretrained
convolutional neural networks

For this study, we applied ResNet101, a 101 convolutional layer
deep CNN developed by He et al. (He et al., 2015). ResNet101 uses a
special residual learning framework allowing the training of a deeper
and thus more accurate network compared to other network
architectures (i.e., GoogLeNet (Szegedy et al., 2014)) in terms of
diagnostic accuracy.

To prepare for the transfer learning process, the last three layers
of the networks responsible for the network prediction had to be
replaced for the new task, i.e., classification of electron micrographs
into either the control or the pathologic group. In addition, a
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dropout layer was added to prevent the network from overfitting
(Srivastava et al., 2014). The remaining layers accounting for pattern
recognition and feature extraction were not changed. General
learning rate was chosen low while the new layers received a
learning rate weight factor of 10 (i.e., 10-fold the normal learning
rate) to improve and accelerate their training process.

Training of the neural networks

Hyperparameter optimization of the transfer learning process
was performed for three parameters, i.e., learning rate, dropout
probability and minibatch size, using Bayesian optimization
technique (Bengio, 2000) and the adaptive moment estimation
learning rate algorithm, ADAM (Diederik and Ba, 2014)).
Validation of the network performance was performed every ten
iterations. Further, a preliminary termination term was added to the
algorithm, which terminated the training process when the validation
and the training performances diverged twenty times in a row.

Network performance analysis

Networks performing above the arbitrary threshold of 60%
classification accuracy (i.e (true positive + true negative)/(true
positive + true negative + false positive + false negative)) on the

validation data during the training process were stored for in-depth
evaluation with determination of diagnostic accuracy on each subset
(i.e., the validation data and the examination data) as well as the
combined data sets. Based on the results of this evaluation, the best
three networks were further evaluated with class activation mapping
(CAM) (Zhou et al., 2015; Selvaraju et al., 2017), i.e., parametric
visualization of their activation patterns to find the morphology
responsible for the network prediction using ten characteristic
electron micrographs (Supplementary Figure S2). When multiple
networks showed similar performance, the network with the
smallest discrepancy between validation and examination data
was selected.

Statistical analysis

Two study groups (“healthy” and “patients” based on the above
mentioned classification in controls or patients in dependence of the
absence or presence of a documented history of diabetes mellitus,
PAD or arterial hypertension were formed. Between-group
comparison of continuous study parameters was performed by an
unpaired Student’s t-test. Network performance was analyzed by
determination of classification accuracy (i.e., correct classified
images/all images) using a 4-field matrix and calculation of
sensitivity, specificity and F1-score (harmonic mean of sensitivity
and positive predictive value). Nonparametric receiver operating

FIGURE 1
Input data for the neural networks. Upper panels (A, B): Original transmission electron microscopy images of the human skeletal muscle capillaries.
(A) capillary of a healthy participant, (B) capillary of a patient with diabetes mellitus. Lower panels (C,D): Input images for the convolutional neuronal
networks after required adjustment of the dimension. Please note the loss of resolution. The scale was not available for the networks and later added for
better visualization. RBC = red blood cell PC = pericytes, EC = endothelial cell, BM = basement membrane.
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characteristics (ROC) analysis was performed for accuracy
assessment of differentiating between electron micrographs of
controls or patients by manually obtained study parameters
(continuous) and the CNN prediction (dichotomous).
Comparison of the area under the ROC curves was performed
using the DeLong-Test.

Statistical significance was defined at a p-level of <0.05.
Continuous variables are given as mean ± standard deviation. All
analyses were performed using SPSS version 25 (IBM Statistics,
Armonk, New York) or MedCalc for Windows, version 19.1
(MedCalc Software, Ostend, Belgium).

Results

1810 electron micrographs from 70 participants were included in
the study, among these 880 micrographs were derived from muscle

biopsies of 42 healthy control subjects and 930 from those of
28 patients. 1,347 were used for the training and 463 electron
micrographs for the performance evaluation of the CNN (Table 1).
Most of the participants were male (69%) with a mean age of 49.2
years (range 23–75 years). Of note, participants included in the patient
group were significantly older than participants in the control group
(57.6 years versus 43.9 years, p < 0.001).

Descriptive statistics

Descriptive statistics of the study parameters grouped according
to the classification “healthy” and “patients” are presented in
Table 1; Figure 2 (respectively Supplementary Table S1;
Supplementary Figure S1 for the fraction values). Overall,
endothelial cell thickness and BM thickness were significantly
different between the groups in each data set.

TABLE 1 Study parameters.

Controls Patients p-value

Overall, n 880 930 -

Lumen radius (nm) 1,589 ± 421 1.452 ± 460 p < 0.001

Thickness of the endothelium (nm) 421 ± 303 481 ± 290 p < 0.001

Thickness of the basement membrane (nm) 218 ± 69 308 ± 118 p < 0.001

Capillary radius (nm) 2,406 ± 356 2,429 ± 440 p = 0.226

Training data 691 656 -

Lumen radius (nm) 1,589 ± 427 1,443 ± 464 p < 0.001

Thickness of the endothelium (nm) 423 ± 317 485 ± 294 p < 0.001

Thickness of the basement membrane (nm) 215 ± 67 319 ± 123 p < 0.001

Capillary radius (nm) 2,400 ± 361 2,442 ± 422 p = 0.047

Validation data 159 231 -

Lumen radius (nm) 1,576 ± 407 1,459 ± 459 p = 0.012

Thickness of the endothelium (nm) 419 ± 248 456 ± 276 p = 0.190

Thickness of the basement membrane (nm) 232 ± 79 287 ± 98 p < 0.001

Capillary radius (nm) 2,425 ± 342 2,388 ± 497 p = 0.411

Examination data 30 43 -

Lumen radius (nm) 1,672 ± 352 1,558 ± 393 p = 0.212

Thickness of the endothelium (nm) 375 ± 228 524 ± 290 p = 0.021

Thickness of the basement membrane (nm) 211 ± 50 252 ± 99 p = 0.037

Capillary radius (nm) 2,452 ± 304 2,449 ± 377 p = 0.971

Validation + Examination data 189 274 -

Lumen radius (nm) 1,591 ± 400 1,477 ± 449 p = 0.006

Thickness of the endothelium (nm) 412 ± 245 469 ± 279 p = 0.030

Thickness of the basement membrane (nm) 229 ± 75 281 ± 99 p < 0.001

Capillary radius (nm) 2,429 ± 336 2,397 ± 480 p = 0.428
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Receiver-operating characteristic curves

Complete data
Using classification into controls or patients as allocation

reference, receiver-operating-characteristics (ROC) analysis of the
lumen radius showed an area under the ROC-curve of 0.592 ± 0.027
(p < 0.001; Figure 3). AUC for endothelial thickness was 0.588 ±
0.027 (p < 0.001), for BM thickness 0.743 ± 0.023 (p < 0.001) and for
the capillary radius 0.511 ± 0.027 (p = 0.419).

DeLong-Test of the ROC-curves showed a significant difference
of AUC for BM thickness in comparison to all other parameters (p ≤
0.0001). There was no significant difference between the AUCs of
the lumen radius and endothelial thickness (p = 0.844), but a
significant difference of these parameters and capillary radius
(p = 0.013 respectively p ≤ 0.001).

Validation and examination data

Using classification into controls or patients as allocation
reference, ROC analysis of the lumen radius showed an area

under the ROC-curve of 0.580 ± 0.054 (p = 0.004). AUC for
endothelial thickness was 0.574 ± 0.055 (p = 0.009), for BM
thickness 0.657 ± 0.050 (p < 0.001) and for the capillary radius
0.532 ± 0.053 (p = 0.235).

Regarding the optimum cut-off of the study parameters, a
lumen radius of 1,332 nm distinguished best between control
and patient, sensitivity 36%, specificity 80%. The best cut-off
point for endothelial thickness was 368 nm (sensitivity 58%,
specificity 88%), for BM-thickness 314 nm (sensitivity 32%,
specificity 91%) and for capillary radius 2,182 nm (sensitivity
36%, specificity 80%). Of note, lumen and capillary radius
decreased with presence of pathologies. Thus, the optimum cut-
off points for these parameters were inversely set (i.e., pathologic
below 1332nm respectively 2,182 nm). Using these thresholds
obtained in the validation and examination data, diagnostic
accuracy was calculated to allow a comparison with the CNN
(Table 2). Of note, due to missing data for all but BM data, different
(lower) diagnostic accuracies are shown than presented in the ROC
analysis. Further, absolute numbers of the study parameters are
dependent on biopsy fixation and storage and are not generally
representative.

FIGURE 2
Histograms representing the frequency distribution of the study parameters grouped by the absence or presence of systemic pathologies. The
morphometric values for the capillary structure of 880 electron micrographs from control participants (blue bars) and 930 electron micrographs from
patients (red bars) were taken from the original studies listed in Materials/Methods. They were determined using tablet-based image analysis and
represent mean ± standard deviation.
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Study parameter and network performance

Prediction of the study parameters and the three best
performing networks including their accuracy, sensitivity and
specificity are presented in Table 2. Using participant allocation
as reference for the ROC analysis, the three best-performing
networks showed a diagnostic accuracy of 79% (RN1: sensitivity
93%, specificity 92%, AUC 0.779 ± 0.023), 77% (RN2: sensitivity
88%, specificity 96, AUC 0.745 + 0.024) and 75% (RN5: sensitivity
89%, specificity 95%, AUC 0.725 + 0.025; Figure 4). By
visualization of the activation patterns on ten characteristic
electron micrographs, it could be shown that the underlying
morphology responsible for the network prediction focuses
primarily on debridement of pericytes and to a lesser extent on
the structure of the endothelium. These network activation
patterns are depicted in Figure 5, and in detail in
Supplementary Figure S2.

Comparison of study parameter and
network performance

Based on the performance of the different morphologic
parameters as well as missing data for lumen radius, endothelial

thickness and capillary radius, only a comparison with BM thickness
was performed.

DeLong-Test of the ROC-curves (Figure 4) showed significant
difference of AUCs between BM thickness and the three networks
(RN1: p < 0.001; RN2: p = 0.002; RN5: p = 0.015). Further, there was
a significant difference between the AUCs of RN1 and RN5
(p = 0.003).

Discussion

In the present project, we used a deep learning-based
approach with transfer learning of open-available pre-trained
CNN to identify morphometric patterns that differ between
capillaries in skeletal muscle biopsies of healthy participants
and patients with systemic pathologies. Our most relevant
findings were: 1. Electron micrographs of skeletal muscle
capillaries from healthy controls and participants with a
systemic pathology are more accurately distinguishable by
CNN than by commonly used morphometric analysis. 2. The
underlying morphology responsible for the network prediction
focuses primarily on debridement of pericytes and to a lesser
extent on the structure of the endothelium.

FIGURE 3
Nonparametric receiver-operating characteristic curve of the study parameters using the complete data set. Of note, all parameters but capillary
radius were higher in samples of pathologies. As consequence, the data set for capillary radius is below the reference line (dashed black line).
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TABLE 2 Prediction and performance of the study parameters and the networks.

Data Validation Data Examination Data Validation + Examination Data

Parameter True Normal Pathologic Accuracy True Normal Pathologic Accuracy True Normal Pathologic Accuracy

Predicted Predicted Predicted

Lumen radius Cut-off: ≤1332nm Normal 122 120 55.90 Normal 27 33 50.68 Normal 149 153 55.01

Pathologic 37 77 Pathologic 3 10 Pathologic 40 87

EC-Thickness Cut-off: ≥368nm Normal 86 82 56.64 Normal 22 17 65.75 Normal 108 99 57.98

Pathologic 72 113 Pathologic 8 26 Pathologic 80 139

BM-Thickness Cut-off: ≥314 nm Normal 141 155 55.64 Normal 30 31 57.53 Normal 171 186 55.94

Pathologic 18 76 Pathologic 0 12 Pathologic 18 88

Capillary radius Cut-off:
≤2182 nm

Normal 127 144 54.87 Normal 24 32 47.95 Normal 151 176 53.78

Pathologic 32 87 Pathologic 6 11 Pathologic 38 98

ResNet1:L4.4e-5_D0.69_M8 Normal 106 22 80.77 Normal 30 22 69.86 Normal 136 44 79.05

Pathologic 53 209 Pathologic 0 21 Pathologic 53 230

ResNet2:L4.8e-5_D0.32_M13 Normal 92 16 78.72 Normal 26 21 65.75 Normal 118 37 76.67

Pathologic 67 215 Pathologic 4 22 Pathologic 71 237

ResNet5:L1e-4DO51M31 Normal 82 13 76.92 Normal 25 19 67.12 Normal 107 32 75.38

Pathologic 77 218 Pathologic 5 24 Pathologic 82 242

Order according to accuracy. L = learning rate, D = dropout rate, M = minibatch size.

Of note, there were missing data for lumen radius, EC-Thickness and Capillary radius resulting in a smaller total number of cases.
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FIGURE 4
Nonparametric receiver-operating characteristic curve of the basement membrane thickness and the network predictions using the validation and
examination data. Of note, network prediction provides a dichotomous output (“healthy control” respectively “patient”), resulting in a triangular ROC-
curve. Hence, there is only one combination of sensitivity and specificity possible for each CNN. Dashed black line = reference line.

FIGURE 5
Visualization of network activation patterns of the best performing CNN (A) Capillary of a healthy participant, (B) capillary of a patient. Red regions
contributed most to the network class prediction. Hence, the electron micrograph of the patient was recognized by the debridement of the pericyte
(lower red region) and the thickness of the endothelium cell (upper red region). Of note, the scale was later added for better visualization.
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Classification of electron micrographs by
established morphometric parameters

Ever since the initial observation that certain pathologies are
associated with morphological changes of the peri-capillary BM in
skeletal muscles, there have been fundamental discussions regarding
the methodology for the quantitative determination of this entity.
Originally, the scientific debate was driven by methodological
approaches developed by two research groups. Siperstein et al.
(Siperstein et al., 1968) determined the capillary basement
membrane thickness (CBMT) by calculation the mean of
20 measurements of the distances between the abluminal EC
surface and the endomysium that do not intersect a PC profile
(”20-line measurement”). On the other hand, Williamson et al.
(Williamson et al., 1969) preferred the measurement of the CBMT at
the two sites of the capillary profile where the BM appeared smallest
(“two-minimum-point technique”). However, both morphometric
methods are characterized by a time-intensive nature and exhibit
specific technical limitations as previously discussed (Baum and
Bigler, 2016). Therefore, given the technological advancements, a
novel tablet-based image analysis (TBIA) methodology was
developed to facilitate the precise quantitative assessment of
CBMT (Bigler et al., 2016). Application of this approach allowed
not only accurate and reproducible analysis of the CBMT, but also
the assessment of numerous other structural indicators
simultaneously during the same analysis. As a result, our study
group could not only confirm the direct correlation between
hypertension, diabetes mellitus, PAD or age with CBMT (Bigler
et al., 2016), but also corroborate the favorable impact of physical
exercise on CBMT with a partial reduction (Baum and Bigler, 2016).

Application of deep-learning on
morphometric data/electron micrographs

An increasing number of research groups have applied deep-
learning based methodologies in basic science. There, its application
has spanned a wide spectrum, encompassing the identification of
gold nanoparticles in TEM images of tumor cells (Kaphle et al.,
2023), deep-learning assisted segmentation of atomic structures
(Sadre et al., 2021), and translational research involving the
correlation of deep learning-based kidney histomorphometry
with patient data (Ginley et al., 2023). The wide array of
applications underscores the versatility of this approach.
However, to the best of our knowledge, this study presents the
first application of a pretrained CNN-approach on TEM-images of
the capillary ultrastructure in human skeletal muscles.

Comparison of CNN and established
morphometric parameters

The primary finding of this study is that transfer learning of a
pretrained CNN is accurate for allocating electron micrographs of
human skeletal muscle capillaries to healthy controls or participants
with a systemic pathology. Noteworthy, its diagnostic accuracy for
this allocation is higher than the methods previously used and
established morphometric indicators for the evaluation of

capillary ultrastructure. Using parametric visualization of the
activation patterns, we could demonstrate that CNN focuses on
distinctive features of the capillary ultrastructure, in particular
debridement of pericytes.

Our findings are in agreement with the current hypothesis on
the etiology of capillary BM thickening according to Tilton et al.
(Tilton et al., 1981) and Vracko et al. (Vracko and Benditt, 1970).
Based on their observation of widespread cellular debris within the
thickened BM, they independently proposed a disturbed and
incomplete turnover of cells associated with the capillaries
including apoptosis and replacement of the degenerated cells by
new pericyte precursor cells, which then differentiate and generate a
new BM layer. Consequently, the inadequately regulated turnover of
PCs results in an accumulation of BMmaterial during each cycle. Of
note, this hypothesis would provide an explanation for the
frequently observed lamellar structure of the BM in capillary
profiles of diabetic patients (Baum and Bigler, 2016), akin to
growth rings of trees.

Despite this established hypothesis, a comprehensive
quantitative assessment of cellular debris and its correlation with
BM thickness have yet to be conducted. Hence and in light of the
recent reaffirmation of this pathophysiological explanation by the
present study, further quantitative analysis with focus on this
phenomenon are required.

Limitations

The present study has several limitations. First, the
categorization of the study participants into the distinct groups
“healthy” and “patients” introduced heterogeneity into the data.
Based on this dichotomy with its potential complexities, it is
conceivable that there exists the potential for undetected arterial
hypertension or incipient diabetes in the former group with already
initiated microvascular changes. Conversely, pathological cases
exhibiting optimal medical management may result in minimal
pathophysiological alternations. In summary, variability could
lead to a considerable degree of overlap between the groups.
Nevertheless, due to the retrospective nature of the study design,
the adjustment for these factors was not feasible.

Second, age was the only variable not accounted for by the study
design excluding relevant co-morbidities during enrollment in the
original studies. However, in a preliminary study by our research
team, we could demonstrate that most markers of capillary
ultrastructure exhibit only non-significant changes (p > 0.05)
with age, except for the basement membrane thickness. This
exception was attributed rather to an increase in age-related
comorbidities (such as hypertension and diabetes), than to the
aging process itself (Bigler et al., 2016).

Third, the utilization of transfer learning of a pretrained CNN
facilitated the implementation of networks with a high capacity for
small data. However, this advantage came at the cost of predefined
inputs. In the presented study, this constraint led to a notable
reduction in input dimensions and consequently, image
resolution. As a result, it is conceivable that nuanced
morphological patterns may have escaped detection by the network.

Fourth, the applied strategy with transfer-learning of a
pretrained CNN without further adjustments to the output is
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insufficient for the development of a diagnostic model. Therefore,
analysis of the probabilities rather than the binary output, inclusion
of the morphometric features as covariates as well as cross-
validation would be required to gain prediction stability.
Nonetheless, given that the aim of our study is to generate
hypotheses that necessitate subsequent validation, the study
design offers significant benefits in terms of its simplicity and
ease of application.

Last, application of CNN results in a “complicated interconnected
hierarchical representations of the training data to produce its
predictions” (Lundervold and Lundervold, 2019). Thus,
interpretation of these predictions remains intricate, even with the
assistance of class activation maps, which provide insight into the
general distinction procedure. In this study, the CNN exhibited an
astonishing diagnostic accuracy, surpassing that of conventional
morphometric parameters. Notwithstanding these results, the
depicted activation maps demonstrated a diffuse activation pattern
leading to indistinct predictions, which complicates the interpretation
even further. However, the CNN’s performance remained consistent
across various datasets and, importantly, the results substantiate a
biologically plausible underlying pathophysiological mechanism.

Implications

In this study, the morphometric patterns employed by the CNN
for distinguishing between TEM images of capillaries in muscle
biopsies from healthy participants and patients with systemic
pathologies were innovative, yet rooted in a plausible
pathophysiological mechanism. This underscores the feasibility of a
hypothesis-generating process using transfer learning of pretrained
CNN on a small data set employing single CPU computers. Of note,
this approach does not replace the conventional scientific method and
further studies, i.e., the quantitative analysis of pericyte debridements
across different pathologies, are required to validate the presented
findings. However, the study highlights the feasibility of the proposed
approach, making it applicable to a diverse range of
scientific problems.

Conclusion

The presented hypothesis-generating approach using pretrained
CNN distinguishes electron micrographs of healthy controls and
participants with a systemic pathology more accurately than
established morphometric analysis. Of note, in addressing this
task, the CNN primarily concentrates on debridements of
pericytes and thus, a biological plausible mechanism. Hence,
demonstrating the feasibility of the hypothesis-generating
approach in pretrained CNN on a small data set. However,
further quantitative and prospective analyses are required to
validate these findings.
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