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Background: Lipid metabolism disorders were observationally associated with
chalazion, but the causality of the related circulating metabolites on chalazion
remained unknown. Here, we investigated the potential causal relationship
between circulating metabolites and chalazion using two-sample Mendelian
randomization (MR) analysis.

Methods: For the primary analysis, 249metabolic biomarkers were obtained from
the UK Biobank, and 123 circulating metabolites were obtained from the
publication by Kuttunen et al. for the secondary analysis. Chalazion summary
data were obtained from the FinnGen database. Inverse variance weighted (IVW)
is the main MR analysis method, and the MR assumptions were evaluated in
sensitivity and colocalization analyses.

Results: Two MR analyses results showed that the common metabolite, alanine,
exhibited a genetic protective effect against chalazion (primary analysis: odds
ratio [OR] = 0.680; 95% confidence interval [CI], 0.507–0.912; p = 0.010;
secondary analysis: OR = 0.578; 95% CI, 0.439–0.759; p = 0.00008). The
robustness of the findings was supported by heterogeneity and horizontal
pleiotropy analysis. Two colocalization analyses showed that alanine did not
share a region of genetic variation with chalazion (primary analysis: PPH4 = 1.95%;
secondary analysis: PPH4 = 25.3%). Moreover, previous studies have suggested
that an increase in the degree of unsaturation is associatedwith an elevated risk of
chalazion (OR = 1.216; 95% CI, 1.055–1.401; p = 0.007), with omega-3 fatty acids
(OR = 1.204; 95% CI, 1.054–1.377; p = 0.006) appearing to be the major
contributing factor, as opposed to omega-6 fatty acids (OR = 0.850; 95% CI,
0.735–0.982; p = 0.027).

Conclusion: This study suggests that alanine and several unsaturated fatty acids
are candidate molecules for mechanistic exploration and drug target selection
in chalazion.
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Introduction

Chalazion is a benign eyelid lesion and manifests as a chronic
lipogranulomatous inflammatory response secondary to the
degeneration of endogenous lipid secretion from the meibomian
or Zeis glands (Knop and Knop, 2009). Infectious factors, such as
blepharitis, viral infection, and ocular demodex infestation (Liang
et al., 2014; Kim et al., 2023), along with non-infectious factors [such
as rosacea, anxiety, smoking, nutritional deficiencies, and irritable
bowel syndrome (IBS)], may increase chalazion risk (Nemet et al.,
2011; Patel et al., 2022).

Studies have shown that the ratio of cholesterol to cholesteryl
esters is higher in chalazion lipids than in normal meibum, probably
because elevated cholesterol levels influence the chemotaxis of
inflammatory cells into the meibomian gland, obstructing the
gland and leading to excess lipid infiltration of the surrounding
tissue (Melo et al., 2011; Wojtowicz et al., 2014). Notably, a study
showed that oral statins reduced chalazion risk, indicating its linkage
to inadequate lipid metabolism (Feng et al., 2022). Apart from
disorders of lipid metabolism, deficiencies in circulating nutrients
such as amino acids, vitamins, and thyroxine can also contribute to
chalazion risk (Malekahmadi et al., 2017; Cheng et al., 2022;
Ilhan, 2022).

However, most studies on circulating metabolites for chalazion
have been observational and susceptible to potential confounders

and reverse causality (Lawlor et al., 2008). Mendelian randomization
(MR) is a method that can evaluate the causal relationship between
exposures and outcomes by employing a genetic variant as an
instrumental variable for exposure. This approach helps to
mitigate the confounding effects inherent in observational studies
(Davey Smith and Ebrahim, 2005; Yuan et al., 2021). We used a two-
sample MR to investigate the causal relationship between circulating
metabolites and chalazion risk, and other factors for chalazion,
including inflammation of the eyelid, conjunctivitis, anxiety/panic
attacks, alcohol consumption, body mass index (BMI), current
tobacco smoking, and IBS were analyzed to assess the effect of
confounders.

Materials and methods

Study population and design

We conducted a two-sample MR analysis to determine the
causal effect of circulating metabolites on chalazion. Genome-
wide association study (GWAS) summary level data for
circulating metabolites were obtained from two different datasets,
and chalazion summary data were obtained from the FinnGen
database. The robustness of these causal relationships was
assessed by sensitivity and colocalization analyses. Only

FIGURE 1
Flowchart of the present Mendelian randomization analysis. Abbreviations: SNPs, single nucleotide polymorphisms; MR, Mendelian randomization;
IBS, irritable bowel syndrome; BMI, body mass index.
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individuals of European origin were included in the analysis. All
included studies received informed consent and local ethics
committee approval. An overview of the study design is shown
in Figure 1.

Sources of data included in the analysis

Summary-level GWAS datasets of 249 metabolic biomarkers for
the primary analysis were derived from the UK Biobank and
measured using the Nightingale Health Metabolic Biomarkers
Phase 1 release study. This study included 115,078 randomly
selected participants from the UK Biobank cohort, and analysed
a total of 249metabolites, with 168 metabolites measured in absolute
concentrations (mmol/L) and 81 measurements presented in ratios
(https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=220) (Mi et al.,
2022). Summary-level datasets of 123 circulating metabolites used
for secondary analyses were obtained from a previous publication by
Kettunen et al. (2016), including 24,925 individuals of European
ancestry. Summary-level statistics for chalazion were obtained from
the FinnGen database (Release 9), which included
348,073 individuals of European ancestry (case: 3,389; control:
344,684). Confounders included eyelid inflammation,
conjunctivitis, anxiety/panic attacks, alcohol consumption, BMI,
smoking, and IBS, which were obtained from the IEU
OpenGWAS project (https://gwas.mrcieu.ac.uk/datasets/)
(Supplementary Table S1).

Selection of genetic instrumental variables

SNPs associated with circulating metabolites were selected
according to a significance threshold (p < 5 × 10−8) and a
reference panel (with a window size of 10,000 kb and r2 < 0.001)
to estimate the linkage disequilibrium between SNPs and select
independent genetic variants (Levin et al., 2020). The F-statistic was
calculated to test for weak instruments (F-statistics < 10) as
previously described (Burgess et al., 2011; Burgess and
Thompson, 2011). Instrumental variables (IVs) for MR studies
need to fulfil three hypotheses: 1) IVs should be strongly
correlated with exposure; 2) IVs should not be associated with
any confounders; and 3) IVs affect outcomes only through
exposure and not through any other alternative pathways
(Palmer et al., 2012).

Colocalization analysis

The presence of shared causal variants between exposure and
outcome was analysed using GWAS-GWAS colocalization, with a
reference panel (GWAS gene window default of 50 kb, p < 5 × 10−8)
(Venkateswaran et al., 2018). Colocalization analyses were
performed using the “coloc” package, and a Bayesian framework
was used to generate posterior probabilities for five mutually
exclusive hypotheses about causal variance sharing between two
traits: (H0–H4): H0: the locus is not associated with circulating
metabolites and chalazion; H1: the locus is associated with
circulating metabolites, but not with chalazion; H2: the locus is

associated with chalazion, but not with circulating metabolites; H3:
the locus is associated with circulating metabolites and chalazion
(two independent SNPs) and H4: the locus is associated with
circulating metabolites and chalazion (one shared SNP)
(Giambartolomei et al., 2014; Venkateswaran et al., 2018). A
posterior probability (PP) of H4 (PPH4) > 0.8 was identified as
evidence in favour of colocalization. The “locuscomparer” package
was used for visualization of colocalization (Liu et al., 2019).

Statistical analysis

Causal associations between each metabolite and chalazion were
determined using IVW methods. The IVW estimate is the mean of
ratio estimates from two or more instruments, based on the
assumption that all SNPs are valid instruments or that the
overall bias is zero (Burgess et al., 2013). MR Egger regression,
weighted median, and weighted mode methods were used to relax
the IVW assumptions (Burgess et al., 2017a; Burgess et al., 2019). For
single genetic instruments, causal effects were estimated by the wald
ratio test (Burgess et al., 2017b). Phenoscanner (http://www.
phenoscanner.medschl.cam.ac.uk/) was used to exclude the SNPs
associated with confounders (Staley et al., 2016). Sensitivity analyses
were performed to assess the validity and robustness of the MR
assumptions, including Cochran’s Q to test for heterogeneity among
IVs of metabolites (Burgess et al., 2013), MR-Egger regression for
horizontal pleiotropy assessment (Bowden et al., 2015), and leave-
one-out test. If heterogeneity was present, the multiplicative random
effects model was chosen (Burgess et al., 2019). MR-Steiger was used
to filter out SNPs suggesting opposite causal directions (Hemani
et al., 2017).

We chose the Bonferroni method for multiple testing;
associations with p-values below 0.0002 (0.05/249) in the primary
analysis and 0.0004 (0.05/121) in the secondary analysis were
considered strong evidence of an association, and associations
with p-values between 0.0002 and 0.05 in the primary analysis,
and between 0.0004 and 0.05 in the secondary analysis were
considered suggestive. All analyses were performed on the R
platform (version 4.1.0) using the “TwoSampleMR,” “Coloc,” and
“forestploter” packages.

Results

Association of relevant confounders
with chalazion

We first estimated the causal relationship of confounders,
including inflammation of the eyelid, conjunctivitis, anxiety/panic
attacks, alcohol consumption, BMI, current tobacco smoking, and
IBS, with chalazion risk, using a two-sampleMRmethod. The results
showed that BMI [OR = 0.970; 95% CI, 0.826–1.138; P(IVW) = 0.709],
Current tobacco smoking [OR = 0.724; 95% CI, 0.214–2.454;
P(IVW) = 0.604], Alcohol consumption [OR = 1.334; 95% CI,
0.099–17.99; P(IVW) = 0.828], IBD [OR = 2.49E-06; 95% CI,
9.06E-24-6.81704E+11; P(Wald ratio) = 0.529], and conjunctivitis
[OR = 0.945; 95% CI, 0.495–1.805; P(Wald ratio) = 0.863] were not
association with chalazion risk, and the remaining confounders
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failed to establish associations with chalazion due to the absence of
SNPs (Supplementary Table S2).

Association of metabolites on chalazion

In the primary analysis, we screened 249 circulating metabolites
with a total of 13,275 SNPs when the screening threshold was (r2 <
0.001, kb = 10,000, p < 5 × 10−8). In the secondary analysis, we
screened 123 circulating metabolites with a total of 1,375 SNPs when
the screening threshold was (r2 < 0.001, kb = 10,000, p < 5 × 10−8),
among them, two metabolites glycerol (met-c-861) and urea (met-c-
939), had no SNP extracted. All IVs in the current analysis were
robust instruments, with the range of F-statistics was 23-16414
(Supplementary Tables S3, S4). We used a two-sample MR to
estimate the causal effect of 249 metabolites on chalazion in the
primary analysis and 121 circulating metabolic biomarkers risk in
the secondary analysis (Supplementary Tables S5, S6). Based on the
IVW method, seven of the 249 metabolites were found to be
suggestively associated with chalazion, with five unsaturation-
associated biomarkers showing an association with a high risk of
chalazion and two unsaturation-associated biomarkers showing a
causal effect with a low risk of a chalazion (Figure 2A). There were as
follows: alanine (OR = 0.680; 95% CI, 0.507–0.912; p = 0.010),
acetone (OR = 1.726; 95% CI, 1.064–2.798; p = 0.027), degree of
unsaturation (OR = 1.216; 95% CI, 1.055–1.401; p = 0.007), ratio of
omega-3 fatty acids to total fatty acids (OR = 1.204; 95% CI,
1.054–1.377; p = 0.006), ratio of omega-6 to omega-3 fatty acids
(OR = 0.850; 95% CI, 0.735–0.982; p = 0.027), ratio of

polyunsaturated fatty acids to total fatty acids (OR = 1.214; 95%
CI, 1.008–1.462; p = 0.041), and ratio of docosahexaenoic acid to
total fatty acids (OR = 1.267; 95% CI, 1.092–1.471; p = 0.002)
(Figure 2B; Table 1). In the secondary analysis, four of the
121 metabolites were found to be significantly associated with
chalazion and three were suggestively associated with chalazion.
Of these, three unsaturation-associated biomarkers significantly
increased the risk of chalazion, and four unsaturation-associated
biomarkers showed a negative correlation with chalazion
susceptibility (Figure 3A). They were alanine (OR = 0.578; 95%
CI, 0.439–0.759; p = 0.00008), the average number of methylene
groups per double bond (OR = 0.768; 95% CI, 0.615–0.958; p =
0.020), the average number of double bonds in a fatty acid chain
(OR = 1.380; 95% CI, 1.135–1.678; p = 0.001), ratio of bisallylic
groups to double bonds (1.298 [95% CI, 1.145–1.471], p = 0.00005),
ratio of bisallylic groups to total fatty acids (OR = 1.364; 95% CI,
1.163–1.600; p = 0.00013), 18:2, linoleic acid (LA) (OR = 0.827; 95%
CI, 0.720–0.950; p = 0.007), and pyruvate (OR = 0.422; 95% CI,
0.265–0.674; p = 0.00029) (Figure 3B; Table 2). MR results of
individual SNPs for all metabolites were shown in Supplementary
Tables S7, S8.

Sensitivity analysis

In the sensitivity analysis of all the differential metabolites,
heterogeneity (IVW method) was present only for unsaturation
(p = 0.045), ratio of omega-6 to omega-3 fatty acids (p = 0.008), ratio
of omega-3 fatty acids to total fatty acids (p = 0.018) in

FIGURE 2
Causal relationship between 249metabolites and chalazion. (A) Volcano plot analysis of Mendelian randomization results. Red plots indicate OR > 1,
which is positively associated with the risk of developing chalazion, and blue plots indicate OR < 1, which is negatively associated with the risk of
developing chalazion. (B) Forest plot analysis of Mendelian randomization results. Abbreviations: OR, odds ratio.
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249 metabolites (Supplementary Table S9), and average number of
methylene groups per double bond (p = 0.016) in 123 metabolites
(Supplementary Table S10), and we adopted a MR analysis with
multiplicative random effects model. The horizontal pleiotropy
analysis showed that there was no direct association between IVs
and chalazion, and MR Steiger test results showed overall SNPs
affected outcomes only by exposure and not by other pathways
(Supplementary Tables S11, S12), suggesting that the results were
relatively robust. Plots of the leave-one-out test showed that
regardless of which SNP was excluded, it did not have any effect
on the MR results for alanine, ratio of bisallylic groups to double
bonds, and ratio of bisallylic groups to total fatty acids (All lines were
on one side of 0). However, for other unsaturated fatty acids, there is

a potentially influential SNP driving the causal link between these
metabolites and chalazion. Therefore, we need to interpret this result
with caution (Supplementary Figure S1).

Colocalization analysis

Two colocalization analyses showed that there was no shared
genetic variation region between alanine and chalazion (1.95% for
PPH4 in the primary analysis and 25.3% in the secondary analysis),
suggesting that the genetic variant SNPs were reducing chalazion
risk through their impact on alanine. Shared regions of genetic
variation were not observed for the differential metabolites in the

TABLE 1 MR analysis results of seven of 249 metabolites with a causal relationship with chalazion.

Exposure Category Method nSNP Beta SE p-value OR (95% CI)

Alanine Amino acid IVW 30 −0.386 0.150 0.010 0.680 (0.507–0.912)

MR Egger 30 −0.610 0.421 0.158 0.543 (0.238–1.240)

Weighted median 30 −0.457 0.195 0.019 0.633 (0.432–0.928)

Weighted mode 30 −0.543 0.253 0.041 0.581 (0.354–0.955)

Acetone Metabolite IVW 10 0.546 0.247 0.027 1.726 (1.064–2.798)

MR Egger 10 0.382 0.561 0.515 1.465 (0.488–4.400)

Weighted median 10 0.528 0.326 0.106 1.696 (0.894–3.216)

Weighted mode 10 0.502 0.349 0.184 1.652 (0.834–3.273)

Degree of unsaturation Fatty acid IVWmre 40 0.195 0.072 0.007 1.216 (1.055–1.401)

MR Egger 40 0.269 0.093 0.006 1.308 (1.091–1.570)

Weighted median 40 0.252 0.070 0.000 1.287 (1.121–1.476)

Weighted mode 40 0.238 0.070 0.001 1.269 (1.107–1.454)

Ratio of omega-3 fatty acids to total fatty acids Fatty acid IVWmre 35 0.186 0.068 0.006 1.204 (1.054–1.377)

MR Egger 35 0.191 0.087 0.036 1.210 (1.020–1.436)

Weighted median 35 0.218 0.061 0.000 1.244 (1.103–1.403)

Weighted mode 35 0.225 0.060 0.001 1.252 (1.114–1.408)

Ratio of omega-6 fatty acids to omega-3 fatty acids Fatty acid IVWmre 31 −0.163 0.074 0.027 0.850 (0.735–0.982)

MR Egger 31 −0.235 0.097 0.022 0.790 (0.653–0.956)

Weighted median 31 −0.223 0.065 0.001 0.800 (0.704–0.909)

Weighted mode 31 −0.221 0.060 0.001 0.801 (0.712–0.902)

Ratio of polyunsaturated fatty acids to total fatty acids Fatty acid IVW 43 0.194 0.095 0.041 1.214 (1.008–1.462)

MR Egger 43 0.256 0.167 0.133 1.292 (0.931–1.794)

Weighted median 43 0.119 0.155 0.444 1.126 (0.831–1.527)

Weighted mode 43 0.646 0.214 0.004 1.908 (1.255–2.900)

Ratio of docosahexaenoic acid to total fatty acids Fatty acid IVW 24 0.237 0.076 0.002 1.267 (1.092–1.471)

MR Egger 24 0.226 0.110 0.051 1.254 (1.011–1.554)

Weighted median 24 0.254 0.092 0.006 1.289 (1.077–1.544)

Weighted mode 24 0.289 0.089 0.004 1.336 (1.122–1.590)

Abbreviations: IVW, inverse variance weighted; IVWmre, inverse variance weighted (multiplicative random effects); SNPs, single nucleotide polymorphisms; SE, standard error; OR, odds ratio;

CI, confidence interval.
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primary analysis. In the secondary analysis, we identified two
metabolites: the ratio of bisallylic groups to double bonds
(PPH4 = 0.817) and 18:2, linoleic acid (LA) (PPH4 = 0.870),
which shared one SNP with chalazion (rs174555), corresponding
to the nearest genes FADS1 and FADS2 (Table 3;
Supplementary Figure S2).

Discussion

In this study, we conducted an MR analysis to explore the causal
relationship between circulating metabolites and chalazion. The
primary analysis results showed a negative causal association
between the metabolite alanine and chalazion risk, which was
similarly verified in the secondary analysis. Sensitivity analyses
enhanced the reliability of our results in eliminating pleiotropy. The
colocalization analyses showed that genetic variant SNPs could
exclusively mitigate the risk of chalazion through their influence on
alanine. Alanine is the link between glucose, the tricarboxylic acid cycle,
and amino acid metabolism and can form pyruvate and glutamate via
an alanine aminotransferase-catalysed reaction with α-ketoglutarate,
which plays a key role in the glucose-alanine cycle between tissues and
the liver (Peng et al., 1991). Alanine can shuttle between neurones and
astrocytes, transport nitrogen from the glutamine amide group,
exchange lactate, and facilitate metabolite exchange between
neurones and astrocytes (Schousboe et al., 2003). Previous studies
have found that concentrations of lactate and alanine are low in
patients with type 2 diabetes mellitus, breast cancer, and cervical
cancer, suggesting altered energy metabolism in these diseases
(Morvan and Demidem, 2007; Mamtimin et al., 2014).

In addition to alanine, pyruvate was effective in reducing the risk
of chalazion development. Pyruvate is produced from alanine in the
liver by the reaction of alanine aminotransferase to produce
pyruvate and regenerate glucose in the body through
gluconeogenesis to provide energy (Prochownik and Wang,
2021). Pyruvate is an important product of glycolysis and can be
converted to acetyl-CoA before entering the tricarboxylic acid
(TCA) cycle (Han et al., 2020), and acetyl-CoA is an important
intermediate metabolite in the metabolism of energy substances.
Alanine and pyruvate are closely related to the metabolic pathways
of alanine, aspartate and glutamate metabolism, the TCA cycle,
glycolysis or gluconeogenesis, and pyruvate metabolism, which are
important for the maintenance of normal physiological states of the
retina (Rueda et al., 2016), optic nerve cells (Agudo-Barriuso et al.,
2013), lens (Saravanan et al., 2023), and cornea (Hamuro et al.,
2020). And these studies give us confidence that alanine and
pyruvate may be biomarkers in the metabolic process of eye diseases.

Our study also identified some associations between unsaturated
fatty acids and chalazion risk. In the primary analysis, the higher the
percentage of unsaturated fatty acids, the higher the risk of
chalazion. We found that the higher the ratio of omega-6 to
omega-3 fatty acids, the lower the risk of chalazion, suggesting
that omega-6 fatty acids protect against chalazion among
unsaturated fatty acids, whereas omega-3 fatty acids and other
unsaturated fatty acids may increase the risk of chalazion. In the
results of the secondary analysis, the ability of 18:2, LA [an omega-6
fatty acid (Balić et al., 2020)] to reduce the risk of chalazion also
supports the results of the primary analysis of the protective effect of
omega-6 fatty acids on chalazion. This has been somewhat
controversial in previous studies on ocular unsaturated fatty

FIGURE 3
Causal relationship between 123 metabolites and chalazion. (A) Volcano plot analysis of Mendelian randomization results. Red plots indicate OR > 1,
which is positively associated with the risk of developing chalazion, and blue plots indicate OR < 1, which is negatively associated with the risk of
developing chalazion. (B) Forest plot analysis of Mendelian randomization results. Abbreviations: OR, odds ratio.
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acids. Studies have shown that omega-3 fatty acids are effective in
reducing inflammation associated with dry eye, improving the lipid
layer of the tear film, and normalising the function of the levator
palpebral and lacrimal glands (Cortina and Bazan, 2011;
Georgakopoulos et al., 2017). In recent years, several studies have
questioned the efficacy of omega-3 fatty acids in the treatment of dry
eye and found that low concentrations of omega-6 fatty acids (not
omega-3 fatty acids) are beneficial in improving tear stability in
patients with dry eye (Mudgil, 2020). Similarly, in the fatty acid
category of the secondary analyses, we observed that more double
bonds in the fatty acids increased the risk of chalazion. A higher
number and proportion of double bonds and bisallylic groups in the
fatty acid chain increase the risk of chalazion formation.
Unsaturated fatty acids contain more double bonds than
saturated fatty acids, which is consistent with the results of our
primary analysis. In summary, we found an increased risk of
chalazion when fatty acids had a higher number and ratio of

double bonds and bisallylic groups because omega-6 fatty acids
have fewer double bonds than omega-3 fatty acids (2–4 vs. 3-
6 double bonds). An increase in the number of bisallylic groups
can cause oxidative stress reactions (Yamaguchi et al., 2012;
Chistyakov et al., 2018). A higher number and proportion of
dienophiles have been reported to increase cellular susceptibility
to free radical-mediated peroxidative events, which increases the risk
of chalazion (Wagner et al., 1994). The gene colocalization results
highlighted the significance of targeting rs174555, which is
associated with FADS1 and FADS2. FADS1 and FADS1 encode
fatty acid δ-5 and δ-56 desaturases (D5D and D6D), respectively,
crucial for the conversion of PUFAs (polyunsaturated fatty acids)
into eicosapentaenoic acid (EPA), docosahexaenoic acid, (DHA)
arachidonic acid (ARA) (Santana et al., 2022). Studies have shown
that SNPs in the FADS1 and FADS2 genes [such as rs174545,
rs174546, rs174548, and rs174553 (FADS1); rs1535 and rs174583
(FADS2)] can affect the bioavailability of omega-3 and omega-6

TABLE 2 MR analysis results of seven of 123 metabolites with a causal relationship with chalazion.

Exposure Category Method nSNP Beta SE p-value OR (95% CI)

Alanine Amino acid IVW 6 −0.549 0.139 0.000 0.578 (0.439–0.759)

MR Egger 6 −0.974 0.578 0.167 0.378 (0.122–1.171)

Weighted median 6 −0.626 0.174 0.000 0.534 (0.380–0.751)

Weighted mode 6 −0.651 0.238 0.041 0.522 (0.327–0.832)

Average number of methylene groups per double bond Metabolites IVWmre 5 −0.264 0.113 0.020 0.768 (0.615–0.958)

MR Egger 5 −0.319 0.256 0.301 0.727 (0.440–1.201)

Weighted median 5 −0.289 0.078 0.000 0.749 (0.643–0.872)

Weighted mode 5 −0.293 0.077 0.019 0.746 (0.642–0.867)

Average number of double bonds in a fatty acid chain Fatty acid IVW 5 0.322 0.100 0.001 1.380 (1.135–1.678)

MR Egger 5 0.258 0.217 0.321 1.294 (0.845–1.981)

Weighted median 5 0.310 0.080 0.000 1.364 (1.165–1.597)

Weighted mode 5 0.313 0.083 0.019 1.367 (1.162–1.608)

Ratio of bisallylic groups to double bonds Metabolites IVW 4 0.261 0.064 0.000 1.298 (1.145–1.471)

MR Egger 4 0.192 0.140 0.304 1.211 (0.921–1.593)

Weighted median 4 0.236 0.062 0.000 1.266 (1.120–1.431)

Weighted mode 4 0.237 0.068 0.040 1.267 (1.110–1.447)

Ratio of bisallylic groups to total fatty acids Fatty acid IVW 5 0.311 0.081 0.000 1.364 (1.163–1.600)

MR Egger 5 0.137 0.113 0.313 1.147 (0.919–1.432)

Weighted median 5 0.268 0.070 0.000 1.307 (1.140–1.499)

Weighted mode 5 0.263 0.070 0.020 1.301 (1.134–1.492)

18:2, linoleic acid (LA) Fatty acid IVW 14 −0.190 0.071 0.007 0.827 (0.720–0.950)

MR Egger 14 −0.088 0.174 0.622 0.916 (0.652–1.287)

Weighted median 14 −0.174 0.096 0.070 0.841 (0.697–1.014)

Weighted mode 14 −0.095 0.151 0.542 0.910 (0.676–1.223)

Pyruvate Amino acid IVW 2 −0.862 0.238 0.000 0.422 (0.265–0.674)

Abbreviations: IVW, inverse variance weighted; IVWmre, inverse variance weighted (multiplicative random effects); SNPs, single nucleotide polymorphisms; SE, standard error; OR, odds ratio;

CI, confidence interval.
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PUFAs in various tissues. They can also increase plasma levels of LA
and ALA, and decrease levels of ARA, EPA, and DHA (Steer et al.,
2013; de la Garza Puentes et al., 2017). Our study revealed rs174555
(FADS1, FADS2) had a two-sided effect on chalazion risk, being
associated with the ratio of bisallylic groups to double bonds
(1.298 [95% CI, 1.145–1.471], PPH4 = 0.817) and 18:2, linoleic
acid (LA, 0.827 [95% CI, 0.720–0.950], PPH4 = 0.870) metabolism.
This suggests that rs174555 (FADS1, FADS2) as a drug target related
to fatty acid metabolism needs to be considered carefully for the
presence of bidirectional effects.

Acetone was associated with a higher chalazion risk. It is a
metabolite of fatty acids (Møller, 2020), and we hypothesised that
increased fatty acid levels would increase the risk of chalazion
and may be partly related to the fatty acid metabolite acetone.
However, further research is required to verify these hypotheses.
A higher average number of methylene groups per double bond
reduces the risk of chalazion formation. Studies have shown that
methylene groups can increase the lipophilicity of compounds
(Møller, 2020), and in addition, methylene groups can act as
methylating agents, playing a key role in DNA methylation
(Botezatu et al., 2014). Additionally, methylene groups are
involved in the synthesis of many amino acids and biologically
active molecules as well as in metabolic processes (Stocke and
Lamont, 2023).

However, it is essential to acknowledge the primary limitation of
this MR analysis: First, the study was based exclusively on patients

with chalazion of European origin, which limits its generalisability to
other ethnic populations. Further testing of GWAS for metabolites
and chalazions in other populations would facilitate larger MR
analyses. Second, although we did not observe multidirectional
evidence of causal associations across the MR methods, the
variants used in MR may confer a risk for chalazion
development through multidirectional pathways. Further MR
analyses using individual-level data should be performed to
assess the potential dose-response causality between individual
metabolites and chalazion risk. Meanwhile, further studies are
required to elucidate the potential mechanisms underlying
these findings.

This study offers evidence supporting the role of alanine in
providing protection against chalazion, suggesting its significance as
a potential metabolite in chalazion treatment. We also suggest that
the degree of unsaturation in circulating fatty acids is a prominent
factor in the development of chalazion, highlighting the need for
further investigation into the mechanisms of omega-3 and omega-6
fatty acids in this context.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

TABLE 3 Summary of Mendelian randomization sensitivity and gene colocalisation analysis.

Exposure Outcome Method Pheterogeneity Ppleiotropy PPH3 PPH4 nSNP in
colocalisation

Primary analysis

Alanine Chalazion IVW 0.119 0.573 0.012 0.019 221

Acetone Chalazion IVW 0.751 0.754 0.014 0.038 235

Degree of unsaturation Chalazion IVW 0.045 0.221 0.014 0.028 147

Ratio of omega-3 fatty acids to total fatty acids Chalazion IVW 0.018 0.930 0.013 0.048 142

Ratio of omega-6 fatty acids to omega-3 fatty
acids

Chalazion IVW 0.008 0.265 0.014 0.025 144

Ratio of polyunsaturated fatty acids to total
fatty acids

Chalazion IVW 0.337 0.650 0.156 0.722 257

Ratio of docosahexaenoic acid to total fatty
acids

Chalazion IVW 0.441 0.890 0.013 0.516 187

Secondary analysis

Alanine Chalazion IVW 0.878 0.491 0.012 0.254 193

Average number of methylene groups per
double bond

Chalazion IVW 0.349 0.819 0.116 0.792 222

Average number of double bonds in a fatty acid
chain

Chalazion IVW 0.162 0.752 0.117 0.790 224

Ratio of bisallylic groups to double bonds Chalazion IVW 0.032 0.622 0.099 0.817 201

Ratio of bisallylic groups to total fatty acids Chalazion IVW 0.147 0.160 0.116 0.793 222

18:2, linoleic acid (LA) Chalazion IVW 0.314 0.531 0.072 0.870 256

Pyruvate Chalazion IVW 0.870 — 0.011 0.297 194

Abbreviations: IVW, inverse variance weighted; SNPs, single nucleotide polymorphisms; PPH3, posterior probability (PP) of H3; PPH4, posterior probability (PP) of H4.
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SUPPLEMENTARY FIGURE S1
Leave-one-out tests for 13 metabolites on chalazion in two MR analysis
(except for Pyruvate). Primary analysis (A–G): (A) alanine; (B) acetone; (C)
degree of unsaturation; (D) ratio of omega-3 fatty acids to total fatty acids;
(E) ratio of omega-6 fatty acids to omega-3 fatty acids; (F) ratio of
polyunsaturated fatty acids to total fatty acids; (G) ratio of docosahexaenoic
acid to total fatty acids. Secondary analysis (H–M): (H) alanine; (I) average
number ofmethylene groups per double bond; (J) average number of double
bonds in a fatty acid chain; (K) ratio of bisallylic groups to double bonds; (L)
ratio of bisallylic groups to total fatty acids; (M) 18:2, linoleic acid (LA).

SUPPLEMENTARY FIGURE S2
Colocalization analyses for 14 metabolites on chalazion in two MR analysis.
Primary analysis (A–G): (A) alanine; (B) acetone; (C) degree of unsaturation;
(D) ratio of omega-3 fatty acids to total fatty acids; (E) ratio of omega-6
fatty acids to omega-3 fatty acids; (F) ratio of polyunsaturated fatty acids to
total fatty acids; (G) ratio of docosahexaenoic acid to total fatty acids.
Secondary analysis (H–N): (H) alanine; (I) average number of methylene
groups per double bond; (J) average number of double bonds in a fatty acid
chain; (K) ratio of bisallylic groups to double bonds; (L) ratio of bisallylic
groups to total fatty acids; (M) 18:2, linoleic acid (LA); (N) pyruvate.
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