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The interaction between the tumormicroenvironment (TME) and the cancer cells
is a complex and mutually beneficial system that leads to rapid cancer cells
proliferation, metastasis, and resistance to therapy. It is now recognized that
cancer cells are not isolated, and tumor progression is governed among others,
by many components of the TME. The reciprocal cross-talk between cancer cells
and their microenvironment can be indirect through the secretion of extracellular
matrix (ECM) proteins and paracrine signaling through exosomes, cytokines, and
growth factors, or direct by cell-to-cell contact mediated by cell surface
receptors and adhesion molecules. Among TME components, cancer-
associated fibroblasts (CAFs) are of unique interest. As one of the most
abundant components of the TME, CAFs play key roles in the reorganization
of the extracellularmatrix, facilitatingmetastasis and chemotherapy evasion. Both
direct and indirect roles have been described for CAFs in modulating tumor
progression. In this review, we focus on recent advances in understanding the
role of direct contact between cancer cells and cancer-associated fibroblasts
(CAFs) in driving tumor development and metastasis. We also summarize recent
findings on the role of direct contact between cancer cells and CAFs in
chemotherapy resistance.
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Introduction

The “seed and soil” hypothesis, introduced by Stephen Paget in 1889, was the first
concept to suggest that the TME is a crucial factor in controlling the growth and metastasis
of cancer cells (Paget, 1989). His hypothesis laid the foundation for understanding how a
specific environment (“soil”) influences the behavior of the cancer cells (“seed”) (Langley
and Fidler, 2011). Although this concept is more than a century old, the critical involvement
of supporting stroma in cancer progression is just beginning to be fully understood as novel
findings reshape this complex interaction. Therefore, Paget’s original model has been
revised by new research demonstrating that both the tumor and the TME display
phenotypic plasticity and that intratumoral heterogeneity and continuous adaptation to
the surroundings are critical for both cancer cells and TME during cancer evolution
(Santiago-Gómez et al., 2023).

Solid tumors are surrounded by a TME made up of cellular components including
fibroblasts, immune cells, endothelial cells, dendritic cells, mesenchymal stem cells, and
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non-cellular components including collagens, proteoglycans,
fibronectin, laminins, and elastin among others (Anderson and
Simon, 2020). The TME plays a critical role in cancer growth,
metastatic invasion, and response to therapy due to the continuous
cross-talk with the tumor (Pickup et al., 2014; Henke et al., 2019;
Hinshaw and Shevde, 2019; Sung et al., 2021).

Within the TME, cancer-associated fibroblasts (CAFs)
constitute the majority of the cellular component (Tlsty and
Hein, 2001). CAFs promote stemness, angiogenesis, immune
evasion, and extracellular matrix remodeling, all critical factors in
cancer development and resistance to therapy (LeBleu and Kalluri,
2018; Liu et al., 2019; Sahai et al., 2020). Cancer cells themselves
induce and maintain CAFs in an active state (Gupta and Massague,
2004; Nair et al., 2017; Valenti et al., 2017; Wang et al., 2022), thus
promoting a reciprocally favorable link between the 2 cell types. The
presence of activated CAFs has been associated with cancer
recurrence and the worst outcome (Calon et al., 2015; Liu L.
et al., 2016; Cords et al., 2024). Even more, significant roles for
CAFs have been recently described in regulating tumor dormancy
(Wu et al., 2022; Cheng et al., 2023).

With breakthrough technologies and the emergence of the
“omics” era, we are now beginning to understand the tumor
evolution in its entirety, as governed by the “soil” with its
cellular and acellular components. The current chemotherapy
and immunotherapy largely target the cancer cells, not the TME
or the CAFs. However, increasing evidence indicates that the TME
and CAFs regulate cancer cells metastasis and promote
chemotherapy resistance. Therefore, establishing new therapies
relies on a more profound understanding of the role of CAFs in
tumor progression. Disrupting the interaction and communication
between CAFs and cancer cells could be a turning point in therapy
resistance.

Previous reviews have extensively covered mechanisms of CAFs
activation and indirect regulation of tumor cells as well as the
heterogeneity of the CAFs phenotypes in individual cancers (Eble
and Niland, 2019; Fiori et al., 2019; Barrett and Puré, 2020; Biffi and
Tuveson, 2021; Chhabra and Weeraratna, 2023; Wieder, 2023). In
this review, we focus on the specific role of direct contact between
CAFs and cancer cells in cancer progression.We will briefly examine
different mechanisms of communication between the 2 cell types
and explore in detail novel findings related to the direct cell-to-cell
contact between the tumor and CAFs and its impact on tumor
progression. We will also discuss the therapeutic implications of the
direct contact between the tumor cells and CAFs.

Cancer-associated fibroblasts

Since their first description as a distinct cell type by Rudolf
Virchow in 1858, significant advancements have been made in
understanding the roles and functions of fibroblasts (Plikus et al.,
2021). As the most common cells in the connective tissue, fibroblasts
play integral roles in extracellular matrix deposition and remodeling,
secretion of signaling factors (cytokines and growth factors),
generation of mechanical forces through contractility, and tissue
metabolism (Plikus et al., 2021). Importantly, there is a remarkable
degree of heterogeneity in fibroblasts based on the anatomical origin
which ultimately dictates shared and specific functions of the

fibroblasts (Muhl et al., 2020). Under physiological conditions,
fibroblasts are in a dormant state and become activated during
wound healing or fibrosis (Kalluri, 2016). In normal wound healing,
activated fibroblasts are eliminated through programmed cell death
once the wound is healed (Eming et al., 2014) whereas the CAFs
persist, resembling a non-healing wound (Chhabra and
Weeraratna, 2023).

CAFs can also originate from various sources including normal
fibroblasts, epithelial cells, endothelial cells, bone marrow-derived
mesenchymal stem cells (MSCs), hematopoietic stem cells, cancer
stem cells (CSCs), adipocytes, pericytes, and stellate cells (Kobayashi
et al., 2019; Ping et al., 2021; Kotsiliti, 2022;Wieder, 2023) via several
processes such as activation, recruitment, differentiation, and
transdifferentiation (Ansardamavandi and Tafazzoli-Shadpour,
2021; Chhabra and Weeraratna, 2023). This diversity in origin
also contributes to the heterogeneity of CAFs (Ping et al., 2021;
Chhabra and Weeraratna, 2023). Due to their heterogeneity,
identifying specific markers for CAFs proved to be a challenge.
Therefore, cell populations in the tumor that follow several criteria
are defined as CAFs: 1) lack of original tumor cell mutations; 2)
presence of mesenchymal markers, such as vimentin (VIM), alpha-
smooth muscle actin (α-SMA), and fibroblast activating protein
(FAP); 3) spindle morphology. Nonetheless, it is believed that a
majority of the CAFs are formed from the activation of normal
fibroblasts of the neighboring tumor site through various stimuli and
activating signals (Arina et al., 2016; Öhlund et al., 2017).

The recruitment and activation of CAFs are a result of cytokines
and growth factors secretion by the tumor cells themselves and
infiltrating immune cells (Figure 1). Among these growth factors,
transforming growth factor beta (TGF-β) is particularly important
(Casey et al., 2008; Kuzet and Gaggioli, 2016; Huang et al., 2021).
This is due to its extensive role in cellular signaling and activation of
genes promoting epithelial-to-mesenchymal transition (EMT), cell
migration and invasion, and resistance to therapy (Massague and
Gomis, 2006; Massague, 2008; Massague, 2012). Similarly, signals
arising from the tumor site, including reactive oxygen species and
ECM stiffness can promote CAFs conversion (Chhabra and
Weeraratna, 2023). Activated CAFs fall into several categories
defined by their function, specific markers, and transcription
factors specifying the CAFs subtypes. The extensive heterogeneity
in CAFs phenotypes in diverse cancers has been comprehensively
reviewed (Biffi and Tuveson, 2021; Plikus et al., 2021; Chhabra and
Weeraratna, 2023; Melchionna et al., 2023). As our understanding of
CAFs heterogeneity increased, different studies identified specific
subsets of CAFs in various tissues (see Table 1). In pancreatic cancer,
for example, prevalent subtypes are inflammatory CAFs, defined by
the expression of IL6, IL11, IL8, CXCL12, and other cytokines
(Öhlund et al., 2017; Bernard et al., 2019), and myofibroblastic
CAFs, defined by the expression of α-SMA, TGF-β, FAP, periostin
(POSTN), and podoplanin (PDPN) (Öhlund et al., 2017; Bernard
et al., 2019). Nonetheless, additional markers for inflammatory and
myofibroblastic CAFs have been identified in both pancreatic and
breast cancers (Fearon, 2014; Kawase et al., 2015; Öhlund et al.,
2017; Djurec et al., 2018; Biffi et al., 2019; Elyada et al., 2019; Miyai
et al., 2020). Based on FAP, α-SMA, CD29 and MCAM expression
additional subsets of CAFs were identified in breast cancer (Costa
et al., 2018; Kieffer et al., 2020; Pelon et al., 2020). Antigen-
presenting CAFs were also identified in pancreatic and breast
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cancer (Djurec et al., 2018; Elyada et al., 2019). Multiple lung cancer
studies found diverse clusters of CAFs as well (Lambrechts et al.,
2018; Hu et al., 2021; Grout et al., 2022). For example, a lung cancer
study identified different CAFs subsets in high-stage vs. low-stage
tumors and associated with T cell exclusion or T cell enrichment
(Grout et al., 2022). Another lung cancer study categorized CAFs
into three different subsets based on the expression of HGH, FGF7,
and phospho-SMAD2. These subsets were associated with different
clinical outcomes (Hu et al., 2021). Recently, glycolytic CAFs have
been described in soft tissue sarcomas (Broz et al., 2024).

Multiple pathways responsible for tumorigenicity and
metastasis are activated by CAFs in cancer cells (see Table 2).
Studies have shown that activation of JAK2/STAT3 pathway by
CAFs secreting IL6 induces metastasis and invasion in lung, gastric,
bladder cancer, and squamous cell carcinoma (Wang et al., 2017;
Wu et al., 2017; Goulet et al., 2019;Wang et al., 2019). TGFβ secreted
by CAFs activates multiple pathways that sustain a pro-EMT, pro-
invasion, and pro-migration phenotype in multiple cancers (Yu
et al., 2014; Liu J. et al., 2016; Ren et al., 2018; Yoshimatsu et al., 2020;
Ping et al., 2023; Song et al., 2024). In endometrial cancer, activation
of PI3K/AKT, MAPK/ERK and SDF1/CXCR4 pathways play a role
in proliferation and invasion (Subramaniam et al., 2013; Teng et al.,
2016). In hepatocellular carcinoma, CAFs-secreted
CXCL11 modulates cell migration and tumor metastasis through
the circUBAP2/miR-4756/IFIT1/3 axis (Liu et al., 2021). Hepatocyte
growth factor (HGF)-driven activation of PI3K/AKT and ERK
pathways plays a role in angiogenesis in gastric cancer and drug
resistance in ovarian cancer (Deying et al., 2017; Ding et al., 2018).
CAFs-derived IL32 induces breast cancer invasion and metastasis
via ITGB3-p38 MAPK signaling (Wen et al., 2019). In colorectal
cancer, CAFs promoted stemness, EMT, metastasis, and

chemoresistance by secreting exosomes to increase miR-92a-3p
and activation of Wnt/β-catenin pathway in cancer cells (Hu
et al., 2019). CAFs promote migration and invasion of non-small
cell lung cancer (NSCLC) cells via miR-101-3p mediated VEGFA
secretion and AKT/eNOS Pathway (Guo et al., 2021). Another study
established a CAF-METTL3-RAC3 m6A modification-dependent
regulation system in NSCLC metastasis (Chen et al., 2023).

Overall, the heterogeneity of CAFs coupled with the pro-
tumorigenic pathways the CAFs activate in cancer cells suggests
that the intimate relationship between the cancer cells and the CAFs
creates a feed-forward loop that ultimately facilitates cancer
progression, invasion, and metastasis.

Communication between cancer cells
and fibroblasts

Cancer cells are constantly interacting with the components of
the TME. Throughout cancer development and metastasis, starting
with invasion into the ECM, entering the circulation or lymphatic
system, navigating through endothelial linings and basement
membranes, and ultimately forming secondary tumors at target
sites, effective communication between the cancer cells and the
microenvironment is essential at every step (Ungefroren et al.,
2011). CAFs, as the major component of the TME, interact with
cancer cells either directly, through cell-cell contact, or indirectly via
signaling molecules and exosomes within the ECM (Yamaguchi and
Sakai, 2015; Liu et al., 2019).

While cancer initiates in the epithelial cells, the presence of
carcinoma-associated fibroblasts even before tumor formation can
contribute to tumorigenesis (Olumi et al., 1999). However, the latest

FIGURE 1
Activation of normal fibroblasts (NF) into cancer-associated fibroblasts (CAF) by various activating signals and subsequent functions of activated
CAFs. Created with BioRender.com.
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evidence suggests that CAFs are not tumor-promoting from the get-
go. Previous studies showed that early during tumor formation and
depending on their activation status, CAFs restrict tumor
development (Miyai et al., 2020). This supports a model in which
the evolution of cancer cells-CAFs interaction plays a role in
generating pro-tumor and pro-metastatic signals, eventually
driving cancer progression. Below we summarize the indirect
interaction and analyze in detail the role of direct contact
between cancer cells and CAFs.

CAFs-cancer cells indirect interaction

For several cancer types including hepatocellular carcinoma,
pancreatic cancer, breast cancer, lung cancer, melanoma, and colon
cancer it has been shown that tumor cells interaction with CAFs
promotes EMT, metastatic phenotype, and therapy resistance (Kubo
et al., 2016; Domen et al., 2021; Shelton et al., 2021; Ahmad Zawawi
and Musa, 2022; Ando et al., 2022; Hu et al., 2022). The main
indirect mechanisms through which the CAFs influence cancer cells
phenotype are: 1) Secretion of collagens, fibronectin, and
proteoglycans can remodel the ECM by stretching, crosslinking,
bundling, stiffening, and even degrading it, thereby creating a
microenvironment more favorable for cancer progression (Scott
et al., 2019); 2) paracrine communication through extracellular
vesicles (EVs), growth factors and cytokines that promote
stemness and metastasis, such as TGFβ, Chemokine (CC motif)
ligand 2 (CCL2), IL-6, HGF, Osteopontin (OSPN) and Stromal cell-
derived factor 1 (SDF-1) (Linares et al., 2020).

Lately, metabolic reprogramming in cancer cells and the cells in
the TME by EVs has been assessed (Chen et al., 2024). EVs are
secreted from various cell types and their content comprises of

different proteins, microRNAs (miRNAs), DNA, and lipids specific
to their parent cells (Castillo-Sanchez et al., 2022). Based on their
size, biogenesis, or release pathways, EVs are classified as exosomes,
microvesicles, and apoptotic bodies (Castillo-Sanchez et al., 2022).
Studies have shown that EVs secreted by CAFs are associated with
cancer progression and metastasis in breast cancer, colorectal
cancer, and lung cancer (Hu et al., 2019; Kong et al., 2019;
Castillo-Sanchez et al., 2022). Kong et al., 2019, demonstrated in
their study that in contrast to EVs from salivary adenoid cystic
carcinoma (SACC), the EVs from the CAFs facilitated the creation
of a pre-metastatic niche favorable for the SACC lung metastasis.

All these mechanisms of indirect communication between
cancer cells and CAFs were extensively examined and recognized
as critical for cancer progression (Fiori et al., 2019; Liu et al., 2019;
Scott et al., 2019; Linares et al., 2020; Hu et al., 2022). While some
therapies directed at targeting ECM proteins, ECM remodeling
enzymes, and CAF-derived signaling molecules have shown
promising results (Tran et al., 2017), others have not (Brandes
et al., 2016; Benson et al., 2017), suggesting that targeting the
paracrine communication between cancer cells and CAFs is most
likely context and case-dependent.

CAFs-cancer cell direct interaction

Different from indirect paracrine regulation, direct
interaction requires cell-to-cell contact between the cancer
cells and the CAFs (Figure 2). Experimental models that use
direct co-culture of cancer cells and fibroblasts, as opposed to
fibroblast-conditioned media, revealed the multifaceted role of
this heterologous direct contact in cancer cells migration,
invasion, metastasis, and therapy resistance.

TABLE 1 CAFs subtypes and markers.

Cancer type CAFs markers by subtype References

Pancreatic cancer αSMA, VIM, CTGF, COL1A1, COL5A1, COL6A1, FAP
(myofibroblastic CAFs)

Ohlund et al. (2017), Fearon. (2014), Miyai et al. (2020), Kawase
et al. (2015)

IL6, IL1, IL11, LIF, CXCL12 (inflammatory CAFs) Ohlund et al. (2017), Elyada et al. (2019), Biffi et al. (2019)

PDGFRα, SAA3, HLA-DR, CD74, SLPI (antigen presenting CAFs) Djurec et al. (2018), Elyada et al. (2019)

Breast cancer FAPhigh, αSMAhigh, MCAMlow (CAF subset 1)
FAPnegative, αSMAnegative, CD29low (CAF subset 2)
FAPnegative, αSMAnegative, CD29positive (CAF subset 3)
FAPnegative, αSMAhigh, CD29high, MCAMhigh (CAF subset 4)

Costa et al. (2018), Kieffer et al. (2020), Pelon et al. (2020)

Lung cancer COL10A1, TGF-β (Cluster 1)
COL4A1, αSMA (Cluster 2)
PLA2G2A (Cluster 4)
MMP3 (Cluster 5)
CCL2 (Cluster 7)

Lambrechts et al. (2018)

HGFhigh, FGF7high/low, pSMAD2low (CAF subset I)
HGFlow, FGF7high, pSMAD2low (CAF subset II)
HGFlow, FGF7low, pSMAD2high (CAF subset III)

Hu et al. (2021)

FAPpositive (CAF subset 1)
FAPpositive, αSMApositive (CAF subset 2)
FAPTOpositive, αSMApositive, ADH1Bnegative, MYH11positive (CAF subset 3)
ADH1Bpositive (CAF subset 4)

Grout et al. (2022)

Soft tissue sarcomas Sic2a1, Pgk1, Pkm Pgam,. Hk2, CD73 (glycolytic CAFs) Broz et al. (2024)
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Earlier studies showed that when tumor cells are co-cultured
with normal fibroblasts they spread along the fibroblasts and
recapitulate the typical in vivo tumor morphology (Rønnov-
Jessen et al., 1995). In addition, non-activated fibroblasts
converted to myofibroblasts in co-culture, supporting a reciprocal
cross-talk that sustains tumor growth and invasion. Later, studies
using similar co-culture models revealed that squamous carcinoma
cells (SCC) require direct contact with CAFs to invade the ECM in a
3D co-culture system (Gaggioli et al., 2007). In contrast, fibroblast-
conditioned media or a variety of growth factors were unable to
promote the invasion of SCC cells. In this model, the acquisition of
motile behavior by SCC cells is not sufficient for invasion, however
force-mediated and protease-mediated matrix remodeling is
required. These activities are provided by fibroblasts which are
the leaders in the invading chains of cancer cells. Further, a
reduction in integrins α5 and α3 in fibroblasts dramatically
reduces this collective migration by preventing force-mediated
matrix remodeling by the fibroblasts (Rønnov-Jessen et al., 1995).

Subsequent studies provided evidence for an impactful role of
the direct cell-to-cell contact between cancer cells and fibroblasts in
diverse tumor models. For example, conditioned media from breast
cancer cells and fibroblasts direct co-cultures increased cancer cells’
metastatic potential while conditioned media from homotypic

cultures had little effect, supporting a role for the direct contact
between cancer cells and fibroblasts in the release of soluble factors
and paracrine signaling (Stuelten et al., 2010). In a prostate cancer
co-culture model, fibroblasts promote directional cancer cells
migration by organizing the fibronectin matrix (Erdogan et al.,
2017). Direct cancer cells-CAFs interaction also enhances the
invasion of lung carcinoma cells in a 3D co-culture system
(Otomo et al., 2014) and in vivo (Duda et al., 2010). Gastric
carcinoma studies showed that CAFs promote a strong invasive
phenotype when in direct contact with scirrhous gastric carcinoma
cells (Yamaguchi et al., 2014; Satoyoshi et al., 2015), whereas CAFs
conditioned media did not, emphasizing the importance of direct
contact between cancer cells and fibroblasts in invasion (Satoyoshi
et al., 2015). Furthermore, TGFβ1 enhances the dissemination of
colon carcinoma cells to the liver through attachment to CAFs
(Gonzalez-Zubeldia et al., 2015). Activated normal fibroblast cells
can attract breast carcinoma MDA-MB-231 cells and function as
scaffolds to accelerate aggregation and coalescence of cancer cells
(Wessels et al., 2019). This was attributed to the expression of
podoplanin (PDPN) by the activated fibroblasts.

To distinguish between the role of normal fibroblasts and CAFs,
studies have shown that fibroblasts derived from normal breast
tissue inhibit epithelial cells growth, whereas fibroblasts from breast

TABLE 2 Signaling pathways regulated by CAFs in cancer cells.

Signaling pathways Cancer types and biological processes
involved

References

IL-6/JAK2/STAT3 Lung Cancer- Metastasis Wang et al. (2017)

Squamous cell cancer-Invasion Wang et al. (2019)

Gastric cancer- EMT Wu et al. (2017)

Bladder cancer- EMT Goulet et al. (2019)

TGF-β1/FAP/VCAN axis Bladder cancer-EMT Ping et al. (2023)

Chemokine/Hedgehog/TGF-β Hepatocellular- Metastasis Liu et al. (2016)

FBXO28 via TGF-beta1/SMAD2/3 Ovarian cancer- Proliferation, migration, and invasion Song et al. (2024)

TGF-β1/HOTAIR Breast cancer- EMT and metastasis Ren et al. (2018)

TNF- α via TGF-β Oral squamous cell carcinoma- Endo-MT Yoshimatsu et al. (2020)

TGF-β/Smad Breast cancer- Enhanced ECM adhesion, migration and invasion,
promote EMT

Yu et al. (2014)

CXCL11 via circUBAP2/miR-4756/IFIT1/3 axis Hepatocellular carcinoma- Cell migration and metastasis Liu et al. (2021)

PI3K/Akt and MAPK/Erk Endometrial cancer- Cell proliferation Subramaniam et al. (2013), Teng et al.
(2016)

Endometrial cancer- Proliferation, migration, and invasion

SDF-1/CXCR4 axis Endometrial cancer- Proliferation, migration, and invasion Teng et al. (2016)

IL32 via integrin β3-p38 MAPK Breast cancer- Invasion and metastasis Wen et al. (2019)

Increased miR-92a-3p leading to activation of Wnt/B-catenin
pathway

Colorectal cancer- Enhanced stemness and EMT Hu et al. (2019)

HGF via PI3K/AKT and ERK1/2 signaling Gastric cancer-Angiogenesis and vascularization Ding et al. (2018)

HGF via c-Met/P13K/Akt and GRP78 signaling Ovarian cancer- Cell proliferation and drug resistance Deying et al. (2017)

METTL3-RAC3 m6A modification Non-small cell lung carcinoma- Migration and invasion Chen et al. (2023)

miR-101-3p/VEGFA/AKT Non-small cell lung carcinoma-Metastasis Guo et al. (2021)
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carcinomas have less inhibitory capacity and in turn promote
epithelial growth (Sadlonova et al., 2009). Even more, normal
fibroblasts grown in direct co-culture contact had a more
significant growth suppression effect on cancer cells, indicating
that direct contact plays a role in fibroblasts’ role in regulating
cancer cells proliferation (Wessels et al., 2019). Further, a zebrafish
tumor metastasis model clearly demonstrated that implantation of
mixed normal fibroblasts-cancer cells displays little dissemination,
while implantation of cancer cells with CAFs increased the number
of disseminated cancer cells throughout the zebrafish body (Liu
et al., 2017). This is probably due to CAFs enhanced ability to
proliferate and potentiate invasion and migration compared with
normal fibroblasts in breast cancer, as previously demonstrated
(Peng et al., 2013). Altogether, these studies reinforce the idea
that a reciprocal signaling system exists between the tumor and
stromal fibroblasts and that transformed CAFs in direct contact with
cancer cells increase cancer dissemination and metastasis.

The nature of the cell-to-cell contact is critical to understanding
how cell surface receptors and signaling molecules involved in the
interaction promote activation of cellular pathways driving EMT,
cytoskeleton modifications, and resistance to therapy, all signs of
cancer reprogramming into an aggressive phenotype. For example,
multiple studies showed that integrins are involved in the
heterologous cell-to-cell contact between cancer cells and
fibroblasts. An earlier study showed that direct interaction with
CAFs enhanced pancreatic ductal adenocarcinoma (PDAC)
clonogenic growth, self-renewal, and migration (Begum et al.,
2019). This was due to EMT induction and an increase in the
frequency of CSCs in the population. At the same time, CAFs were

activated by PDAC cells and increased collagen synthesis resulting
in FAK activation in PDAC cells. Importantly, the knockdown of β1-
integrin or the inhibition of FAK kinase activity in PDAC cells
abrogated the impact of CAFs on clonogenic growth (Begum et al.,
2019). Another study showed that fibroblasts induce contact-
dependent migration of colorectal carcinoma cells (Knuchel et al.,
2015). In addition, the use of blocking antibodies and integrin
antagonists demonstrated that the adhesion between cancer cells
and fibroblasts is mediated by the expression of αvβ5 integrin on
cancer cells induced through an FGF2-FGFR-SRC pathway. More
recently, the direct interaction with CAFs and migration of cancer
cells from different tissues (pancreas, lung, colon, and breast) was
shown to involve integrin-α5β1 (ITGA5/ITGB1) on cancer cells and
fibronectin assembled on the surface of CAFs (Miyazaki et al., 2019;
Miyazaki et al., 2020).

Apart from integrins, other cell surface molecules have been
identified to play a role in the direct cell-cell contact between cancer
cells and CAFs. For instance, a heterotypic and mechanically active
E-cadherin/N-cadherin interaction has been described that enables
cancer cells invasion (Labernadie et al., 2017). This study
demonstrates that the pulling force exerted by the CAFs on
cancer cells is mediated by the heterotypic junction between
E-cadherin on cancer cells and N-cadherin on CAFs.
Importantly, the E-cadherin/N-cadherin interaction is not
disrupted by force and creates a leading edge on the opposite
side of the cell-cell interaction. Therefore, a cooperative
mechanism is formed in which CAFs pull cancer cells away from
the tumor and cancer cells polarize CAFs leading edge to further
promote their invasion.

FIGURE 2
Heterologous direct contact between cancer cells andCAFs in the TME. Known cell surfacemolecules involved in the interaction are identified. CCs:
cancer cells; NFs: normal fibroblasts; CAFs: cancer-associated fibroblasts; MFs: macrophages; DCs: dendritic cells. Created with BioRender.com.
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Another important aspect of the direct cell-to-cell model is
understanding how the interaction is altering the gene signatures on
both sides. Fewer studies have dissected transcriptional
reprogramming in cancer cells and fibroblasts during and after
the interaction. Nonetheless, different transcriptome profiles have
been detected in breast cancer cells depending on whether they can
directly contact CAFs or not in co-culture models (Camp et al.,
2011). In this study, the direct co-cultures appear to have a broader
transcriptional response, enriched for more Gene Ontology (GO)
functions and more signaling pathways than the transwell indirect
co-cultures. Studies focused on understanding the reprogramming
in normal fibroblasts after direct contact or “confrontation” revealed
that incubation of prostate PC-3 cancer cells in direct contact with
fibroblast cell lines induces changes in gene expression patterns in
fibroblasts including Rho, the Yes-associated protein 1 (YAP1)/
transcriptional coactivator with PDZ-binding motif (TAZ) cascade,
pro-inflammatory signaling through NFκB, and TGFβ signaling
(Alexeyenko et al., 2015). Further, direct contact of colon cancer
cells with bone marrow MSCs, induced CAF-like characteristics in
MSCs, such as αSMA expression through activation of Notch and
the TGFβ signaling pathway (Zeng et al., 2018).

Recently, we used a small cell lung carcinoma (SCLC) and lung
fibroblast in vitro model to investigate the effects of direct vs.
indirect interaction on gene reprogramming in lung cancer cells
(Dhungel et al., 2023). We showed that specifically upon direct
contact with fibroblasts, cancer cells undergo profound
reprogramming and develop a hybrid EMT phenotype in which
EMT-inducing growth factors, as well as ECM remodeling
proteins, are highly upregulated. In this co-culture model,
cancer cells in direct contact with fibroblasts exhibit
significantly elevated levels not only of EMT transcription
factors (EMT-TFs) but also of other critical EMT markers,
including YAP1, FN, TGFβ, CTGF, CYR61, α-SMA, and
POSTN. The cancer cells reprogramming by fibroblasts was
transient and upon separation from fibroblasts cancer cells
slowly reverted to their original more epithelial phenotype. This
suggests that in an in vivo scenario, the contact with the fibroblasts
sustains the hybrid EMT phenotype of the cancer cells, while loss
of the contact (possibly during metastasis when cancer cells reach
distant sites), would revert the cells to a more epithelial phenotype
facilitating secondary tumor formation. Maintaining cancer cells
and CAFs direct contact during blood circulation and transition to
secondary sites was shown to increase the metastatic potential and
viability of lung cancer cells (Duda et al., 2010). The presence of
tumor-associated CAFs in brain metastasis from the lung, further
suggests that CAFs that accompany cancer cells during metastasis
may play a critical role in promoting metastasis and supporting
cancer cells survival during transition (Duda et al., 2010). Because
the paracrine milieu is distinct under conditions that allow direct
contact between cancer cells and fibroblasts and can drive EMT
reprogramming in nearby cancer cells (Dhungel et al., 2023), the
direct contact could play an initiator role in tumorigenesis at least
in certain tissues under specific conditions. The results we obtained
from SCLC and lung fibroblasts co-culture are consistent with
similar studies using breast cancer cells and normal murine dermal
fibroblasts co-cultures (Stuelten et al., 2010). Similar to previous
findings, treatment with ATN-161 (Ac-PHSCN-NH2), a novel
small peptide antagonist of integrin α5β1, or depletion of

ITGA5 and ITGB1 by siRNA, significantly reduced YAP1 and
CYR61 mRNA levels in SCLC H69 cells in direct contact with
fibroblasts (Dhungel et al., 2023). This is significant because earlier
studies show a specific contribution of ITGA5 and ITGB1-
fibronectin interaction in maintaining the survival of growth-
arrested cells, potentially by negatively modulating apoptotic
response via Akt signaling pathways (Korah et al., 2004).

Therapeutic implications and
challenges

A significant consequence of CAFs interaction with cancer
cells, either through direct contact or indirect paracrine
communication, is induced therapy resistance. Particularly,
ECM produced by CAFs prevents immune cell infiltration
into the TME, hampers drug penetration, and diminishes
therapeutic efficacy (Gu et al., 2024). Therefore, therapeutic
strategies targeting the communication between cancer cells
and their TME are actively explored. Previous reviews have
described in detail the interplay between CAFs and TME and
CAFs and immune cells and their role in chemotherapy
resistance (Raskov et al., 2021; Gu et al., 2024; Piwocka et al.,
2024). Novel therapeutic approaches include: 1) modulators of
gap junctions, 2) integrins blocking antibodies, 3) suppressors of
tunnel nanotubes, 4) inhibitors of exosome biogenesis, 5)
inhibition of TGFβ and other growth factors cascade, 6)
inhibitors of chemokine receptors, and 7) modulators of
metabolites (Dominiak et al., 2020).

Most of the newly developed therapies directly targeting
CAFs are either in the preclinical or phase I stages (Chhabra and
Weeraratna, 2023). These therapies use different mechanisms to
either eliminate CAFs (Ko et al., 2016), inhibit the activated state
of CAFs (Perera et al., 2017; Palakurthi et al., 2019) or signaling
pathways required for CAFs function (Lv et al., 2018; Zhang
et al., 2018), and target the CAFs secretome (Sharma et al., 2021;
Turaga et al., 2021). One such approach targets the FAP+ CAFs
in the mouse TME using diphtheria toxin receptor (DTR)
expressed selectively in FAP-positive cells and treatment with
diphtheria toxin (DTx) (Feig et al., 2013). Because these CAFs
also produce immunosuppressive cytokines, depleting this
population might be an effective approach to enhance the
immune response and alter the ECM production (Feig et al.,
2013; Sunami et al., 2021).

Less, however, is known about how the direct contact
between the cancer cells and CAFs influences resistance to
therapy. One study found that a PDPN-expressing
subpopulation of CAFs enhances resistance to epidermal
growth factor receptor tyrosine kinase inhibitors (EGFR-
TKIs) in lung adenocarcinoma cells during co-culture in vitro
(Yoshida et al., 2015). Moreover, among patients with lung
adenocarcinoma harboring EGFR-activating mutations, cases
with the presence of PDPN-expressing CAFs had a relatively
poor response to EGFR-TKIs (Yoshida et al., 2015). Resistance
to EGFR-TKIs was not observed when cancer cells and PDPN-
positive CAFs were cultured in separate chambers, suggesting
that direct contact between CAFs and cancer cells is required for
the chemoresistance to occur. A follow-up study correlating
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patient clinical outcomes with the biopsy imaging features
confirmed that a higher tumor-tumor interaction is associated
with higher benefit from EGFR-TKIs, while a higher tumor-
stroma interaction is associated with less benefit from EGFR-
TKIs in lung adenocarcinoma (Wang et al., 2023).

Another study aiming to identify inhibitors of the direct contact
between CAFs and cancer cells, discovered dasatinib, a Src inhibitor,
as a potent blocker of the interaction (Yamaguchi et al., 2014).
Importantly, mice treated with dasatinib display less associated
stromal CAFs and benefit from an increased therapeutic effect on
peritoneal dissemination.

Finally, in a novel study using patient-derived organoids
(PDOs) from colorectal cancer and CAFs, the authors were able
to re-sensitize CAF-protected PDOs using YAP1 inhibitor
Verteporfin (Ramos Zapatero et al., 2023). This is indicative
of a role for YAP1 in chemotherapy resistance driven by the
direct interaction with CAFs and consistent with observations
from our SCLC- lung fibroblasts co-culture model (Dhungel
et al., 2023).

Multiple clinical studies aiming to target CAFs and their
complex role in tumor progression produced uneven outcomes,
probably due tomultiple ways of communication between the tumor
and the CAFs and yet-to-be-discovered interactions. Although
considerable knowledge has been gained about chemotherapy
resistance in cancer cells, very little is known about therapy
resistance in CAFs or CAFs plasticity under therapy. How direct
contact between cancer cells and CAFs changes the phenotypic
plasticity and the response to treatment in both cell types should be
considered for tailored future therapies.

Conclusion and future directions

CAFs have emerged as dynamic participants in tumor
progression. Their surprising functional diversity associated with
specific tissue tumors highlights their critical role in regulating
tumor invasion and response to therapy.

The cell-to-cell contact between cancer cells and fibroblasts
arises as a critical determinant in EMT, invasion, metastasis, and
overall cancer progression. Understanding the intricacies of this
communication provides potential targeted therapeutic
interventions aimed at disrupting these interactions and,
consequently, impeding cancer advancement. This evolving field

holds promise for novel strategies in the ever-challenging field of
cancer therapy.
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