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Purpose: TUBB can encode a beta-tubulin protein. At present, the role of TUBB
has not been ascertained in cancers. Hence, the importance of further systematic
pan-cancer analyses is stressed to explore its value in the diagnosis, prognosis,
and immune function of cancers.

Methods: By collecting and handling integrative data from the TCGA, Firehose,
UCSC Xena, cBioPortal, GEO, CPTAC, TIMER2.0, TISCH, CellMiner, GDSC, and
CTRP databases, we explored the potential diagnostic and prognostic roles of
TUBB in pan-cancers from multiple angles. Moreover, the GSEA analysis was
conducted to excavate the biological functions of TUBB in pan-cancers. In
addition, survival profiles were described, and the differential expressions of
TUBB in different molecular subtypes were discussed. Also, we utilized the
cMAP function to search drugs or micro-molecules that have an impact on
TUBB expressions.

Results: Based on the TCGA data, we found that TUBB was differentially
expressed in a variety of tumors and showed an early-diagnostic value.
Mutations, somatic copy number alterations, and DNA methylation would lead
to its abnormal expression. TUBB expressions had relations with many clinical
features. What's more, TUBB expressions were validated to be related to many
metabolism-related, metastasis-related, and immune-related pathways. High
TUBB expressions were proved to have a great impact on the prognosis of
various types of cancers and would affect the sensitivity of some drugs. We also
demonstrated that the expression of TUBB was significantly correlated to
immunoregulator molecules and biomarkers of lymphocyte subpopulation
infiltration.

Conclusion: TUBB and its regulatory genes were systemically analyzed in this
study, showing that TUBB had satisfying performances in disease diagnosing and
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prognosis predicting of multiple cancers.

10.3389/fmolb.2024.1365655

It could remodel the tumor

microenvironment and play an integral role in guiding cancer therapies and
forecasting responses to chemotherapy.
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Introduction

Many people in the world are battling cancer (Dolgin, 2021).
The explicit pathogenesis of cancer has always been a hot topic in
cancer research. Multiform

therapies like chemotherapy,

radiotherapy, targeted therapy, and immunotherapy are
separately or compositely used clinically. Chemotherapy is a basic
approach to treating cancer. Immunotherapy has greatly
revolutionized both the research and treatment of cancer (Szeto
and Finley, 2019). However, due to the complexity of carcinogenesis,
the efficacy of cancer therapies cannot be guaranteed. Unfortunately,
they are not able to enhance the long-term prognosis of patients.
Therefore, it is of great significance to analyze a potential biomarker
gene at the pan-cancer level and explore its connections to the
clinical outcome of cancer patients. Currently, the largest database of
cancer genes is the Cancer Genome Atlas (TCGA) (https://www.
More than

11,000 tumors from 33 of the most prevalent forms of cancer

cancer.gov/ccg/research/genome-sequencing/tcga).

have been analyzed, constituting a uniquely comprehensive, in-
depth pan-cancer atlas that serves as an essential resource for the
development of new therapies in the pursuit of precision medicine
(Hoadley et al., 2018).

TUBB (B-tubulin) is a protein-coding gene, responsible for
forming a heterodimer with a-tubulin and acting as a structural
component of microtubules (Miller et al., 2010), which are a kind of
long hollow polymers that are 25 nm wide and range in length
2018).
Microtubules play a major role in controlling different aspects of

from <lum to >100pum (Goodson and Jonasson,
cell architecture and function (Wu and Alkkhmanova, 2017), they are
essential for motor-driven intracellular transport, interact with
accessory proteins to assemble into larger structures, and
coordinate with other types of cells as a mature network
(Goodson and Jonasson, 2018). As a result, compounds that
target microtubules can interfere with multiple vital cellular
processes (Wordeman and Vicente, 2021), for example, they
inhibit
imbalance of microtubules, damage spindles, block cell cycle, and

microtubule polymerization, destroy the dynamic
cause tumor cell death. Such anti-tumor drugs are collectively called
microtubule-targeting agents (MTAs), served as cancer therapy for
many years, the first being paclitaxel, introduced in 1994 (Field et al.,
2014). What’s more, recent studies report that alterations in the
expression of certain tubulin isotypes and associated post-
translational modifications (PTMs) have been observed in human
cancers, however, the exact implications of whether and how the
tubulin code can mediate the biological progress of cancer cells are
not yet clear (Lopes and Maiato, 2020). Therefore, TUBB as a
mediator, has been studied in the cancer research area. In
osteosarcoma, TUBB has been identified as the significant
survival-predicting factor (Shao et al., 2022). Alhammad R. found

that, the overexpression of TUBB would lead to a worse prognosis in
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ERa-positive and better prognosis in ERa-negative breast cancer
(Alhammad, 2022). TUBB plays an important role in cancer
progression and targeting TUBB may provide significant clues in
cancer treatments. However, how TUBB modulates cancer initiation
and advancement in pan-cancers remains controversial. Hence, it is
necessary to explore TUBB profiles from the perspectives of multiple
cancer cells. Thorough analyses are needed to understand the
intrinsic role of TUBB in tumor immunity.

Considering the lack of pan-cancer analysis of TUBB, this study
aims to conduct a comprehensive exploration of the potential roles
of TUBB in malignant tumor cells and its underlying mechanisms in
the prediction of clinical prognosis. The TUBB profiles, including
their expressions, mutations, relations with aggressive tumor traits,
and contributions to the survival of cancer patients, have been
depicted. With the aid of several famous public databases, the
analysis was performed based on the web tools and “R” software.
We found that TUBB was significantly correlated with various
cancer characteristics, tumor immune microenvironment (TIME),
drug resistance, and survival states. All the results highlighted the
critical roles of TUBB in cancer and they contribute to further
studies of TUBB-related molecular mechanisms and therapeutic
development.

Materials and methods

Acquisition and organization of public data
from different databases

Firstly, the flow chart of this study is shown in Figure 1. Then,
the mRNA expression data, copy number alteration threshold data,
masked copy number segmentation data, and DNA methylation
450K data of both tumor and normal tissues in the TCGA pan-
cancer cohort were obtained from the Firehose database (http://
gdac.broadinstitute.org) (Deng et al., 2017). TCPA, mutation, and
clinical data were acquired from the UCSC Xena database (https://
xenabrowser.net/datapages/) (Wang et al, 2022). The mutation
frequency of TUBB in the TCGA cohort was calculated using the
cBioPortal database (https://www.cbioportal.org/) (Cerami et al,
2012). Based on the data from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/) (Barrett et al., 2013), the TUBB expression at the
transcript level was validated. We analyzed and estimated its
expression at the protein level based on the CPTAC database
(https://proteomics.cancer.gov/programs/cptac) (Zhang et al,
2014). Also, various immune infiltrating algorithms from the
TIMER2.0 database (http://timer.cistrome.org) (Li et al, 2020)
between TUBB
expression and tumor immune microenvironment (TIME). Via
99 single-cell datasets from the TISCH database (http://tisch.
comp-genomics.org/home) (Sun et al,, 2021), immune infiltration

were adopted to depict the correlations
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FIGURE 1
The flow chart of this study.

results by whole transcriptome analysis were verified. From the
CellMiner (https://discover.nci.nih.gov/cellminer/CellMiner)
(Shankavaram et al, 2009), GDSC (https://www.cancerrxgene.
org/) (Yang et al,, 2013), and CTRP (http://portals.broadinstitute.

org/ctrp/) databases (Rees et al, 2016), we gained relevant
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chemotherapy data to illustrate how TUBB expressions interact
with drug sensitivity. It should be noted that these public databases
are free and open. The study strictly follows the data extraction
policy of the databases and does not require the ethical review and
approval of the ethics committee.
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Differential expression analyses at multi-
omics level

To observe whether imbalanced expressions of TUBB exist
between tumor and normal tissues, differential analyses were
conducted in terms of three dimensions.

First of all, we combined the data from the Genotype-Tissue
Expression (GTEx) project because the TCGA-data was inadequate,
to enhance the confidence by expanding the sample sizes. The
“wilcox” test was applied to detect the variability (p < 0.05 was
considered significant). The “gganatogram” R package was adopted
to visualize the expressions in human’s different organs. Then, the
“wilcox” analysis was performed to compare the differential mRNA
expressions of TUBB between tumor and normal tissues based on
TCGA data. Moreover, we performed the “wilcox” test on paired
samples from the TCGA cancer groups (p < 0.05 was considered
significant, *p < 0.05; **p < 0.01; ***p < 0.001; ***p < 0.0001). Using
the “pROC” R package, the importance of TUBB in the diagnosis of
pan-cancers was addressed. The area under curve (AUC) values
were calculated (between 0.5 and 1, the closer the AUC value came
to one, the better diagnostic performance TUBB would have).
Usually, AUC values of 0.5-0.7, 0.7-0.9, and >0.9 indicate low
accuracy, certainty accuracy, and high accuracy, respectively.

Based on the GEO database, we conducted the external
validation at the transcriptional level. At the protein level, the
protein expressions of TUBB were validated via the CPTAC
database. What’s more, the immunohistochemical (IHC) staining
of tissues was collected from the HPA database. The “Kruskal” test
was used to identify the expressions of TUBB in different stages or
molecular subtypes.

Analyzing the survival status and clinical
outcomes in pan-cancer

Survival data was obtained from the TCGA database, the
“survival’and “survminer” R packages were utilized to describe
the relations between the expression of TUBB and prognostic
indexes of TUBB (including overall survival (OS), disease-specific
survival (DSS), progression-free interval (PFI), and disease free
interval (DFI)). Integrating the “Kaplan-Meier (KM)” analysis
and the univariate COX analysis, we evaluated whether the
TUBB was a protective or risky factor, and finally, the survival
landscape of TUBB was drawn with a high level of confidence.
Noticeably, the optimal cut-off between the high- and low-TUBB
mRNA expression groups was determined via the “survminer” R
package when the KM analysis was conducted. The “survfit”
function was applied to conduct the “log rank” test to estimate
the significance of the high- and low-TUBB expression groups. At
last, the “forestplot” R package was used to visualize the results of
survival data by the COX analysis.

Somatic copy number alteration (SCNA),
mutation, and DNA methylation analysis

The cBioPortal
tool for

(http://www.cbioportal.org) website is a

powerful retrieving, downloading, analyzing, and
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visualizing cancer genomic data from various types of genomic
data such as somatic mutations, DNA copy-number alterations
(CNAs), and DNA methylation. It can undertake multiple
analyses, including mutation analysis and its visualization
(Cerami et al, 2012). On cBioPortal, “TCGA Pan Cancer Atlas
Study” was selected in the “Quick Search” section (Gao et al., 2013),
and “TUBB” was typed to search for its genetic altering traits. The
mutation frequency, types, and CNA data were collected from the
“Cancer Type Summary” part. The mutation locations of TUBB
were shown in a two-dimensional (2D) diagram of the protein
structure using the “mutation” function. Somatic copy number
alterations (SCNAs) and mutations can increase the CNA of the
gene by amplifying and deleting the heterozygosity and
homozygosity. Generally, high-frequency SCNA is defined
with >5% mutation frequency. Next, the “Spearman” correlations
between the expression level of TUBB and CNA scores were
calculated to estimate the relation between SCNA and TUBB
expression. The “IlluminaHumanMmethylation-450kanno.ilmn12.
hg19” R package from “Bioconductor” was conducted to annotate
the methylation probe of the TUBB promoter. Through the
“Wilcoxon” rank test was performed to detect the differential
methylation of TUBB between tumor and normal tissues. A
p-value cutoff of 0.05 was used to identify cancers that were
significantly hypomethylated or hypermethylated. The Spearman
correlation between TUBB expressions and promoter DNA
methylation Beta was calculated (p-value < 0.05 was considered
significant).

Exploring pathways and functional
mechanisms

To understand TUBB-related pathways, we divided tumor
samples of each type according to TUBB expressions (top 30%
and bottom 30%). Then the Gene Set Enrichment Analysis (GSEA)
was carried out to compare differential activation or inhibition
conditions of 50 hallmark gene sets and 83 metabolic gene sets
in different tumors between the high- and low-TUBB group. Yuan H
et al. have redefined 14 functional states of malignant tumoral
features (Yuan et al, 2019). And, the “z-score” algorithm was
proposed by Lee et al. (2008). It can reflect the activity of a given
pathway by integrating expressions of characteristic genes. Using the
“GSVA” R package, we conducted the “z-score” algorithm on the
14 functional state gene sets. The values were set as the z-score of
each gene set. Then, the “Pearson” correlation analysis was
performed to calculate between TUBB
expression and the z-score of each gene set. Additionally, we
identified the differential genes between the high- and low-TUBB
group. Moreover, to search for transcription factors that may affect
the expression of TUBB, we used the CistromeDB database (http://
dbtoolkit.cistrome.org/) to identify potential regulatory upstream

statistical relations

factors for TUBB. As known, protein-protein interacting data
usually contains those unlikely biological interactions that are
impossible to happen in living cells. Therefore, we used the
ComPPI  database which
introduces two novel quantitative scores, the Localization Score

(https://comppilinkgroup.hu/)

and the Interaction Score, describing the calculated probability of
the data correctness, to gain the proteins that interact with TUBB.
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TUBB has been identified as a risky factor according to four survival
indexes in sarcoma (SARC). Hence, we conducted the GSEA on
multiple gene sets to analyze possible pathways that SARC may
participate in. It was believed that if one gene had differential
expression in more than five cancers, its functional gene would
be thought to be related to TUBB and undertake a KEGG
enrichment analysis to recognize the conservative functions or
pathways that TUBB takes part in pan-cancers. Subsequently, we
adopted the permutation test to identify the mutation that was
statistically related to TUBB expressions in SARC. Then, using
Fischer’s exact test, we estimated the relationship between
E2F1 and TUBB expressions. In the end, we conducted the
Spearman correlation analysis to systemically identify BEND3-
related proteins.

Exploring the tumor microenvironment and
performing a single-cell analysis

The continuous interactions between tumor cells and the tumor
microenvironment (TME) play a decisive role in tumor initiation,

progression, metastasis, and responses to therapies. As a
consequence, we confirmed correlations between TUBB
expressions and immune-related genes (immunostimulatory

genes, immunoinhibitory genes, chemokine genes, chemokine
receptor genes, and MHC genes). We also adopted the same
approach to conduct the differential analysis on TIP scores. Next,
from the TIMER2.0 databases, seven most advanced algorithms
were  applied  (CIBERSORT,  CIBERSORT_ABS  EPIC,
MCPCOUNTER, QUANTISEQ, TIMER, XCELL) to estimate the
immune filtration profiles of TCGA cancers (Li et al., 2020). At last,
we used the TISCH database to download the expression landscape
of TUBB in 99 single-cell datasets of 38 tumors, which helped us
verify the TME analytic result at the single-cell level. In summary, we
provided a comprehensive analysis and visualized the TME and
immune infiltration profiles of TUBB in a pan-cancer cohort. It is
worth noting that, we analyzed the anti-tumor immunity in seven
steps of the cancer-immunity cycle (release of cancer cell antigens,
cancer antigen presentation, priming and activation, trafficking of
T cells to tumors, infiltration of T cells into tumors, recognition of
cancer cells by T cells, killing of cancer cells (Chen and Mellman,
2013) and conducted the Gene Set Variation Analysis (GSVA) on
each step, and then we compared their differences in the high- and
low-TUBB groups.

Identification of chemical substances
interacting with TUBB

Based on the GSCA database (http://bioinfo.life.hust.edu.cn/
web/GSCALite/),
expressions and

we analyzed the relations between TUBB
drug sensitivity (Liu et al, 2023). GSCA
website contains 750 small molecule drugs from GDSC and
CTRP databases. Besides, the gene expression data is used to
mine the valuable small molecule drugs related to it. In
addition, the National Cancer Institute (NCI) database was
utilized. NCI serves as a trusted source of cancer information,
and the platform of cancer cell lines from NCI has been widely

Frontiers in Molecular Biosciences

10.3389/fmolb.2024.1365655

used to screen out drugs that are related to a certain gene’s
expression. NCI-60 is a collection of 60 cancer cell lines from
nine different kinds of cancers (leukemia, colon, lung, central
melanoma, ovarian, breast, and

nervous system,

prostate cancers). Its data comes from the “CellMiner” database

kidney,

(Reinhold et al., 2023), for us to analyze the Spearman correlations
between TUBB mRNA expressions and the z-score of drug
sensitivity. Moreover, differentially expressed genes between the
high- and low-TUBB group in different cancers were identified.
We collected the top 150 upregulated and downregulated genes as
TUBB-related biomarkers. The CMAP_gene_signatures.RData
document containing 1,288 compound-related characteristics
was downloaded from the BHKLAB database (https://www.
pmgenomics.ca/bhklab/sites/default/files/downloads) and used
to calculate matching scores. All analyzing processes kept to the
methods from the previous literature (Malta et al., 2018). The R
software was used to summarize and display the top five results of
32 kinds of cancers.

Statistical analysis

All data was processed using the web tools and R software
(V.4.3.0, Institute of Statistics and Mathematics, Vienna, Austria).
The Pearson correlation analysis was used on normally distributed
data, otherwise the Spearman correlation analysis was used. The
Kruskal-Wallis rank sum test, Wilcoxon rank sum and Signed
rank tests were used to detect the differences between multiple
variables or two variables, respectively. Using the “survival” R
package, the COX and KM survival analyses were conducted. KM
method adopted the log-rank test to detect significance. The
“survminer” R package was used to visualize results from KM
analysis. Hazard ratio (HR) and 95% confidence interval (CI) were
used to describe relative risks. The “pROC” R package was utilized
to perform ROC analysis to estimate the diagnostic ability of
TUBB. All statistical tests were two-tailed. p-value < 0.05 was
deemed as statistically significant. p-value < 0.0001 was deemed as
greatly statistically significant (*p < 0.05, **p < 0.01, **p < 0.001,
and ****p < 0.0001).

Results

Aberrant expressions of TUBB
among cancers

To identify patterns of TUBB regulations in cancers, we
combined TCGA and GTEx data to expand sample sizes and
gained a boxplot describing TUBB expressions in pan-cancer
(Figure 2A). Figure 2B showed TUBB expressions in different
organs. TUBB had a differential expression in most cancers. It
was greatly upregulated across cancers. Then, the differential
analysis based on TCGA samples and paired samples were
shown in Figures 2C, D. With the aid of logistics regression
analysis using TCGA and TCGA-GTEx data, above results were
validated (Figure 2E). An external validation of TUBB mRNA
expressions was based on GEO database (Supplementary Figure
S1). From CPTAC database, the validation at the protein level was
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FIGURE 2

The expression profiles of TUBB in pan-cancer. (A) TUBB expressions in between tumor and normal tissues in various cancers using TCGA and GTEx
data. (B) Expressions and distributions of TUBB between tumor and normal tissues in various organs. (C) TUBB mRNA expressions in the TCGA between
tumor and normal tissues in TCGA. (D) Similar to (C), but in paired samples grouped by cancer from TCGA. Each point representing one sample. (*p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001) (E) Logistic regression analysis of TCGA, TCGA-GTEx. Red means OR>1, blue represents an OR value
between 0 and 1. White circle means no significance. (F-K) Differential protein levels between tumor and normal tissues in LUAD, PAAD, OV, LUSC, LIHC,
and KIRC based on the CPATC database. (L) IHC results indicate that TUBB showed weak to moderate cytoplasmic positivity in most malignant cells.
Different colors represent different staining indicators.
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FIGURE 3
Analysis of clinical variables and molecular subtypes. (A) More patients with C1 and C2 immune subtypes in the TUBB high-expression group and

more patients with C3 subtypes in the TUBB low-expression group. (B) Expression levels of TUBB in different immune subtypes. C1 (wound healing); C2
(IFN-gamma dominant); C3 (inflammatory); C4 (lymphocyte depleted); C5 (immunologically quiet); C6 (TGF-b dominant). The Kruskal test detects
differences between six immune subtypes. (C) Differences in TUBB expression in different molecular subtypes.

conducted (Figures 2F-K). It was observed that results from  cytoplasmic immunoreactivity. A few seminomas and carcinoids
different angles and databases had good consistency. IHC results  were strongly stained. Most hepatocellular carcinomas were negative
showed that, most cancer cells displayed weak to moderate  (Figure 2L). Moreover, TUBB expressions were correlated with
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FIGURE 4

Survival profiles of TUBB in pan-cancers. (A) Correlations between TUBB expressions with overall survival (OS), disease-specific survival (DSS),
disease free interval (DFI) and progression-free interval (PFI) based on the univariate Cox regression and Kaplan-Meier models. Red indicates that TUBB is
arisk factor affecting the prognosis of cancer patients, and green represents a protective factor. Only p values <0.05 are shown. (B—E) Forest plots exhibit
the prognostic role of TUBB in cancers by univariate Cox regression method. (F) Kaplan-Meier survival analysis and log-rank test were performed
using “survival” and “survminer” packages.

tumor stages in seven cancers (ACC, ESCA, KIRC, KIRP, LIHC, estimated ROC curves showed that (Supplementary Figure S3), the
SKCM, STAD) (Supplementary Figure S2), implying that TUBB ~ TUBB mRNA expression level showed satisfactory sensitivity and
may have a relationship with the progression of some cancers. The  specificity for the diagnosis of nine kinds of tumors (AUC>0.7).
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FIGURE 5
Genetic alterations of TUBB in cancers. (A) Sites and numbers of TUBB genetic alterations across cancers from cBioPortal. (B) 3D structure of TUBB

mutation sites. (C) Frequency of TUBB mutations in different tumor types. (D) Relationship between TUBB mRNA expressions and genetic alterations. (E)
Histogram shows the frequency of somatic copy number alterations for TUBB in each cancer type. (F) The Spearman’s correlation between somatic copy
number alterations and the expression of TUBB. (G) Spearman’s correlation of TUBB between transcriptional expressions and promoter methylation.

Red and blue represent positive and negative correlations, respectively. (H) Bubble Gram shows the differential methylation of TUBB in cancers;
hypermethylated and hypomethylated TUBBs are marked in red and blue, respectively (Wilcoxon rank-sum test).

After expanding normal sample sizes with GTEx data, the results ~ more in the high-TUBB group (Figure 3A). The same results
also were robust (Supplementary Figure S4). The repeatable and ~ were obtained using the Kruskal test, that is, TUBB was
consistent results were demonstrated across multiple databases,  expressed more in the C1 and C2 immune subtypes compared to
multiple tumors, multiple methods, and multiple omics, other subtypes (Figure 3B). Interestingly, TUBB showed differences
suggesting that dysregulation of TUBB expression may play a  in a large number of molecular subtypes. For example, it had the
crucial role in different cancers and was highly unlikely to be a  lowest expression in LumA group, and in the basal group, its
false finding due to technical artifacts, chance, or bias in the  expression was the highest in breast cancer (BRCA), meaning
eligibility criteria for TCGA samples. In addition, by the chi- that it had great values in the precision molecular stratification
square test, we found that Cl and C2 immune subtypes were  therapies and prognosis prediction (Figure 3C).
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Clinical relevance of TUBB

To further dissect the clinical relevance of TUBB in cancers, the
role of TUBB was analyzed. Survival profiles of pan-cancers showed
that TUBB expressions were related to many kinds of survival
indicators in pan-cancers (Figure 4A), and the relations had
homogeneity. TUBB was identified as a risky factor in cancers,
especially in KIRP, PAAD, and SARC because TUBB was risky
weighed by all indicators DFI, DSS, OS, and PFI. In several cancers,
TUBB was protective. For example, UVM patients with higher
TUBB expressions would have better survival probability. Due to
the highly heterogeneity across various cancers, in some cancers
(BLCA, CHOL, ESCA, UCS), the tendency was vacant. Therefore,
TUBB may play different roles in pan-cancers, suggesting further
explorations of it should be addressed. Forest plots showed COX
survival analysis results of four survival indicators. The hazard ratios
of each cancer were listed, too (Figures 4B-E). KM curves were used
to display the log-rank test results in KIRP, PAAD, and
SARC (Figure 4F).

Genetic alterations of TUBB in cancers

We analyzed genomic data (genetic variation, somatic copy
number alteration (SCNA), mRNA expression, and DNA
methylation) of tumor and normal tissues from the TCGA
cohort. Mutation sites of TUBB were visualized in 2D and 3D
graphics (Figures 5A, B). TUBB had genetic changes in most
cancers, and the most common alteration types were amplification
and mutation (Figure 5C). Obviously, SCNA plays an essential
role in regulating gene expression in cancers (Figure 5D). To study
genetic changes of TUBB in cancers, we checked the percentage of
SCNA. SCNA appeared frequently in most cancers (more than 5%
among all samples). Only in a few types, the frequency was low
(Figure 5E). Therefore, we estimated how SCNA affected TUBB
mRNA expressions by calculating the Spearman correlation
between TUBB expressions and masked copy number segment
of TCGA. In most cancers, the mRNA expression of TUBB was
significantly correlated with SNCA (Figure 5F). Therefore, it
could be concluded that TUBB CNAs were common among
cancers, and it could affect TUBB expressions. Besides,
regulate gene
expressions. And, abnormal DNA methylation of promoters

promoter methylation of TUBB can also

was associated with tumorigenesis. The methylation patterns of
TUBB in pan-cancers were consistent with each other. From all
results, it was observed that TUBB mRNA expressions were
negatively correlated with DNA methylation (Figure 5G), and
higher methylations existed in tumor tissues more than in normal
tissues in most cancers (Figure 5H) because when TUBB is
the body
methylation to overcome this dysregulation to keep the

significantly overexpressed, increases promoter
balance. Great differences in the methylation patterns of TUBB
suggested the complexity of TUBB regulation and the specificity
of this process among different cancer species. In addition, we
selected 10 transcription factors with the highest scores to
annotate peaks and found that they were usually located in the
promoter region of TUBB, showing that they may regulate the
expression of TUBB.
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Associations between TUBB and cancer-
related pathways

Samples with top 30% and bottom 30% TUBB expressions were set
as the high- and low-TUBB group. Based on two groups, we conducted
the GSEA to explore relevant cell signaling in cancers. Furthermore,
metabolism-related pathways were analyzed systematically, and the
results had satisfying consistency across cancers, indicating the
functions of TUBB were highly conservative. What’s more, pathways
related to cell-cycle were enriched in tumors with higher TUBB. Besides,
TUBB may take part in metabolic disorder processes in cancers.
Meanwhile, TUBB was believed to inhibit the course of drug
metabolism, thus it may be related to responses to chemotherapy
(Figure 6A). We analyzed the correlations between z-scores of
14 symbolic functional states of cancers (angiogenesis, apoptosis, cell
cycle, differentiation, DNA damage, DNA repair, EMT, hypoxia,
inflammation, invasion, metastasis, proliferation, quiescence,
stemness) with the z-score of TUBB expressions. Among them, the
z-score of the cell cycle had the highest R-value (0.51), showing a
positive relation with TUBB expressions (Figure 6B). Then, in multiple
cancers, we ran a Pearson correlation analysis between the z-score of
TUBB expressions and the z-score of the cell cycle state. Learning from
Figure 5C, in thymoma (THYM) the highest coefficient of 0.87 was
detected (Figure 6C). CHIP-seq demonstrated that E2F1 might be an
upstream transcription factor modulating the TUBB expression
(Figure 6D). ComPPI helped identify the genes that may interact
with TUBB (Figure 7A). The KEGG enrichment analysis was
conducted on genes that were highly expressed in the high-TUBB
group. Figure 7B showed that TUBB had relations with a lot of
functions, especially with signal transduction, immune, and cancer-
related pathways. As previously mentioned, TUBB was determined as a
risky factor in terms of four survival indexes in SARC. Then we
performed the GSEA on various gene sets to fully analyze the
pathways that TUBB may be involved in (Figure 7C). From
Figure 7D, the expression of TUBB probably was relevant to ATRX
mutations. In SARC, E2F1 was statistically associated with TUBB
expressions (Figure 7E). Besides, based on the TCPA database, some
TUBB-related proteins were identified (Figures 7F-O). Among them,
CYCLINBI had the most significant relation with TUBB mRNA

expressions with the highest coefficient of 0.57.

High TUBB expression correlates with
immune infiltration in cancers

First of all, the heatmap displayed the landscape of immune
infiltration of TUBB across cancers (Figure 8A). TUBB was
significantly negatively correlated with immune-related genes
(MHC,
Notably, we scored seven steps and compared the differences

immune-inhibitor, immune-stimulator, chemokines).
between the high- and low-TUBB group, and the tendency was
consistent in pan-cancers, namely the TIP scores were lower
(Supplementary Figure S5). To illustrate cells regulated by TUBB
in the TME, we used the TIMER2.0 database to explore correlations
between TUBB mRNA expressions and immune infiltration and
stroma cell abundance (Figure 8B). For example, in almost every
cancer the TUBB mRNA expression level was positively related to

the abundance of CD4" Thl cells. In SARC, the TUBB mRNA
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Analyses of pathways and underlying mechanisms. (A) Enrichment differences of TUBB in 50 HALLMARK and 83 metabolism gene sets. (B) The TUBB
MRNA expression was highly correlated with 14 malignant features of all tumors. (C) The TUBB mRNA expression was highly correlated with cell cycle
features of all tumors. (D) The 10 transcription factors with the highest scores were selected for peaks annotation, and it was found that they were usually
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located in the promoter region of TUBB.

expression level was negatively related to the abundance of B cells
and CD8" T cells across different software, which could possibly
explain why TUBB was risky in cancers. Different proportions of
immune infiltration and unique TMEs in pan-cancers existed, so the
correlations showed various change laws. However, we utilized
seven different algorithms to conduct the analysis and made the
results verify each other to ensure the accuracy of the study.
Additionally, we could see from Figure 8C that the single-cell
analysis showed that though TUBB was not expressed strikingly
in most tumors, it mainly originated from malignant cells and
proliferative T cells. This echoed previous results. In other words,
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TUBB might encourage the formation of immunological rejection or
“immunological desert”, and play a vital role in immunity-cancer
crosstalk, especially in immune escape.

TUBB may influence responses to
chemotherapy

Using Cellminer data, we found that TUBB was positively

related to the sensitivity of a lot of drugs (Figure 9A), but
negatively related to the half maximal inhibitory concentration
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(IC50) values of many drugs based on CTRP, GDSC databases
(Figures 9B, C). Therefore, we could deduce that TUBB was a

potential

chemotherapy-sensitive gene.
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To further

explore

12

underlying therapeutic regimens that offset the tumorigenic effect
mediating by TUBB, CMap analysis was employed. Thus, a TUBB-
related signature containing 150 significantly upregulated and
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Expression
o

Association of TUBB expressions with immune infiltration. (A). The heatmap shows correlations between TUBB mRNA expressions and expressions
of chemokine, chemokine receptor, immune-inhibitor, immune-stimulatory, and MHC genes. (B) Seven software were used to evaluate the correlations

between TUBB expression and cancer immune infiltration. (C) Cell sources of TUBB in pan-cancer at the single-cell level.

150 significantly downregulated genes that were selected by
screening patients with high- or low-TUBB expressions in
the

compared with CMap gene traits, and

various  cancers, was generated. Using Extreme
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Summarization (XSum) method, TUBB-related

traits were

the similarity scores for

1,288 compounds were obtained. Fasudil, W.13, AH.6809 and
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FIGURE 9

Chemotherapeutic drug resistance analysis. Correlations between TUBB expressions and drug sensitivity using the three different databases
Cellminer (A), CTRP (B), GDSC (C) (p < 0.05 was considered statistically significant). (D) Prediction of potential compounds targeting TUBB.

X4.5. dianilinophthalimide showed relatively lower scores in most
cancers, which demonstrated that they perhaps inhibit TUBB-
(Figure 9D). These findings
provided substantial support for the validity of our predictions,

mediated carcinogenic effects
although further researches are needed to elucidate the underlying
mechanisms.
TUBB expressions in the tissue sample

To verify the expression of TUBB among the tissue samples of
cancer patients, IHC staining was conducted. Figure 10A-C

displayed the negative results of TUBB expression in the control
subjects. TUBB exhibited strong diffuse staining in osteosarcoma
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tissues (Figures 10D, E). Positive staining was also found in
chondrogenic sarcoma tissues (Figure 10F).

Discussion

Hitherto, cancer-related research has always been a main point
and difficulty in the current domain. With data from multi-
platforms, multi-omics approaches were used in this study.
TUBB was identified as an important indicator across multiple
cancers. TUBB was valuable in the early-detection, prognosis
prediction, therapy selection in pan-cancers. Also, we found that
TUBB was related to many vital biological pathways, indicating its
indispensable roles in cancers. TUBB was validated as a risky factor
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FIGURE 10

Immunohistochemistry staining for TUBB. Negative controls of the expression of TUBB (A—C). IHC staining of osteosarcoma tissues (D,E). IHC

staining of chondrogenic sarcoma tissues (F).

in some cancers, and immune infiltration analyses showed it may
perhaps induce immune escape in tumor cells. Genes related to
TUBB were identified too. Besides, we explored how TUBB could
potentially affect responses to chemotherapies, in order to provide
practical clues for clinical use. Compounds that can target and
reverse the tumorigenic functions of TUBB. All results generated by
multiple biological methods mutually pointed to the research value
of TUBB in the future. And more experiments are wanted to verify
our findings.

TUBB (Tubulin f class I gene) refers to a class of genes that can
structure of microtubule

tubulin, a fundamental

cytoskeleton (Janakiraman et al, 2023). Microtubules are major

encode

components that dynamically control many vital functions of cells
ranging from cell division to cell movement and vesicular transport
(Gudimchuk and McIntosh, 2021). Nowadays, robust therapeutic
targets of cancer treatments are widely and profoundly sought,
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among all kinds, microtubule-targeting agents (MTAs) are
emerging as a time-proven anti-tumor chemical (Cermdk et al,
2020). MTAs can be divided into two main categories: microtubule-
stabilizing agents (MSAs) (Zhao et al., 2016) and microtubule-
destabilizing agents (MDAs) (Borys et al., 2020), and they have
been studied in many cancers (Karahalil et al., 2019; Khwaja et al.,
20215 Anwar et al, 2022; Chen, 2023), epithelial ovarian cancer
(Tymon-Rosario et al., 2021), non-small cell lung cancer (NSCLC)
(Tagliamento et al, 2019), etc. Therefore, as the microtubule-
encoding gene, TUBB’s mediating functions in cancers should be
noticed and clarified. MicroRNAs (miRNAs) are small endogenous
that
expression (Lu and Rothenberg, 2018). The miR-195 axis has

non-coding RNAs post-transcriptionally —repress gene
been identified as a multipurpose bridge in regulating cancer
processes including metastasis and chemoresistance. Yu et al

(2019) have demonstrated that TUBB is directly targeted by
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miR-195, and participates in regulating the response of lung
adenocarcinoma cells to MTAs. What’s more, it has been
experimentally verified that silencing LINC00665 contributes to
melanoma cell viability decline, inhibited proliferation, migration,
invasion, and cell cycle progression, and enhances apoptosis by
regulating the miR-339-3p/TUBB axis (Liu Y. et al, 2022).
However, the exact role of TUBB in pan-cancers has not been
illustrated. Here we integrated multiple strategies and utilized pan-
cancer data from public databases for further analysis. TUBB’s
underlying functions across cancers have been uncovered to some
extent, providing new insights for cancer profiling in depth.
First of all, we determined the expression levels of TUBB mRNA
and protein in tumor tissues compared to that in normal tissues across
various cancers. Results showed that TUBB was found to be generally
highly expressed in tumor cells more than normal cells. At
transcriptional and protein level, we proved TUBB was much closer
to be a risky factor for cancer. ROC curves showed high confidence to
again confirm the results above. We conducted mutation analyses to
depict the mutation profiles of mutation types, frequency, and sites in
pan-cancer. Generally speaking, copy number variations were
commonly seen in cancer, and these could in turn affect TUBB
expressions. And, we exhibited TUBB mutation sites in a vivid way
with 2D and 3D diagrams. Furthermore, we explained the importance
of TUBB using the concept “z-score”. We found that TUBB mRNA
expressions were related to the z-score of 14 newly identified cancer-
related function states. Among them, TUBB expressions was mostly
positively related to the z-score of cell-cycle status, showing TUBB may
participate in regulating the course of cell-cycle. Based on the z-scores of
cell cycle, we analyzed their correlations with TUBB expressions in
various cancers. Almost a positive tendency was observed in any cancer.
In thymoma (THYM), the coefficient was the highest. Cell cycle is a
highly controlled and regulated process enabling cell growth,
duplication of genetic material, and cell division, aberrancy in its
of the
tumorigenesis, making regulators of the cell cycle machinery

progression is  one basic mechanisms underlying
reasonable anticancer therapeutic targets (Suski et al, 2021; Liu J.
et al, 2022; Matthews et al., 2022). Therefore, it was deduced that
TUBB might be enrolled in modulating the process of cell cycle, and
thus eventually have an effect on tumor cells. From immune infiltration
analyses, we confirmed that TUBB plays an important role in regulating
immunity across cancers. It was significantly negatively correlated with
MHC, MHC, immune-inhibitor, immune-stimulator, and chemokines
genes. Moreover, we utilized seven algorithms and found that in almost
every cancer the TUBB mRNA expression level was positively related to
the abundance of CD4" T helper 1 (Thl) cells, characterized by the
production of proinflammatory cytokine interferon-gamma (IFN-y),
plays a central role in orchestrating cell-mediated immunity against
tumor cells (Yang et al,, 2020). They are responsible for generating
effector and memory cytotoxic T lymphocytes (CTL) in facilitating
immune responses, so CD4" Thl cells are important targets in the field
of tumor immunotherapy. In SARC, the TUBB mRNA expression level
was negatively related to the abundance of B cells and CD8" T which are
both strongly immune-related cells and pivotal targets for cancer
therapies (Wennhold et al., 2019; Chow et al.,, 2022; Lundberg et al,
2022). From the single-cell analysis, TUBB was demonstrated to mainly
originate from malignant cells and proliferative T cells. All results
mutually indicated that TUBB was wicked and may induce immune
escape in cancer, causing indifferent immune responses to cancer
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treatments, resulting in poor clinical outcomes at last. Based on it,
we explored chemotherapeutic drug resistance on a deeper level to try to
understand the rule behind lower responses to medications. Drug
sensitivity data from three relevant databases were gleaned. From
various angles, we analyzed correlations between TUBB expressions
and drug sensitivity. TUBB played a vital role in responses to drugs.
However, the exact role of TUBB remained unclear. Barréon-Gallardo
et al. (2022) used to elucidate that in chemotherapy-resistant breast
cancer patients, higher TUBB expressions were observed. As a
consequence, more studies should be emphasized to clarify TUBB
functions in medication guidance. Next, we found that Fasudil, W.13,
AH.6809, and X4.5.dianilinophthalimide might reverse TUBB-
mediated carcinogenic effects. These results may inspire relevant
researchers. In addition, deeper explorations of TUBB mainly in
SARC were conducted. We identified E2F transcription factor 1
(E2F1) as having a statistical relation with TUBB expressions in
SARC. E2F1 has been reckoned as a tumor-promoting gene. From
one pan-cancer analysis, the KAT2A/E2F1 complex promotes cell
proliferation and metastasis by upregulating the UBE2C expression
(Lin et al,, 2022). An in SARC, the role of E2F1 has already been widely
explored. As previously reported, E2F1 will promote Warburg effect
and cancer progression via upregulating ENO2 expression in Ewing
SARC (Jiang et al., 2022). What’s more, MNK1 and MNK2 enforce
expression of E2F1, FOXM1, and WEE] to drive soft tissue sarcoma (Ke
et al,, 2021). In other types of cancer, like in hepatocellular carcinoma,
scientists have proved that long non-coding RNA CDKN2B-ASI could
enhance tumor progression via the E2F1/G protein subunit alpha Z-axis
(Tao et al,, 2023). Targeting the E2F1/Rb/HDACI axis with the small
molecule HR488B effectively inhibits colorectal cancer growth (Duan
et al, 2023). Besides, CYCLINBI protein had the most significant
relation with TUBB mRNA expressions. CYCLINBI has also been well-
studied in multiple cancers. For example, Lv S et al. found that
inhibiting CYCLINBI resulted in suppressed proliferation, invasion,
and epithelial mesenchymal transition of hepatocellular carcinoma cells
and enhanced sensitivity to TRAIL-Induced apoptosis (Lv et al., 2020).
Also, CYCLINBI is a defined biomarker in esophageal squamous cell
carcinoma (Li et al., 2023), penile squamous cell carcinoma (Tan et al,,
2022), gastric cancer (Li et al,, 2021), breast cancer (Liu et al,, 2019),
nasopharyngeal carcinoma (Xie et al., 2019), etc. As an important factor
in so many cancers, our studies provided a new idea that TUBB
may function in tumor formation by interacting with the
CYCLINBI protein.

In this study, we found that TUBB was generally differentially
expressed between tumor tissues and normal tissues through a full-scale
pan-cancer analysis, using a series of bioinformatics approaches.
Correlation between TUBB expressions and clinical prognosis was
uncovered in the heatmap, forest plots, and ROC curves, making
our findings more reliable. TUBB was demonstrated as a potential
independently working prognostic factor for most tumors. In particular,
TUBB’s risky role was emphasized. We confirmed that TUBB may be
the reason why immune rejection and immune escape should be
generated. Higher expressions of TUBB would result in less
immune-related molecules in pan-cancer. Aiming at this, we further
conducted drug resistance analysis and found that TUBB played an
important role in regulating chemotherapy sensitivity across cancers.
But this was controversial, reminding us to perform more and better
research and development of drugs with safer and more effective clinical
trials. At last, we selected SARC to study more. And we offered E2F1 as a
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key gene interacting with TUBB. Moreover, CYCLINBI was identified
as another hub term in TUBB expressions. These results mutually
provided novel insights in future studies on TUBB in cancers, and they
are hoped to be helpful to further elucidate the explicit mechanisms of
TUBB in cancer initiation and progression.

In a nutshell, using the multi-omics method, TUBB has been
elucidated to be dysregulated in pan-cancers as a potential diagnostic
marker. The article systematically describes the relationship between
TUBB and clinical outcomes in pan-cancers. For the first time, the
possibility of targeting TUBB with drugs and small molecules has been
identified from multiple dimensions. Moreover, a large number of
single-cell datasets were combined to identify cells expressing TUBB
at high resolution. The pathway and metabolic disorders mediated by
TUBB were validated, and the transcription factors regulating their
expressions were identified using the CHIP-seq approach. TUBB
linked
demonstrating the potential of stratified precision therapies.

expression  was to multiple molecular

subtypes,
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Glossary

TME
TCGA
TUBB
PTMs
TIME
GTEx
AUC
IHC
os
DSS
PFI

DFI

SCNA
CNAs
GSEA
SARC
TME
GSVA
NCI
HR

CI
THYM
1C50
XSum
MTAs
MSAs
MDAs
NSCLC
miRNAs
IFN-y

CTL

tumor microenvironment

the Cancer Genome Atlas
B-tubulin

post-translational modifications
tumor immune microenvironment
the Genotype-Tissue Expression project
area under curve
immunohistochemical

overall survival

disease-specific survival
progression free interval

disease free interval
Kaplan-Meier

Somatic copy number alteration
copy-number alterations

Gene Set Enrichment Analysis
sarcoma

tumor microenvironment

Gene Set Variation Analysis
National Cancer Institute
Hazard ratio

confidence interval

thymoma

half maximal inhibitory concentration
Extreme Summarization
microtubule-targeting agents
microtubule-stabilizing agents
microtubule-destabilizing agents
non-small cell lung cancer
microRNAs

interferon-gamma

cytotoxic T lymphocyte
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