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Background:COVID-19 disease is characterized by a spectrum of disease phases
(mild, moderate, and severe). Each disease phase is marked by changes in omics
profiles with corresponding changes in the expression of features (biosignatures).
However, integrative analysis of multiple omics data from different experiments
across studies to investigate biosignatures at various disease phases is limited.
Exploring an integrative multi-omics profile analysis through a network approach
could be used to determine biosignatures associated with specific disease phases
and enable the examination of the relationships between the biosignatures.

Aim: To identify and characterize biosignatures underlying various COVID-19
disease phases in an integrative multi-omics data analysis.

Method: We leveraged a multi-omics network-based approach to integrate
transcriptomics, metabolomics, proteomics, and lipidomics data. The World
Health Organization Ordinal Scale WHO Ordinal Scale was used as a disease
severity reference to harmonize COVID-19 patient metadata across two studies
with independent data. A unifiedCOVID-19 knowledge graphwas constructed by
assembling a disease-specific interactome from the literature and databases.
Disease-state specific omics-graphs were constructed by integrating multi-
omics data with the unified COVID-19 knowledge graph. We expanded on the
network layers of multiXrank, a random walk with restart on multilayer network
algorithm, to explore disease state omics-specific graphs and perform
enrichment analysis.

Results: Network analysis revealed the biosignatures involved in inducing
chemokines and inflammatory responses as hubs in the severe and moderate
disease phases. We observed distinct biosignatures between severe and
moderate disease phases as compared to mild-moderate and mild-severe
disease phases. Mild COVID-19 cases were characterized by a unique
biosignature comprising C-C Motif Chemokine Ligand 4 (CCL4), and
Interferon Regulatory Factor 1 (IRF1). Hepatocyte Growth Factor (HGF), Matrix
Metallopeptidase 12 (MMP12), Interleukin 10 (IL10), Nuclear Factor Kappa B
Subunit 1 (NFKB1), and suberoylcarnitine form hubs in the omics network that
characterizes the moderate disease state. The severe cases were marked by
biosignatures such as Signal Transducer and Activator of Transcription 1 (STAT1),
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Superoxide Dismutase 2 (SOD2), HGF, taurine, lysophosphatidylcholine,
diacylglycerol, triglycerides, and sphingomyelin that characterize the disease state.

Conclusion: This study identified both biosignatures of different omics types
enriched in disease-related pathways and their associated interactions (such as
protein-protein, protein-transcript, protein-metabolite, transcript-metabolite, and
lipid-lipid interactions) that are unique to mild, moderate, and severe COVID-19
disease states. These biosignatures include molecular features that underlie the
observed clinical heterogeneity of COVID-19 and emphasize the need for disease-
phase-specific treatment strategies. The approach implemented here can be used
to find associations between transcripts, proteins, lipids, and metabolites in
other diseases.
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Background

Coronavirus Disease-2019 (COVID-19) is a contagious
respiratory disorder caused by Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), a newly emerged β
coronavirus belonging to the Coronaviridae family (Karim and
Khan, 2020). Since its discovery in Wuhan, China, in December
2019, COVID-19 established itself as a devastating global pandemic
that has created disruptions across healthcare, economic, and social
systems (Chen et al., 2020).

COVID-19 is characterized by a range of clinical phenotypes
that reflect the spectrum of disease severity (i.e., mild, moderate, and
severe herein defined as disease phases). Disease phenotypes are
broadly classifiable as asymptomatic and symptomatic with
approximately 85% of infected patients (vaccinated and non-
vaccinated) showing mild to moderate symptoms and
approximately 15% of infected patients suffering from potentially
life-threatening complications (Singhal, 2020). The mild to
moderate disease phase includes disease conditions with few or
no infection symptoms, hospitalization with either no oxygen
therapy required or with oxygen given by mask or nasal prongs,
and no fatalities. In contrast, the severe disease phase includes
disease conditions that, besides death, could involve one or a
combination of hospitalization, oxygen therapy involving
mechanical ventilation, respiratory failure, and significant
immune dysregulation (Karim and Khan, 2020).

Each COVID-19 disease phase (i.e., mild, moderate, and severe)
is marked by changes in omics profiles with corresponding changes
in the expression levels of biosignatures (Blanco-Melo et al., 2020;
Messner et al., 2020; Sun et al., 2020). In the context of this research,
we define biosignatures as omics features that include proteins,
transcripts, lipids, and metabolites. Although some of these
biosignatures have a connection to the pathology of COVID-19
illness, not all of them actively impact the expressed disease
phenotype when they are dysregulated. Different major
dysregulated biosignatures including but not limited to Interferon
Alpha 1 (IFNA1), Interferon Alpha Inducible Protein 6 (IFI6), Toll-
Like Receptor 4 (TLR4) and interleukin-6 (IL6) are linked to host
responses to COVID-19 (Bernardes et al., 2020; Ovsyannikova et al.,
2020; Schulte-Schrepping et al., 2020; Aschenbrenner et al., 2021).
Such biosignatures may serve not only as potential biomarkers to
stratify patients according to disease severity and/or provide detailed

prognostic information but could also contribute to the
development of treatments that are more specifically targeted at
particular disease states.

Several individual-omics (Fraser et al., 2020; Alqutami et al.,
2021; Daamen et al., 2021; Jain et al., 2021; Patel et al., 2021; Zhong
et al., 2021; Ciccarelli et al., 2022; Jia et al., 2022; Páez-Franco et al.,
2022; Roberts et al., 2022; Suhre et al., 2022) and multi-omics
COVID-19 investigations (Barh et al., 2020; Bernardes et al.,
2020; Overmyer et al., 2020; Su et al., 2020; Stephenson et al.,
2021; Sun et al., 2021; Suvarna et al., 2021; Chattopadhyay et al.,
2022; Gygi et al., 2023) have identified biosignatures that are
associated with disease progression. Individual omics studies
provide specific insights into the contributions/manifestations of
biosignatures at that omics level during disease progression but have
not accounted for the impact(s) of other omics layers. Multi-omics
studies present a means to collectively compare multiple omics data
from different experiments either on the same samples or across
studies, to yield a more holistic understanding of the biochemical
underpinnings of COVID-19 outcomes. However, few of these
omics studies (Barh et al., 2020; Bernardes et al., 2020; Overmyer
et al., 2020; Su et al., 2020; Stephenson et al., 2021; Sun et al., 2021;
Suvarna et al., 2021; Chattopadhyay et al., 2022) focusing on
identifying the biochemical drivers of COVID-19 clinical
heterogeneity have computationally integrated multi-omics data
from different study samples with existing biological
knowledgebases to explore biosignatures of different omics types
and their connections across different disease phases. We suggest
that this kind of multi-omics data integration is essential when
attempting to explain the molecular dynamics underpinning the
heterogeneity of COVID-19 infections while accounting for both
prior knowledgebase and data from independent studies.

Network-based integrative approaches have revolutionized
multi-omics analyses by providing the framework to build on
existing knowledgebases when using new data to infer
interactions between multiple different omics profiles within the
context of a graph representation (Agamah et al., 2022). This has
been shown to provide the opportunity not only to elucidate
interactions that can occur among all classes of biomolecules in a
biological system but also, to prioritize biosignatures that could
discriminate disease severity. The approach represents the
biomolecules that are most indicative of differences between
disease states (i.e., the biosignatures) as nodes in the graph and
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infers relationships between them. For this reason, we hypothesized
that i) investigating biosignatures across different phases of COVID-
19 disease will provide insights into the molecular underpinnings of
the enormous clinical heterogeneity of COVID-19 and ii)
associations between biosignatures within a biologically
meaningful network would permit the prioritization of
biosignatures that discriminate between the disease states and
could yield leads for potential drug targets.

Our study implemented a multi-omics network-based approach
to identify and characterize biosignatures underlying various
COVID-19 disease phases by integrating transcriptomics,
metabolomics, proteomics, and lipidomics data (each
representing a different data layer) with known interactome data
(i.e., our present knowledgebase). We built disease-state specific
omics-graphs and applied a network diffusion-based method to
predict biosignatures and their associated interactions—both within
and between omics layers—that are linked to the various COVID-19
disease phases. This is a form of intermediate-stage multi-omics
integration or a multi-dimensional integration approach where
multi-omics data are integrated simultaneously during the
analysis (Adossa et al., 2021; Agamah et al., 2022).

The major contributions of this work are; 1) a new method of
harmonizing patient disease severity metrics by leveraging theWHO
Ordinal Scale (WOS) and patient metadata; 2) the assembly of a
unified COVID-19 knowledge graph from different curated sources
of interactome data (our resent knowledgebase); 3) the construction
of a disease-state specific omics-graph by integrating curated
transcriptomics, proteomics, lipidomics, and metabolomics
datasets from two different multi-omics studies; and 4) identified
biosignatures and their associated interactions that are shared and/
or unique to mild, moderate, and severe COVID-19 disease-states.
Overall, this study identifies biosignatures that discriminate between
disease states. These results suggest that COVID-19 disease severity
is influenced by interactions across different omics layers.
Importantly, this study’s reproducible analysis pipelines offer a
valuable tool for identifying biosignatures and interactions not
just in COVID-19, but also in other diseases with distinct stages.

Materials and Methods

Study design and procedures

The approach for this study (Figure 1) consists of five main steps
including: 1) data curation and pre-processing; 2) disease severity
harmonization; 3) construction of disease-state specific omics-
graphs; 4) multi-layer network-based random walk analysis; and
5) enrichment analysis.

Data sources

Multi-omics experimental data

Multi-omics experimental datasets from two independent
studies were used in this study; quantified blood plasma
transcript, protein, and metabolite count data from (Su et al.,
2020), and transcript, protein, metabolite, and lipid count data
from (Overmyer et al., 2020). For both studies by (Su et al.,
2020), and (Overmyer et al., 2020), patient recruitment and
sample collection occurred in 2020 during the peak of COVID-
19 cases. The methodologies utilized for data collection and patient
treatment in both studies are different and are outlined in the
original studies. For (Su et al., 2020), the study samples consisted
of 139 COVID-19 patients (60 males and 79 females) and
258 healthy controls (Supplementary Data Table S1). These
enrolled COVID-19 patients had an age range from 18 to
89 years (median = 58). The patients from which blood is drawn
were classified as WHO Ordinal Scale (WOS) = 3–4 (n = 83) and
WOS = 5–7 (n = 47). The authors used an unpairedWilcoxon test to
determine the statistical difference between WOS = 3–4 and WOS =
5–7, and p values were FDR adjusted. The Overmyer et al., 2020),
study samples were collected from 128 adult patients of which 102
(64 males and 38 females) were COVID-19-positive and 26
(13 males and 13 females) were negative (Supplementary Data
Table S1). There were no significant differences between the

FIGURE 1
Diagram illustrating the workflow implemented in this study. The workflow begins with curating lipidomics, metabolomics, transcriptomics,
proteomics data, and their associated patient metadata and knowledge graph from literature and databases. Next, we leveraged the patient metadata to
perform disease severity harmonization. To harmonize the clinical severity of patients, we used the WOS as the reference for classifying disease severity
into three disease states, such that: 1) mild disease state represents COVID-19 patients with WOS 1–2, 2) moderate disease state represents COVID-
19 patients withWOS 3–4, and 3) severe disease state represents COVID-19 patients withWOS 5–9.We then used the harmonized information to split the
omics datasets according to disease severity before constructing coexpression networks and disease-state specific omics-graphs. We then performed
random walk analysis on the graphs to predict biosignatures discriminating the various disease states. Finally, we performed enrichment analysis on the
proteins, transcripts, metabolites, and lipids.
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average ages of males and females in either the COVID-19 positive
group—(61.3 years for females and 63.1 years for males; (p-value =
0.56; calculated using t-test) or the COVID-19 negative group
(59.5 years for females and 67.0 years for males; p-value = 0.25).

Protein-protein interactome

We retrieved 1832 names of human genes associated with
COVID-19 from the DisGeNET database version 5 (Piñero et al.,
2020). GeneMANIA (Franz et al., 2018) was used to generate an
interactome for 1,692 of these genes (140 were unrecognized by the
GeneMANIA database). Interactions between genes were based on
co-expression, physical interaction, co-localization, shared protein
domains, genetic interaction, or predictions from manual curation.

Metabolite-metabolite interactome

A co-expression network was constructed from the
metabolomics measurement data. Specifically, Pearson’s
correlations were used to estimate the individual relationships
between features for every pre-processed omics measurement
using an in-house R script Highly correlated pairwise interaction
scores ≥0.7 were used to select components of the metabolite-
metabolite interactome that was used for downstream analysis.
The threshold of 0.7 was determined after carefully evaluating
the structural behaviour of the co-expression network and the
observed associations at different thresholds.

Lipid-lipid interactome

A co-expression network was constructed from the lipidomics
measurement data. Similar to the process implemented for
metabolite-metabolite interactome above, highly correlated
pairwise interaction scores ≥0.7 were used to select components
of the lipid-lipid interactome that was used for downstream analysis.

COVID-19 knowledge graph

We further included a multi-modal, knowledge model of
COVID-19 pathophysiology (COVID-19 Knowledge Graph
version 0.0.2, https://github.com/covid19kg/covid19kg)
(Domingo-Fernández et al., 2021). The graph incorporates nodes,
covering 10 entity types (e.g., proteins, genes, chemicals, and
biological processes) and relationships between the nodes, and we
considered only protein, genes, transcripts, lipids, and metabolites
node types and their interactions for downstream analysis.

Cross-layer interactome

We retrieved protein-transcript, metabolite-protein, and lipid-
protein associations from (Su et al., 2020), and (Overmyer et al.,
2020), and used these to construct a bipartite graph for
network analysis.

Harmonizing the clinical severity of patients

Patient sample metadata from both the (Su et al., 2020), and
(Overmyer et al., 2020), sources were used for disease severity
harmonization. For (Su et al., 2020), metadata, the disease
state linked to the samples was described using the WHO
Ordinal Scale (WOS) based on specific categories and
characteristics including 1) uninfected—no evidence of
infection; 2) infected but ambulatory with no limitation of
activities; 3) infected with limitation of activities but still
ambulatory; 4) hospitalized with no or mild oxygen therapy;
5) hospitalized with oxygen administered by mask or nasal
prongs; 6) hospitalized with non-invasive ventilation or high-
flow oxygen; 7) hospitalized with intubation and mechanical
ventilation; 8) hospitalized, with intubation and mechanical
ventilation together with additional organ support; and
9) death.

In the metadata (Overmyer et al., 2020), disease severity was
quantified using hospital-free days at day 45 (HFD-45) scores: a
composite outcome variable that accounts for the length of
hospital stay. The utility of the HFD-45 score is derived from
the fact that severe COVID-19 patients are those who are
admitted to the hospital the longest as they require
ventilatory support, while those with the most extreme cases
die during hospitalization (Overmyer et al., 2020). The variable
assigns a zero value (0-free days) to patients with severe disease
who remain admitted longer than 45 days or die due to
respiratory deterioration while admitted, and higher values of
HFD-45 to patients with shorter hospitalizations and milder
disease severity.

To harmonize the clinical severity of patients, we used the WOS
as the reference for classifying disease severity into three disease
states, such that: 1) mild disease state represents COVID-19 patients
with WOS 1–2, 2) moderate disease state represents COVID-19
patients with WOS 3–4, and 3) severe disease state represents
COVID-19 patients with WOS 5–9.

The (Overmyer et al., 2020), sample metadata included the
following variables: 1) ICU Status (an indicator variable of the
patient’s ICU status), 2) HFD-45, 3) Acute Physiologic
Assessment and Chronic Health Evaluation II (APACHE II)
Score (an indicator variable ranging from 0 (best health) to 71
(worst health) based on physiologic variables, age, and health
conditions), and 4) Mechanical Ventilation Status (MVS) (an
indicator variable describing the patient’s mechanical
ventilation status). There was a correlation between the
HFD-45 and ICU status with APACHE II and MVS. These
variables could feasibly be mapped onto the WOS scale,
knowing that the WOS scale is primarily based on
respiratory status and oxygen/ventilation support.
Accordingly, we leverage this metadata to map
characteristics of the (Overmyer et al., 2020) study patients
on the WOS. Specifically, we assigned: a mild disease state to
COVID-19 patients with HFD-45 between 29–45 with no time
spent in the ICU, a moderate disease state to COVID-19
patients with HFD-45 between 29–45 who spent time in the
ICU, or an HFD-45 between 21–28 regardless of time spent in
the ICU, and severe disease state to COVID-19 patients with
HFD-45 less than 20 regardless of time spent in the ICU.
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Data pre-processing

We conducted a two-step data pre-processing operation on the
omics experimental data using a custom script. Outlier and missing
values were removed, and data were normalized. Samples with more
than 20% missing data in a certain data type were excluded.
Similarly, biological features such as mRNA expression, with
more than 20% of values missing across patients were dropped
from the data. Z-score normalization was then applied such that
each feature of the data (samples as columns and features as rows)
had an average of 0 and a standard deviation of 1.

Feature mapping to unified identifiers

To ensure that the feature labels were unified, transcript and
protein identifiers were mapped to gene-level IDs using the UniProt
(https://www.uniprot.org/) and NCBI databases (https://www.ncbi.
nlm.nih.gov/gene/). Metabolite and lipid name descriptors were
maintained for all analyses other than functional analysis for
which KEGG or PubChem IDs were used.

Building a unified knowledge graph

We assembled a unified knowledge graph by merging the
protein-protein interactome, the metabolite-metabolite
interactome, the lipid-lipid interactome, and the extracted data
from the COVID-19 knowledge graph using a custom script
(Domingo-Fernández et al., 2021).

Building disease-state specific
omics-graphs

Protein-protein, transcript-transcript, lipid-lipid, and
metabolite-metabolite co-expression networks for the various
COVID-19 disease states (i.e., mild, moderate, severe) were
constructed based on an integrated unified knowledge graph,
and the pre-processed omics data using an R script. From the (Su
et al., 2020), omics data, we constructed three co-expression
networks (protein-protein, transcript-transcript, and metabolite-
metabolite) for each disease state. Likewise, we constructed four
co-expression networks (protein-protein, transcript-transcript,
lipid-lipid, and metabolite-metabolite) for each disease state
from the (Overmyer et al., 2020), data. This was achieved by
evaluating the correlation between the expression of each linked
feature pair where each feature is represented in the unified
knowledge graph (i.e., transcript-transcript, protein-protein,
metabolite-metabolite, lipid-lipid feature pairs). Pearson’s
correlations were used to estimate the individual relationships
between features for every pre-processed omics measurement
using an in-house R script.

The interaction between feature pairs is represented by the
Pearson Correlation Coefficient (PCC) ranging between −1
(perfect negative correlation) and 1 (perfect positive
correlation), with values of zero representing no correlation.
We further rescaled the PCC score for each pairwise

interaction by computing the absolute value to attain positive
scores ranging between 0 and 1. Additionally, we defined a
threshold of 0.1 for edge filtering after careful consideration of
the results at different threshold points. We suggest that these
steps contributed significantly to addressing the potential for
spurious findings and contributed significantly to the reliability
of our findings. The co-expression networks constructed from
each single omics dataset formed the baseline for the network
integration. Specifically, the co-expression networks of the same
omics data type constructed from the two independent studies
were integrated by merging the networks to construct four omics-
specific graphs (one for each omics type) for each of the three
disease states.

Random walk network analysis

COVID-19 disease state graph exploration
by a random walk with restart

We adapted multiXrank (Baptista et al., 2022; Baptista et al.,
2024), a randomwalk with restart on amultilayer network algorithm
to explore the disease-state specific omics-graphs. This algorithm
was chosen because it enables random walk with restart on any kind
of multilayer network generated from different data sources as
compared to other methods that are limited in the combination
and heterogeneity of networks that they can handle (Agamah et al.,
2022). We modified the configuration script for the algorithm to
accept four disease-state specific omics-graphs for our analysis.

For network exploration on each disease state, the disease-state
specific omics-graphs, cross-layer interactome, and seed nodes were
used as inputs for the algorithm. Outputs were multi-layered graphs
that described the exploration of the seed nodes across the different
disease-state specific omics-graphs and a list of features in each
disease-state specific omics-graph ranked according to their
proximity to seed nodes.

The parameter values for global restart probability (set to 0.7),
and inter-layer jump probability in a given disease-state specific
omics-graph (set to 0.5), were maintained. The probability to restart
in a specific layer of a specific disease-state specific omics-graph was
set to 1: a setting that meant the disease-state specific omics-graph
was classifiable as a monoplex network.

The probability of restarting in a specific disease-state specific
omics-graph was set to 0. This meant that the random walker stayed
within the network within which it began with a probability
equal to 1.

To achieve homogeneous exploration, the initial probability of
jumping across different disease-state specific omics-graphs was set
to 0.25 in consideration of the four disease-state network layers.

Briefly, the first step of the algorithm is to create adjacency
matrices for the input graphs, followed by computing different
transition probabilities of the random walk with restart on the
graphs. The probabilities are estimated based on the concept that
an imaginary particle starts a random walk from the seed node to
other nodes in the network. These different transition probabilities
describe the walks within a graph and the jumps between graphs. A
higher probability score (close to 1) suggests a higher likelihood of
walking or jumping between graphs.

Frontiers in Molecular Biosciences frontiersin.org05

Agamah et al. 10.3389/fmolb.2024.1393240

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/gene/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1393240


Identifying seed nodes for multi-layered
network exploration

To select seed nodes for the analysis, we implemented two
approaches; 1) a data-driven approach where we selected, after
merging the different co-expression networks, the features with the
highest node integrated centrality score in each omics layer as seeds, and
2) a hypothesis-driven approach where we selected seeds based on their
impact on disease severity to test the hypothesis of their differential
associations with mild, moderate, and severe COVID-19 disease states.
Hypothesis-driven has the advantage of bringing the question being
investigated into focus by designing the model with a specific biological
hypothesis inmind and exploring variations across disease phases while
the data-driven, enables a more unbiased and informed model through
computationally intensive use of the data (Arazi et al., 2013; Eriksson
et al., 2022). Although hypothesis- and data-driven modeling
approaches are not mutually exclusive, it is worth noting that this
diversity is beneficial: most model-building tools and models have a
specific and clear role, however at the same time, combining hypothesis-
and data-driven approaches in an interoperable way, provide an
immense impact on our understanding of the disease phases as
modelling and integrating data at different biological scales (Arazi
et al., 2013; Eriksson et al., 2022).

For the data-driven approach, the features were ranked by
leveraging the node degree, closeness, betweenness, and eigenvector
centrality metrics to compute an integrated score (see Supplementary
Data Equations S1–S3). These centrality metrics provide insight into
the importance of a node. For instance, the closeness metric measures
how close a node is to all other nodes in the network. A lower

closeness centrality score indicates the node is on average closer to
other nodes, potentially making it a faster “information hub.” The
degree metric measures the number of edges (connections) a node has
with other nodes. A higher degree means the node has more direct
connections, suggesting it might be more influential or receive more
information flow. The betweenness metric captures how often a node
lies on the shortest path between other pairs of nodes. A higher
betweenness centrality score suggests the node acts as a crucial bridge
for information flow within the network. The eigenvector metric
considers not just the number of connections a node has, but also the
“importance” of its neighbours. Nodes with high eigenvector
centrality are considered influential due to their connections to
other influential nodes.

Ranking candidate multi-omics features for
COVID-19 disease states

All the network nodes were scored and ranked by the algorithm
according to their proximity to the seed nodes (Baptista et al., 2022).
The computed score was the geometric mean of the node’s
proximity to the seeds.

Enrichment analysis

Metabolite pathway
Metabolite pathway enrichment analysis was performed using

the MetaboAnalyst 5.0 online Pathway Analysis tool (Pang et al.,

FIGURE 2
Description of the Su et al., and Overmyer et al., samples based on the omics data type and the disease severity levels after the
harmonization process.
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2021) (accessed 26 January 2023). Metabolite names were entered as
KEGG IDs, and when necessary, metabolite names were
automatically adjusted to match the nomenclature recognized by
MetaboAnalyst (e.g.,Hydroxypropanoate as hydroxypropanoic acid).
Using high-quality KEGG metabolic pathways as the backend
knowledgebase, we used the hypergeometric statistical test to
examine the overrepresentation of metabolites predefined in the
KEGG pathway present in the queried metabolites. This approach
determined whether a particular group of compounds was
represented more than expected by chance within the user-
uploaded compound list.

Lipid pathway
We conducted lipid pathway enrichment analysis using the

LIPEA online Pathway Analysis tool (Acevedo et al., 2018)
(accessed 26 January 2023). Lipid names were entered as a
compound list and, when necessary, these names were adjusted
to match the nomenclature recognized by LIPEA. The resource
computes an unadjusted p-value on overrepresented pathways, and
a p-value adjusted with Bonferroni correction to reduce
false positives.

Gene ontology analysis
Protein/transcript enrichment analysis was performed

using the online Enrichr Gene Ontology Resource (Kuleshov
et al., 2016) (accessed 26 January 2023). The resource provides
gene-set libraries made of a set of related genes that are
associated with a functional concept such as a biological
pathway or process (Kuleshov et al., 2016). Gene ID
identifiers were used as input for the enrichment analyses.
The resource computes Fisher’s exact test followed by a
correction based on a mean rank and standard deviation

from the expected rank for each term in each gene-set
library (Kuleshov et al., 2016).

Results

Harmonized clinical severity between
patients’ metadata

The clinical severity harmonization was a crucial step in
integrating and analysing data from multiple sources and
platforms to gain a more comprehensive understanding of
biological systems and disease mechanisms. There were more
severe samples than any other in the (Overmyer et al., 2020)
dataset followed by mild and then moderate samples (Figure 2).
For the (Su et al., 2020), dataset, there were similar numbers of mild
and moderate samples and fewer severe samples. The classified
samples (Supplementary Data Table S2) were used to split the omics
counts data into disease states before constructing the disease-state
specific omics-graphs.

Integrative network-based multi-
omics analysis

Construction of disease-state specific
omics-graphs

We constructed a unified knowledge graph (Figure 3A)
comprising four different edge types by merging the protein-
protein interaction data from GeneMANIA, metabolite-
metabolite interactome, lipid-lipid interactome, and the extracted
data from the COVID-19 knowledge graph. Importantly, the unified

FIGURE 3
(A) Summary of the edge count in the interactome datasets used to construct the unified knowledge graph. (B) Distribution of features in the omics
experimental datasets before and after data processing.
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knowledge graph formed the basis for integrating the processed
multi-omics data (Figure 3B) and constructing disease-state specific
omics-graphs for mild, moderate, and severe COVID-19 disease
states (Supplementary File S1). Additionally, the disease-state
specific omics-graphs enabled us to investigate COVID-19
disease states in the context of specific omics data types.

Identified seed nodes for network exploration
The randomwalk method is a technique for detecting the flow of

biological information throughout networks. The concept behind
the random walk method is such that a hypothetical particle
exploring the network structure takes random discrete steps
(walks) in some direction from a seed node (Agamah et al.,
2022). The walk explores different layers based on the premise
that nodes related lie close to each other in the network (Valdeolivas
et al., 2019).

We selected the seed nodes at which random walks began
(Table 1) using both data-driven and hypothesis-driven
approaches. Whereas for the data-driven approach, we selected a
seed primarily based on network topology by computing an
integrated node centrality metric score (Supplementary Data), for
the hypothesis-driven approach, we selected nodes based on
previously reported associations of molecular features with
COVID-19 disease states and to test the differential association
these nodes with disease outcomes.

For the data-driven approach, one selected seed node was the
Signal Transducer And Activator Of Transcription 1 (STAT1)
from the transcriptomics layer. STAT1 is known to be involved
in immune responses and antiviral activity (Lucas et al., 2020) and
is reported to be upregulated in mild and severe COVID-19 cases,
with the phosphorylation of the gene highly enhanced in severe
disease states (Rincon-Arevalo et al., 2022). Another selected seed
node from the proteomics layer was Superoxide Dismutase 2
(SOD2), an essential antioxidant enzyme that protects cells
from superoxide radical anions which are known to be
significantly under-expressed in the plasma (Žarković et al.,
2022), and in the lung cells of severely infected COVID-19
patients (Zarkovic et al., 2022). From the metabolomics layer,
we used 3-hydroxyoctanoate, as a seed: 3-hydroxyoctanoate is a
metabolite of medium-chain fatty acid oxidation that has been
identified as a marker for primary defects of beta-hydroxy fatty
acid metabolism and it is a conjugate acid to 3-hydroxyoctanoate, a
biomarker of asymptomatic COVID-19 infection that is involved
in important pathways such as the activation of macrophage and
platelet aggregation (Franz et al., 2018). From the lipidomics layer,

we identified unknown_mz_815.61548_+_RT_27.063, an
uncharacterized lipid as a seed.

For the hypothesis-driven approach, we selected
interleukin-6 (IL6) and interleukin-6 receptor (IL6R) as
seeds. Besides the pathologic roles of these molecules in
immune-inflammatory diseases such as COVID-19, it has
been hypothesized that inhibition of IL6 receptors (IL6Rs) by
tocilizumab ameliorates the symptoms of severe COVID-19
and reduces mortality (Kaye and Siegel, 2020; Samaee et al.,
2020). We aimed to find out how IL6 and IL6R influence
disease severity.

Random walk analysis on disease-state specific
omics-graphs using data-driven seeds

We used various omics features (Table 1) as seed nodes for
the random walk analysis. Subsequently, features in each disease-
state specific omics-graph were ranked by their proximity to the
seeds. The generated multi-layered graphs (accessible at http://
cytoscape.h3africa.org), describing the exploration of the seeds
during the random walk analysis for each disease state, suggested
that cross-layer interactions between the different omics data
types influence disease severity. This is evidenced particularly in
the protein-metabolite (e.g., HGF and 1-palmityl-GPC, HGF and
6-bromotryptophan), transcript-metabolite (e.g., CCL2 and
taurine, CCL2 and 1-(1-enyl-palmitoyl)-2-oleoyl-GPC)), and
protein-transcript (e.g., HGF and HLA-B) interactions. For
each omics layer, we identified highly connected features
(Table 2) forming large subnetworks and defined these as “key
hubs.”

Random walk analysis on disease-state specific
omics-graphs using hypothesis-driven seeds

Like the network exploration using data-driven seeds, we
repeated the analysis with hypothesis-driven seeds. We observed
from the multi-layer graphs (accessible at http://cytoscape.
h3africa.org) that IL6 interaction with features of different
omics data types increased with disease severity, thus
indicating the differential association of IL6 with the different
disease states. On the other hand, we observed IL6R interactions
mainly with proteins and transcripts to increase with disease
severity as compared to interactions with metabolites. The results
suggest IL6 interaction with proteins (e.g., IFNB, IFIT3),
transcripts (e.g., CXCL1, CXCL2, CCL3), and metabolites (e.g.,
1-(1-enyl-palmitoyl)-GPC, 1-(1-enyl-palmitoyl)-2-oleoyl-GPC
(P-16:0/18:1)) may contribute to its significant role in disease

TABLE 1 Selected seeds for random walk network exploration.

Approach Seed node Integrated centrality score Feature type

Data-driven STAT1 53,529.0403 Transcript

SOD2 2,215.5746 Protein

3-hydroxyoctanoate 1,506.9998 Metabolite

Unknown_mz_815.61548_+_RT_27.063 9936.9781 Lipid

Hypothesis-driven IL6R 252.0804 Transcript

IL6 2,208.0288 Protein

Frontiers in Molecular Biosciences frontiersin.org08

Agamah et al. 10.3389/fmolb.2024.1393240

http://cytoscape.h3africa.org
http://cytoscape.h3africa.org
http://cytoscape.h3africa.org/
http://cytoscape.h3africa.org/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1393240


severity. Similar to analysis using data-driven seeds, we identified
key hubs from each omics layer (Table 3). The hubs with zero
proximity scores establish subnetworks with no direct interaction
with seed nodes (IL6 and IL6R) (as shown in http://cytoscape.
h3africa.org).

Evaluating features and interactions of generated
multi-layered graphs

In this section, we dissect different multi-layered graphs
generated from random walk analysis to examine common
and unique feature interactions related to disease severity. The
multi-layered networks generated for each disease state contain
four types of nodes (proteins, transcripts, lipids, and
metabolites), and at most six types of edges (transcript-
transcript, protein-protein, protein-transcript, protein-
metabolite, metabolite-metabolite, lipid-lipid). We did not
observe protein-lipid edge types across all the networks. This
observation is because the seed exploration prioritizes nodes that
have an either direct or indirect connection to the seeds
(i.e., related to the seeds), thus no observed protein-lipid edge
type is an indication that there was limited bipartite data that
captures interactions between nodes and seeds of interest.

Evaluating multi-layered graphs generated using
data-driven seeds

We evaluated the feature interactions (Supplementary File S2)
present in the multi-layer graphs (accessible at http://cytoscape.
h3africa.org) identifying 204 interactions associated with a specific
disease state of which 79%, 15%, and 6% are transcript-transcript,
lipid-lipid, and protein-protein interactions respectively. Of these
interactions, most (88%) are associated with the mild disease state.
Additional investigation of 263 interactions associated with only two
of the three disease states revealed more pairwise interactions
common between the moderate and severe disease states as
compared to those in common between the mild-moderate and
mild-severe disease state pairs (Supplementary File S2). Also, an
investigation of 397 interactions common across the three disease
states revealed a higher proportion of interactions between
transcripts associated with various cellular processes and about
1% each for metabolite-metabolite, protein-protein, and protein-
metabolite interactions (Supplementary File S2).

In addition to subnetworks formed by the seed nodes, we
observed CCL4, F11, and IRF1 interact directly with seed nodes
SOD2 and STAT1 and form subnetworks in the multi-layered graph
generated for the mild disease state. CCL4 established interactions

TABLE 2 Key hubs identified in the disease-state specific omics-graphs upon using seeds from the data-driven approach.

Disease state Omics layer Feature/Hub Proximity to seeds score

Mild Transcriptomics Coagulation Factor XI (F11) 0.00555

C-C Motif Chemokine Ligand 4 (CCL4) 0.00548

Proteomics Interferon Regulatory Factor 1 (IRF1) 0.00115

Metabolomics 3-hydroxydecanoate 0.02761

3-hydroxyhexanoate 0.02736

Lipidomics Unknown_mz_834.66107_+_RT_26.843 0.00177

Unknown_mz_838.69214_+_RT_27.059 0.00175

Moderate Transcriptomics Hepatocyte Growth Factor (HGF) 0.00542

Matrix Metallopeptidase 12 (MMP12) 0.00528

Proteomics Interferon Regulatory Factor 1 (IRF1) 0.00114

Metabolomics 3-hydroxydecanoate 0.02761

3-hydroxyhexanoate 0.02733

Lipidomics Unknown_mz_834.66107_+_RT_26.843 0.00177

Unknown_mz_553.38593_+_RT_19.676 0.00167

Severe Transcriptomics Hepatocyte Growth Factor (HGF) 0.00589

Matrix Metallopeptidase 12 (MMP12) 0.00568

Proteomics Interferon Regulatory Factor 1 (IRF1) 0.00118

Metabolomics 3-hydroxydecanoate 0.02761

3-hydroxyhexanoate 0.02733

Lipidomics Unknown_mz_834.66107_+_RT_26.843 0.00177

Unknown_mz_553.38593_+_RT_19.676 0.00167

Unknown_mz_736.64563_+_RT_24.633 0.00167
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with human leucocyte antigen, co-stimulatory molecules (e.g., CD2,
CD4, CD8, CD83, CD53, CD3D HLA-DPA1, HLA-DPB1, HLA-
DRA), and other molecules expressed in monocytes and
macrophages (e.g., CCL5, CCL7, CCL8) to be highly predominant
in the mild disease state (Figure 4A). This observation may suggest a
more efficient immune response to the virus among patients with
mild disease as compared to those with moderate and severe disease,
thus leading in the latter group to decreased recruitment of immune
cells to the site of infection (Lucas et al., 2020).

We identified intra-omics interactions (specifically transcript-
transcript and protein-protein) shared between mild-severe and
mild-moderate disease state pairs. Notable interactions were
among STAT1, interferons (e.g., IFNB1, ISG20) and SOD2.
STAT1 is involved in regulating T-cell activation and

differentiation responses, thus regulating the pathogenesis of
COVID-19. Therefore, associations between STAT1 and T-cell
receptors (e.g., CD38, CD40, CD48, CD68) in the mild-severe
disease state, may suggest a more efficient role in the immune
response to viral infections during mild disease state and higher
STAT1 activation in severe disease state contributing to the cytokine
storm and hyperinflammation that are characteristic of severe
COVID-19 (Hadjadj et al., 2020). Further, interactions between
STAT1 and interferons highlight the critical role of STAT1 in the
regulation of interferon-stimulated genes, because interferons are
key cytokines in the immune response to viral infections. Also,
interactions between interferons and other genes (e.g., TNFRSF25,
TLR3, MAPK1) involved in interferon-mediated pathways, highlight
the likelihood of innate and adaptive immune stimulatory effects.

TABLE 3 Key hubs identified in the disease-state specific omics-graphs upon using seeds from the hypothesis-driven approach.

Disease state Omics layer Feature Proximity to seeds score

Mild Transcriptomics C-C Motif Chemokine Ligand 4 (CCL4) 0.00659

C-C Motif Chemokine Ligand 2 (CCL2) 0.005629

Proteomics Interleukin-7 Receptor (IL7R) 0.00368

Metabolomics tricosanoyl sphingomyelin (d18:1/23:0)* 0.0

suberate (C8-DC) 0.0

stearoylcholine* 0.0

Lipidomics Unknown_mz_765.5752_-_RT_20.235 0.0

Unknown_mz_765.3349_-_RT_6.822 0.0

Unknown_mz_765.3349_+_RT_6.842 0.0

Moderate Transcriptomics Nuclear Factor Kappa B Subunit 1 (NFKB1) 0.00545

Interleukin 10 (IL10) 0.00539

Proteomics Interleukin-7 Receptor (IL7R) 0.00339

Metabolomics sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0)* 0.0

sulfate of piperine metabolite C16H19NO3 (2)* 0.0

suberoylcarnitine (C8-DC) 0.0

suberate (C8-DC) 0.0

Lipidomics Unknown_mz_768.54962_-_RT_23.304 0.0

Unknown_mz_763.31421_+_RT_5.276 0.0

Severe Transcriptomics C-C Motif Chemokine Ligand 4 (CCL4) 0.00612

C-X-C Motif Chemokine Ligand 1 (CXCL1) 0.00549

Proteomics Interleukin-7 Receptor (IL7R) 0.00358

Metabolomics sphingomyelin (d18:2/21:0, d16:2/23:0)* 0.0

tartronate (hydroxymalonate) 0.0

sulfate of piperine metabolite C18H21NO3 (1)* 0.0

Lipidomics Unknown_mz_765.60468_+_RT_16.383 0.0

Unknown_mz_766.75885_+_RT_1.234 0.0

Unknown_mz_766.69232_+_RT_28.305 0.0

Compounds for which a matching pure standard was not available for confirmation are denoted by adding an asterisk (*) symbol after the name of the metabolite.

Features with 0.0 proximity score are part of subnetworks that have no direct edge with the seed nodes.
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A distinctive factor for severe-moderate compared to mild-
moderate and mild-severe disease state pairs was the cross-layer
interactions between protein-metabolite and protein-transcript.
Particularly, Hepatocyte Growth Factor (HGF) and Matrix
Metallopeptidase 12 (MMP12) interactions with metabolites (e.g., 6-
bromotryptophan, cortolone glucuronide, 1-palmityl-2-linoleoyl-GPC,
1-(1-enyl-stearoyl)-2-linoleoyl-GPC, sphingomyelin) and proteins
implicated in various cellular processes were highly predominant in
the moderate disease state (Figure 4B). On the other hand,HGF cross-
layer interaction in the severe disease state was predominant and not
MMP12 (Figure 4C) as observed in the moderate disease state.

HGF plays a critical role in tissue repair and regeneration,
particularly in the liver and lungs, and has been found to have
potential therapeutic effects in COVID-19 due to its ability to
reduce lung injury and improve pulmonary function. Studies have
shown that COVID-19 patients with severe respiratory symptoms
have significantly lower levels of HGF in their blood and that
treatment with HGF can reduce lung inflammation and prevent

the progression of COVID-19-related lung injury (Xiao et al.,
2020). HGF has also been shown to have antiviral effects against
the SARS-CoV-2 virus in vitro, suggesting that it may help to inhibit
viral replication in infected cells (Quartuccio et al., 2021; Wang et al.,
2021). Thus, the observed interactions may suggest a protective role
for HGF in ameliorating the progression of COVID-19, as well as a
target for drug research (Quartuccio et al., 2021; Wang et al., 2021).

Evidence suggests that both HGF and MMP12 levels are
significantly elevated in the lungs of patients with severe disease
(Perreau et al., 2021; Salomão et al., 2023). Particularly, elevated
MMP12 levels play a role in controlling disease pathogenesis and
lung injury, acknowledging that excessively elevated levels can
disrupt the balance of the extracellular matrix, resulting in tissue
damage (Salomão et al., 2023).

Therefore, the observed cross-layer interactions for HGF and
MMP12 in moderate and severe diseases suggest that cross-layer
interactions influence clinical heterogeneity, thus influencing the
dynamics of disease severity.

FIGURE 4
(A)Graph representation of subnetworks formed by hubs CCL4, F11, and IRF1, that establish direct interaction with seed nodes (STAT1 and SOD2) as
observed in themulti-layered graph generated for themild disease state. The graph highlights the interaction of these hubs with othermolecular features
including proteins (yellow nodes) and transcripts (grey nodes) (B) Graph representation of subnetworks formed by hubs HGF, IRF1, and MMP12, that
establish direct interaction with seed nodes (STAT1 and SOD2) as observed in themulti-layered graph generated for themoderate disease state. The
graph highlights the interaction of these hubs with other molecular features including proteins (yellow nodes), transcripts (grey nodes), and metabolites
(red nodes). (C)Graph representation of subnetworks formed by hubsHGF, and IRF1 that establish direct interactionwith seed nodes (STAT1 and SOD2) as
observed in the multi-layered graph generated for the severe disease state. The graph highlights the interaction of these hubs with other molecular
features including proteins (yellow nodes), transcripts (grey nodes), and metabolites (red nodes). The grey edges represent transcript-transcript
interactions, the yellow edges represent protein-protein interactions, the cyan edges represent metabolite-metabolite interactions, the green edges
represent protein-transcript interactions and the blue edges represent both protein-metabolite and transcript-metabolite interactions. Compounds for
which a matching pure standard was not available for confirmation are denoted by adding an asterisk (*) symbol after the name of the compound.
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Evaluating multi-layered graphs generated using
hypothesis-driven seeds

In this section, we evaluated the feature interactions
(Supplementary File S2) in the multi-layered graphs (accessible at

http://cytoscape.h3africa.org) generated from hypothesis-driven
seeds (Table 1).

To begin with, we evaluated the topology of the generated multi-
layered graphs. Analysis of the generated multi-layered graphs

FIGURE 5
(A) Graph representation of subnetworks formed by hubs CCL2, CCL4, and IL7R, that establish direct interaction with seed nodes (IL6 and IL6R) as
observed in themulti-layered graph generated for themild disease state. The graph highlights the interaction of these hubs with othermolecular features
including proteins (yellow nodes), transcripts (grey nodes), and metabolites (red nodes). (B) Graph representation of subnetworks formed by hubs IL10,
IL7R, and NFKB1, that establish direct interaction with seed nodes (IL6 and IL6R) as observed in the multi-layered graph generated for the moderate
disease state. The graph highlights the interaction of these hubs with other molecular features including proteins (yellow nodes), transcripts (grey nodes),
and metabolites (red nodes). (C) Graph representation of subnetwork formed by suberoylcarnitine metabolite and the cross-layer interaction with seed
nodes (IL6 and IL6R), NFKB1, IL7R, and IL10 hubs. (D) Graph representation of subnetworks formed by hubs IL7R, CCL4, and CXCL1, that establish direct
interaction with seed nodes (IL6 and IL6R) as observed in the multi-layered graph generated for the severe disease state. The blue edges represent
protein-metabolite and transcript-metabolite interactions, the green edges represent protein-transcript interactions, the grey edges represent
transcript-transcript interactions and, the yellow edges represent protein-protein interaction. (E) Graph representation of subnetwork formed by
sphingomyelin (d18:2/21:0, d16:2/23:0) and the cross-layer interaction with seed nodes, IL6 and IL6R, and hubs IL7R, CCL4, IL6R, and CXCL1 as observed
in the multi-layered graph generated for the severe disease state. The grey edges represent transcript-transcript interactions, the yellow edges represent
protein-protein interactions, the cyan edges representmetabolite-metabolite interactions, the green edges represent protein-transcript interactions and
the blue edges represent both protein-metabolite and transcript-metabolite interactions. Compounds for which a matching pure standard was not
available for confirmation are denoted by adding an asterisk (*) symbol after the name of the compound.
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revealed subnetworks established beyond those formed by the seed
nodes, IL6 and IL6R. Specifically, analysis of the multi-layered graph
generated for the mild disease state revealed additional subnetworks,
beyond those formed by the seed nodes (IL6 and IL6R), involving
hubs CCL2, CCL4, and IL7R (Figure 5A). These hubs establish direct
interactions with the seed nodes and interactions with other
molecular features, including interleukins (e.g., IL13, IL18, IL1A),
and chemokines (e.g., CCL3, CCL7, CXCL10). Notable cross-layer
interactions for the mild disease state were between IL6 and CCL2
with metabolites involved in various metabolic and inflammatory
processes. These include but not limited to, taurine, 1-(1-enyl-
palmitoyl)-2-oleoyl-GPC, 1-(1-enyl-palmitoyl)-GPC, 1-(1-enyl-
palmitoyl)-GPE, 1-(1-enyl-stearoyl)-2-dihomo-linolenoyl-GPE,
proline, 1-(1-enyl-palmitoyl)-GPC, 6-bromotryptophan, 1-
margaroyl-GPC, and 1-myristoyl-GPC. This observation may
further suggest a more efficient immune response to the virus
among patients with mild disease. Specifically, 6-
bromotryptophan is a biomarker indicative of COVID-19
severity, which is a finding concurrently echoed in the study by
(Krishnan et al., 2021). The 6-bromotryptophan possess antiviral
properties that can inhibit viral replication. Moreover, such
brominated compounds are understood to exert influence on the
immune system, particularly by modulating the kynurenine
pathway of tryptophan metabolism, which is involved in
regulating immune responses (Krishnan et al., 2021; Cihan et al.,
2022; Takeshita and Yamamoto, 2022).

Our analysis of the multi-layered graph generated for the
moderate disease state revealed new subnetworks formed by
hubs IL10, IL7R, and Nuclear Factor Kappa B Subunit 1
(NFKB1). These hubs directly interact with the seed nodes (IL6
and IL6R), but also with chemokines (e.g., CCL4, CXCL5, CXCL8)
and other biosignatures such as HLA-C, TNF, IFNG, and IFNAR2,
indicating a more complex interplay of immune cell recruitment
and activation (Figure 5B). We also observed cross-layer
interactions between IL10 and IL6, and their connections to
specific metabolites. Particularly, the cross-layer interactions
involving IL10 indicate a potential link between the immune
and metabolic responses in moderate disease, suggesting a
potential shift in the immune response dynamics in moderate
cases as compared to mild cases. These metabolites including
phosphatidylethanolamine, taurine, serotonin, and various
GPC/GPE molecules such as 1-(1-enyl-palmitoyl)-2-oleoyl-GPC
(P-16:0/18:1)*, 1-(1-enyl-palmitoyl)-GPC (P-16:0)*, 1-(1-enyl-
palmitoyl)-GPE (P-16:0)*, 1-(1-enyl-stearoyl)-2-dihomo-
linolenoyl-GPE (P-18:0/20:3)*, and 1-(1-enyl-stearoyl)-GPE (P-
18:0)*, play crucial roles in both metabolic and inflammatory
processes. Also, the NFKB1 and IL7R subnetwork primarily
interact with other proteins and transcripts. This suggests a
focus on regulating gene expression and protein function,
possibly contributing to the more severe inflammatory response
associated with moderate disease. Compared to the multi-layered
graph generated for the mild disease state, analysis of the multi-
layered graph generated for the moderate disease state revealed a
subnetwork formed by suberoylcarnitine (C8-DC) metabolite that
established indirect cross-layer associations with the seed nodes
and other hubs. Specifically, the suberoylcarnitine (C8-DC), plays
a central role, influencing hubs like IL6R, NFKB1, IL7R, and IL10
indirectly through its connection with IL6 via a glutamine

conjugate acting as a mediator (Figure 5C). This cross-layer
pattern suggests a more nuanced control of immune and
inflammatory processes compared to the mild disease state.

Analysis of the severe disease state multi-layered graph
revealed subnetworks centered on IL7R, CCL4, and CXCL1
(Figure 5D). These subnetworks exhibit significant cross-layer
interactions with both protein-coding transcripts and
metabolites, suggesting a complex interplay between gene
expression and metabolic processes in this critical disease
state. Similar to the cross-layer pattern observed in the
moderate disease state, the severe disease network showcases
another example of indirect cross-layer interaction via
metabolites. Here, sphingomyelin (d18:2/21:0, d16:2/23:0)
takes centre stage, influencing IL6 and subsequently impacting
IL7R, CCL4, IL6R, and CXCL1 (Figure 5E). This further
emphasizes the shift towards more nuanced, metabolite-driven
cross-layer interactions in the severe disease state, potentially
indicating immune-metabolic dysregulation in moderate and
severe disease states.

Research suggests a correlation between IL6 levels and altered
metabolite levels including amino acids, fatty acids, and lipids
among severe COVID-19 patients (Shen et al., 2020; Thomas et al.,
2020). Similarly, IL10 levels show various correlations with altered
metabolite levels in infected COVID-19 patients (Shen et al., 2020).
For instance, the study found that in COVID-19 patients, IL10
levels were positively correlated with metabolites involved in
glycolysis and the pentose phosphate pathway, such as glucose,
fructose, and ribose-5-phosphate. The study also found a negative
correlation between IL10 levels and metabolites involved in the
tricarboxylic acid cycle (TCA cycle) and oxidative
phosphorylation, such as citrate, succinate, and ATP. These
findings suggest that IL10 may be associated with a shift in
cellular metabolism towards glycolysis and away from oxidative
phosphorylation in COVID-19 patients (Shen et al., 2020). The
overall results highlight not only the influence of IL6 in COVID-19
but also suggest that cross-layer interactions involving IL6
influence clinical heterogeneity, thus influencing the dynamics
of disease severity.

Furthermore, we evaluated the pairwise interactions and
identified 807 interactions associated with one disease state of
which approximately 37%, 37%, 2%, 15%, and 9% are transcript-
transcript, lipid-lipid, protein-protein, metabolite-metabolite, and
protein-metabolite interactions respectively (Supplementary File
S2). Also, of these interactions, approximately 20%, 40%, and
40% are associated with mild, moderate, and severe disease
states, respectively. Additionally, the analysis of interactions
involved with only two disease states revealed 335 interactions,
out of which approximately 6%, 85%, 7%, and 2% are protein-
protein, transcript-transcript, lipid-lipid, and metabolite-metabolite
interactions, respectively (Supplementary File S2). Of these
interactions, approximately 16%, 10%, and 74% are involved with
moderate-severe, mild-moderate, and mild-severe disease states,
respectively.

Finally, we identified 894 interactions common across the
three disease states, of which approximately 66%, 3%, 14%, and
17% are transcript-transcript, protein-protein, protein-
transcript, and protein-metabolite interactions respectively
(Supplementary File S2).
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Characterizing multi-layered graphs
The observation that cross-layer interactions appear to be a

distinctive factor for moderate and severe disease states using both
data- and hypothesis-driven methods necessitated the determination of
network statistics to further characterize the multi-layered graphs.

According to network density, network heterogeneity, and
characteristic path length statistical metrics, graphs with high
characteristic route length values have high network
heterogeneity and comparatively low network density
(Supplementary Data). The network statistical analysis (Table 4)
further supported the idea that cross-layer interactions could be a
factor underlying heterogeneity in disease severity among patients.

Identifying disease states biosignature

Biosignatures discriminating between disease
states based on data-driven seeds

The results of the multi-layer analysis (Supplementary File S2)
formed the basis for identifying features that discriminate between
disease states. Specifically, we explored the pairwise relations
associated with one disease state (Supplementary File S2), as
determined using the data-driven approach, and identified
173 discriminatory features (Table 5). Of note, the features
identified are likely involved in all disease and non-disease
phases because they form part of the biological system. However,
identifying these features to discriminate between disease states in
our analysis may suggest that they are differentially associated
(either up or downregulated) in specific disease states.

Of the 158 discriminatory features that were differentially
associated with the mild disease state, approximately 78%, 6%, and
16% were transcripts, proteins, and (uncharacterized) lipids
respectively. We identified chemokines (e.g., CXCL10, CXCL12,
CXCL5, CXCL8, CCL3, CCL8), T-cell receptors (e.g., CD38, CD40,
CD48, CD68),HLAs (e.g.,HLA-DPA1, HLA-DPB1, HLA-DRA, HLA-E,
HLA-F), interferons (e.g., IFIT1, IFIT3, IFITM2), and Toll-like receptors
(e.g., TLR2, TLR4, TLR9) to discriminate the mild disease states. These
features are involved in immune responses and play a part in viral entry
into host T-cells (Del Valle et al., 2020; Lucas et al., 2020; Zayet et al.,
2020; Shirato and Kizaki, 2021). For instance, TLR2 activation increased
the expression of ACE2, the receptor that SARS-CoV-2 uses to enter
cells, suggesting that TLR2 may play a role in viral entry into host
T-cells. IFIT1 has been shown to have antiviral activity against SARS-
CoV-2, and may thus be an important component of the body’s
immune response against the virus (Lucas et al., 2020). An elevated
level of CCL18 is associated with inflammation in the lungs of COVID-
19 patients through the recruitment and activation of immune cells,
including T-cells and dendritic cells in the lungs (Liao et al., 2020).
Importantly, biosignatures including but not limited to HLA class I
alleles, and CXCL12, have been validated through sequencing and
cohort screening techniques to play a relevant role in immune
defense against SARS-CoV-2 (Weiner et al., 2021; Martínez-Fleta
et al., 2022).

Only 9 and 6 transcripts were associated with moderate and
severe disease states respectively: no other omics features were
identified to be associated with either of these disease states.
There were also no metabolites that were differentially associated
with any one of the disease states. This indicated that transcriptsT
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TABLE 5 Identified biosignatures that discriminate disease states based on random walk with restart analysis using data-driven seeds.

Feature Feature
type

Disease
state

Feature Feature
type

Disease
state

Feature Feature
type

Disease
state

Feature Feature
type

Disease
state

IRF8 transcript Severe CD83 transcript Mild IL1B transcript Mild CCL18 transcript Mild

KDR transcript Severe CD8A transcript Mild IL1RN transcript Mild CCL2 protein Mild

MMP9 transcript Severe CDH5 transcript Mild IL5 transcript Mild CCL20 transcript Mild

PRTN3 transcript Severe CPB2 protein Mild RELA transcript Mild CCL3 transcript Mild

PTGES transcript Severe CREM transcript Mild IL7R transcript Mild CCL5 transcript Mild

YWHAE transcript Severe CTSB transcript Mild IRF9 transcript Mild CCL7 protein Mild

CD34 transcript Moderate CTSC transcript Mild JAK2 transcript Mild CCR1 transcript Mild

ENPEP transcript Moderate CTSL transcript Mild JUN transcript Mild CD14 transcript Mild

MAPK8 transcript Moderate CXCL1 transcript Mild JUNB transcript Mild CD163 transcript Mild

NKRF transcript Moderate CXCL10 transcript Mild KRT10 transcript Mild SERPINA4 protein Mild

NLRP1 transcript Moderate CXCL11 protein Mild LCK transcript Mild SERPING1 protein Mild

PDGFB transcript Moderate CXCL2 transcript Mild LGALS3 transcript Mild SH2D3C transcript Mild

SHC1 transcript Moderate CXCL8 transcript Mild TLR2 transcript Mild SIK1 transcript Mild

SLC14A1 transcript Moderate CXCL9 transcript Mild TLR4 transcript Mild SLC3A2 transcript Mild

YARS1 transcript Moderate CXCR2 transcript Mild TLR9 transcript Mild SCD transcript Mild

ABCB1 transcript Mild CXCR4 transcript Mild TNF transcript Mild CYTIP transcript Mild

ADORA2A transcript Mild CXCR6 transcript Mild TNFAIP3 transcript Mild DES transcript Mild

ADSL transcript Mild CYBB transcript Mild TNFSF10 transcript Mild DUSP5 transcript Mild

AFM protein Mild HNF4A transcript Mild TPI1 protein Mild ENTPD1 transcript Mild

APOE transcript Mild HP transcript Mild UBE2L6 transcript Mild EPCAM transcript Mild

ARNTL transcript Mild HSD17B6 transcript Mild TGFB1 transcript Mild F3 transcript Mild

ARRB2 transcript Mild HSPA5 transcript Mild STAT3 transcript Mild FCER1G transcript Mild

ASGR2 transcript Mild ICAM1 transcript Mild TAP1 transcript Mild FCGR3A transcript Mild

B2M transcript Mild IFIT1 transcript Mild SERPINA1 transcript Mild FCGR3B transcript Mild

CD2 transcript Mild IFIT3 transcript Mild BAAT transcript Mild FLNB transcript Mild

CD3D transcript Mild IFITM2 transcript Mild BCL6 transcript Mild GPR183 transcript Mild

(Continued on following page)
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TABLE 5 (Continued) Identified biosignatures that discriminate disease states based on random walk with restart analysis using data-driven seeds.

Feature Feature
type

Disease
state

Feature Feature
type

Disease
state

Feature Feature
type

Disease
state

Feature Feature
type

Disease
state

CD4 transcript Mild IFNG transcript Mild BDNF transcript Mild GZMA transcript Mild

CD53 transcript Mild IGF1R transcript Mild BIRC3 transcript Mild GZMB transcript Mild

CD69 transcript Mild IL10RA transcript Mild BTK transcript Mild HLA-DPA1 transcript Mild

CD74 transcript Mild IL1A transcript Mild CA1 protein Mild HLA-DPB1 transcript Mild

HLA-DRA transcript Mild MS4A1 transcript Mild Unknown_mz_882.75427_+_RT_27.81 lipid Mild Unknown_mz_786.66003_+_RT_26.317 lipid Mild

HLA-E transcript Mild MT2A transcript Mild Unknown_mz_921.69031_+_RT_29.122 lipid Mild Unknown_mz_786.66064_+_RT_27.722 lipid Mild

HLA-F transcript Mild MYD88 transcript Mild Unknown_mz_579.40155_+_RT_20.352 lipid Mild Unknown_mz_795.45471_+_RT_25.542 lipid Mild

S100A12 transcript Mild NFKB1 transcript Mild Unknown_mz_600.52008_+_RT_23.106 lipid Mild Unknown_mz_806.62952_+_RT_25.891 lipid Mild

S100A8 transcript Mild NFKBIA transcript Mild Unknown_mz_650.53461_+_RT_24.007 lipid Mild Unknown_mz_810.66071_+_RT_27.059 lipid Mild

S100A9 transcript Mild NLRP3 transcript Mild Unknown_mz_652.55096_+_RT_24.633 lipid Mild Unknown_mz_812.67621_+_RT_27.815 lipid Mild

LY6E transcript Mild OASL transcript Mild Unknown_mz_702.56604_+_RT_23.89 lipid Mild Unknown_mz_817.63153_+_RT_27.802 lipid Mild

LYZ transcript Mild PDCD1 transcript Mild Unknown_mz_702.56689_+_RT_24.783 lipid Mild Unknown_mz_830.72375_+_RT_26.958 lipid Mild

MAPK14 transcript Mild PF4 transcript Mild Unknown_mz_728.58246_+_RT_25.181 lipid Mild Unknown_mz_832.6452_+_RT_26.266 lipid Mild

MAPK3 transcript Mild PLAU transcript Mild Unknown_mz_736.64563_+_RT_24.633 lipid Mild Unknown_mz_836.67639_+_RT_27.461 lipid Mild

MB transcript Mild PRF1 transcript Mild Unknown_mz_750.66119_+_RT_25.544 lipid Mild Unknown_mz_838.69214_+_RT_27.059 lipid Mild

MEFV transcript Mild PTPN6 transcript Mild Unknown_mz_756.61407_+_RT_25.816 lipid Mild Unknown_mz_838.69214_+_RT_28.195 lipid Mild

MRC1 transcript Mild RAF1 transcript Mild Unknown_mz_782.62958_+_RT_26.163 lipid Mild Unknown_mz_858.6604_+_RT_26.657 lipid Mild
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strongly differentiate the mild disease state from the moderate and
severe disease states.

Biosignatures discriminating between disease
states based on hypothesis-driven seeds

We explored the pairwise relations associated with one disease state
(Supplementary File S2) based on analysis using seeds that were selected
to test specific hypotheses. The results (Supplementary Table S3)
revealed more biosignatures to be differentially associated with
moderate and severe disease states than in the mild disease state.
Additionally, unlike with the data-driven seed analysis, we observed
more proteins andmetabolites that discriminated between the moderate
disease state than the others. Compounds for which a matching pure
standard was not available for confirmation are denoted by adding an
asterisk (*) symbol after the name of the compound.

We identified chemokines (CXCL2, CXCL3, CXCR1, CXCR2,
CXCR3, CXCR6), cytokines (e.g., TNF, TNFRSF1A, TNFSF10), and
other transcripts and proteins (e.g., ATP6AP2) that promotes the
cytokine storm to discriminate the severe disease state from the
other states. Concordantly, several studies have reported elevated
levels of these features in COVID-19 patients, particularly those with
severe disease (Coperchini et al., 2020; Li et al., 2020; Robinson et al.,
2020). Also, some of the biosignatures including but not limited to
TNF, IL10, have been verified using multiplex biosensor techniques
to be associated with COVID-19, and as such these biosignatures
could serve as markers to monitor the disease development (Del
Valle et al., 2020; Madhurantakam et al., 2023).

The results further revealed lysophosphatidylcholine (LysoPC),
diacylglycerol (DG), and triglycerides (TG) to discriminate severe
disease states. Several studies have suggested the possible differential
association of these lipids with COVID-19 pathogenesis and disease
severity (Dai et al., 2021; Hammoudeh et al., 2021; Sheshan et al.,
2021; Theken et al., 2021).

We identified metabolites such as kynurenate (Lawler et al.,
2021), which have been reported to play a role in the cytokine storm
and immune response, to discriminate the moderate disease state
from the other states.

Comparing the biosignatures discriminating disease states further
supports the idea that transcripts, metabolites, lipids, and proteins
collectively influence disease progression beyond the mild state. In
addition, we identified features (e.g., SLC14A1, Adipoylcarnitine) for
which no direct roles in influencing disease severity have previously
been reported: further researchmay provide important insights into their
roles inCOVID-19 pathogenesis andwhether theymight be useful targets
for therapeutic intervention. Overall, these findings suggest that the
discriminatory features play a significant role in the immune response
to COVID-19 and that targeting them and/or their associated signalling
pathwaysmay be a potential therapeutic approach (Robinson et al., 2020).

Enrichment analysis reveals enriched
processes and pathways

Enrichment analysis of biosignatures that
discriminate disease states based on data-
driven seeds

From the discriminating features identified using the data-
driven approach, we performed enrichment analysis (see

Materials and Methods) based on the disease states they are
differentially associated with (Supplementary File S3). The
biological processes associated with proteins that discriminate the
mild disease state are given in Supplementary File S3 Table S1. With
a focus on the top 25 enriched biological processes and pathways,
proteins were involved with chemotaxis (neutrophil, granulocyte,
eosinophil, monocyte), regulating cytokine responses, and cell
migration. These findings align with evidence of the role of
chemotaxis in the initial response of detecting and destroying
infected cells by following a chemical gradient of cytokines,
chemokines, and other signalling molecules that are released by
these cells (Veras et al., 2020). Further, the proteins were enriched in
chemokine-mediated and interleukin-mediated pathways
(Supplementary File S3 Table S2). For instance, regulation of the
complement cascade pathway is important for controlling the
immune response and preventing tissue damage. Several
regulators of the complement system, including complement
factor H, complement factor I, and CD59, are downregulated by
SARS-CoV-2, which may contribute to complement dysregulation
during infection (Carvelli et al., 2020; Risitano et al., 2020).

Transcripts discriminating the moderate disease state were
enriched in those involved in cellular responses to organic
substances and the mitogen-activated protein kinase (MAPK)
cascade (Supplementary File S3 Table S5) but were especially
enriched in transcripts involved in receptor-mediated signalling
pathways (Supplementary File S3 Table S6). The MAPK
pathways play a crucial role in regulating a variety of cellular
responses, including cell proliferation, differentiation apoptosis,
and immune response to COVID-19 (Bouhaddou et al., 2020).

The severe disease state discriminating transcripts were enriched in
those involved in regulating ion transmembrane transporter activity,
cell differentiation (dendritic, myeloid leukocyte), apoptotic processes,
and mitochondrion organization (Supplementary File S3 Table S7) and
enriched in signalling-related and regulatory-related pathways
(Supplementary File S3 Table S8). The identified processes further
align with the role of cell differentiation in COVID-19. For instance,
dendritic cells act as sentinels to detect and respond to viral infections.
They play a critical role in presenting viral antigens to T-cells, which, in
turn, activate the immune response. During SARS-CoV-2 infections,
dendritic cells can become infected which can lead to impaired antigen
presentation and reduced activation of T-cells (Law et al., 2005). Also,
myeloid leukocytes, including monocytes and macrophages, are
important in the early immune responses to COVID-19. These cells
can phagocytose viral particles and present viral antigens to T-cells,
activating the immune response (Merad and Martin, 2020). However,
during severe infections, excessive activation of myeloid cells can lead to
a cytokine storm (Zhou et al., 2020), a dangerous immune response that
can cause severe tissue damage and organ failure.

In addition to transcripts, some lipids discriminated against the
different disease states. We were, however, unable to perform
enrichment analysis on these because all of the discriminating
lipids are presently uncharacterized.

Enrichment analysis of biosignatures that
discriminate disease states based on hypothesis-
driven seeds

We repeated the enrichment analysis but with discriminatory
features identified using hypothesis-driven seed selections (IL6 and
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IL6R) (Supplementary File S4 Tables S1–S17). The proteins and
transcripts discriminating the mild, moderate, and severe disease
states, for example, IL13, CCL2, IL1A, SYK, IFNG, IL16, HMGB1,
and TLR3 are involved in cytokine-, regulatory-mediated and
apoptotic biological processes (Supplementary File S4 Tables S1,
S3, S7, S9, S14, S17) and were also enriched in pathways including
interleukin-mediated signalling, cytokine-mediated signalling, and
cellular responses to stimuli (Supplementary File S4 Tables S2, S4,
S8, S10, S15, S17). The fact that most of the biological processes and
pathways are regulatory-, cytokine-, and cellular response-related
agrees with other studies on disease severity. In the absence of
appropriate regulatory T-cell activity to restrain the immune
response to SARS-CoV-2 infections, the over-production of
cytokines can ensue leading to a counter-productive cytokine
storm (Moore and June 2020; André et al., 2022). Also, apoptotic
biological processes are crucial in preventing severe disease by
facilitating the death of infected cells to contain both the sizes of
infection foci and the immune responses to the infected cells within
these foci (Cizmecioglu et al., 2021; André et al., 2022).

The summary of metabolite pathways (Supplementary File
S4 Table S5) linked to the mild disease states revealed metabolic
processes that may play important roles in the pathophysiology of
COVID-19 (Barberis et al., 2020; Song et al., 2020; Masoodi et al.,
2022). For instance, sphingolipids are important components of cell
membranes and are involved in a variety of cellular processes,
including inflammation and apoptosis and the metabolism of
these lipids has been implicated in the pathogenesis of viral
infections, including COVID-19 (Song et al., 2020; Khan et al.,
2021). Also, the dysregulation of arginine biosynthesis and lysine
degradation may play a role in the pathogenesis of COVID-19 by
modulating the immune response because arginine and lysine are
essential amino acids that are involved in many biological processes
including immune function and protein synthesis (Masoodi et al.,
2022). We identified Sphingolipid metabolism processes to be
common across all disease states. It has been suggested that the
virus hijacks sphingolipid metabolism and dysregulates the
metabolism activities to promote its replication and to evade the
host immune response, aligning with the involvement of these
processes in the pathogenesis of severe disease patients
(Supplementary File S4 Tables S5, S6, S12) (Khan et al., 2021).
We also identified other pathways linked with metabolic pathways
discriminating moderate and severe disease states including, but not
limited to, phenylalanine, tyrosine, and tryptophan biosynthesis
pathways, and the pentose phosphate pathway.

Given the inability to perform enrichment analysis for
uncharacterized lipids discriminating mild disease states, the
summary of lipid pathways (Supplementary File S4 Tables S11,
S13) linked with moderate and severe disease states revealed
processes that may play important roles in the pathophysiology
of COVID-19. Autophagy is involved in several other biological
processes, including antigen presentation, cell death, and immune
regulation to maintain or restore homeostasis. Dysregulation of
these processes has been implicated in the pathogenesis of various
diseases including COVID-19 and has even been presented as a
target for therapeutics (García-Pérez et al., 2020; Yang and Shen,
2020). Arachidonic acid metabolism is the pathway responsible for
the production of various bioactive lipids, including prostaglandins,
leukotrienes, and thromboxanes. Dysregulation of arachidonic acid

metabolism has been implicated in the pathogenesis of numerous
diseases and syndromes, including inflammation, cancer, and
cardiovascular disease (Masoodi et al., 2022).

Lipids are central components of cell membranes, such that
dysregulation of pathways such as glycosylphosphatidylinositol
(GPI) anchor biosynthesis and glycerophospholipid metabolism
occurred in all disease states (Supplementary File S4 Tables S11,
S13). For instance, Glycosylphosphatidylinositol (GPI)-anchor
biosynthesis—GPI-anchor biosynthesis is the process by which
GPI-anchored proteins are synthesized and inserted into the
plasma membrane. GPI-anchored proteins play critical roles in
cell signalling, immune function, and development.
Glycerophospholipid metabolism is the metabolic pathway
responsible for the synthesis and degradation of
glycerophospholipids, which are also essential components of cell
membranes. Abnormalities in glycerophospholipid metabolism
have been previously implicated in the pathogenesis of several
diseases including COVID-19 (Li et al., 2022; Oliveira et al., 2022).

Comparing results from data-driven and
hypothesis-driven approach

Although the methodologies differed, the findings from both
data-driven and hypothesis-driven approaches have contributed to
our understanding of COVID-19 disease progression. The data-
driven approach was useful for uncovering unexpected findings and
trends, particularly concerning STAT1 and SOD2 influence on
disease progression thereby sparking new hypotheses and
insights. However, the random walk analysis using both the data-
driven and hypothesis-driven approaches yielded distinct multi-
layered graphs (Figures 4, 5) characterized by different hubs and
interactions, highlighting the unique perspectives offered by each
method. With these differences, a consistent finding emerged from
both approaches: cross-layer interactions between omics features
play a role in disease state. Notably, both approaches revealed
transcripts, especially cytokines and inflammatory biosignatures
as key contributors to distinguishing disease states in both
approaches. Also, both approaches revealed some overlapping
biosignatures (as shown in Table 5; Supplementary Table S3).

Validating the integrative network-based multi-
omics-driven data approach and replicating results
from independent data

Random walk network analysis was performed on disease-state
specific omics-graphs and specifically investigated the behaviour of a
new multi-layer graph generated from different datasets from the
perspective of network statistical parameters (Supplementary Data).
As part of the analysis, published metabolomics, transcriptomics,
and proteomics features reported to be associated with the various
COVID-19 disease states were retrieved. Specifically,
transcriptomics features specific to mild, moderate, and severe
disease states were retrieved from (Alqutami et al., 2021).
Proteomics features specific to the moderate disease state were
retrieved from (Zhong et al., 2021). Features specific to the mild
and severe disease states were retrieved from (Patel et al., 2021), and
(Suhre et al., 2022). We generated protein-protein interaction
networks using GeneMANIA. Metabolites differentially associated
with mild, moderate, and severe COVID-19 disease states were
retrieved from (Jia et al., 2022). For each disease state, by using the

Frontiers in Molecular Biosciences frontiersin.org18

Agamah et al. 10.3389/fmolb.2024.1393240

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1393240


metabolite KEGG IDs as inputs we constructed a metabolite-
metabolite interactome using MetaboAnalyst 5.0 (Pang et al.,
2021), which is a knowledge-driven multi-omics integration
platform (https://www.metaboanalyst.ca/). We further constructed
the metabolite-protein interactome for each disease state from
MetaboAnalyst 5.0 by using the metabolite KEGG IDs and gene
IDs of the features that were differentially associated with the
different disease states. We also included the lipid interactome
generated from (Overmyer et al., 2020), datasets. We repeated
the random walk analysis using the data-driven and hypothesis-
driven seeds; except that, since hydroxyoctanoate was not a feature
in the generated networks, it was excluded from the data-driven
seeds. We also performed a statistical network analysis of the multi-
layered graphs generated. We observed that network heterogeneity
and characteristic path length metrics correlated with disease
severity (Table 4). Following the analyses that we previously
performed on our multi-layered graphs, we observed that
network density decreased with disease severity. The statistical
analysis also supported the observation during our multi-layered
network analyses that crosstalk between features across multiple
omics layers (layers containing different feature types) relates to
disease severity and could be a distinctive factor underlying the
heterogeneity in disease severity among patients.

Discussion

Different single omics (Fraser et al., 2020; Alqutami et al., 2021;
Daamen et al., 2021; Jain et al., 2021; Patel et al., 2021; Zhong et al.,
2021; Ciccarelli et al., 2022; Jia et al., 2022; Páez-Franco et al., 2022;
Roberts et al., 2022; Suhre et al., 2022) and multi-omics (Barh et al.,
2020; Bernardes et al., 2020; Overmyer et al., 2020; Su et al., 2020;
Stephenson et al., 2021; Sun et al., 2021; Suvarna et al., 2021;
Chattopadhyay et al., 2022; Gygi et al., 2023) studies have been
conducted to provide insights into the aetiology of COVID-19
disease severity. However, computational network-based
integrative analysis that considers different omics profiles from
multiple studies with existing biological knowledgebases to
explore proteomics, transcriptomics, metabolomics, and
lipidomics biosignatures and their connections across different
disease phases, to help explain clinical heterogeneity is limited.

Here we have hypothesized that i) investigating biosignatures
across COVID-19 disease phases would provide insights into the
observed clinical heterogeneity and facilitate an understanding of
factors associated with disease severity, and ii) associations between
the biosignatures within a biological network would permit the
prioritization of those biosignatures that discriminate the disease
states, which may, in turn, provide insights into drug research. An
integrative multi-omics network analysis was performed by using
proteomics, transcriptomics, metabolomics, and lipidomics data
from (Overmyer et al., 2020), and (Su et al., 2020). We
demonstrate an approach for harmonizing the clinical severity of
COVID-19 patients from independent studies leveraging the WOS
and patient clinical metadata. In addition, through our workflow,
both data-driven and hypothesis-driven approaches were leveraged
in an interoperable way at different biological scales, providing an
impact on our understanding of the disease phases. We believe that
this approach forms the basis of classifying COVID-19 patients from

independent multi-omics studies and allows for the grouping of
omics experimental data into disease states to perform
computational network-based integrative multi-source multi-
omics analysis.

From the random walk network analysis on the disease-state
specific omics-graphs, we noticed some unique patterns in the cross-
layer interactions for mild, moderate, and severe disease states from
both the hypothesis- and data-driven approaches. Specifically,
random walk analysis using the hypothesis-driven seeds resulted
in networks with both a greater variety of features (particularly
metabolites and lipids) and more interactions between different
feature types, than was achieved in networks generated using data-
driven seeds. This observationmight be partly attributable to the fact
that IL6 and IL6R (the two hypothesis-driven seeds that were used)
have a profound role during the anti-inflammatory response to
COVID-19. Compared to interactions established by IL6R as a seed,
we observed that IL6 as a seed established a network with more
interactions between proteins, transcripts, and metabolites related to
cell function and immune responses (accessible at http://cytoscape.
h3africa.org). Whereas, IL6R as a seed yielded a network that
primarily captured protein and transcript interactions. Notable
among the metabolites interacting with IL6 is taurine, an amino
sulfonic acid involved in the regulation of oxidative stress, which is
known to play an important role in COVID-19. Taurine levels have
been reported to decrease in COVID-19 patients which potentially
modulates disease progression via its antiviral, antioxidant, anti-
inflammatory, and vascular-related effects (van Eijk et al., 2022).
Other metabolites interacting with IL6 included serotonin, a
neurotransmitter, known to play important roles in the immune
system and in regulating inflammatory responses (Eteraf-Oskouei
and Najafi, 2022).

Similarly, cross-layer patterns were observed from the random
walk analysis using the data-driven approach among HGF, STAT1,
and SOD2 (Figure 4). From the data-driven seeds (Table 1), STAT1
established connections with hubs IRF1, and CCL4 in mild, and hub
IRF1 in both moderate and severe disease states (Figure 4). SOD2
connects with hub IRF1 in the mild, moderate, and severe disease
state networks (Figure 4). Also, 3-hydroxyoctanoate interacts with
3-hydroxyexanoate and 3-hydroxydecanoate in all disease states.
The randomwalk analysis provided not only an insight into network
connectivity but also the results from the network statistical analysis
(Table 4) were consistent and overlapped. Of note, the outcome
from the random walk is based on the choice of seeds (Table 1) used
for the randomwalk analysis. The analysis generated a multi-layered
graph for each disease state based on the exploration of the seeds
across the disease-state specific omics-graphs.

Despite the heterogeneity of COVID-19 disease outcomes, the
individual mild, moderate, and severe disease states seem to have
characteristic degrees to which transcript, protein, metabolite, and
lipid features associatively interact both with themselves and with
one another. Upon evaluating the multi-layered graphs for the
various disease states, we identified several associative
interactions that were present irrespective of disease state and a
number that seemed to be specific for particular disease states
(Supplementary File S2). These associations should be further
analysed to better understand the causal effects.

In general, we observed that transcript-transcript interactions
were the most commonly detected across all the disease states
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whereas metabolite-metabolite and lipid-lipid interactions were
least commonly detected. This observation could partly be
attributed to the fact that between 4 and 16 times more
individual transcript features are present in the transcriptomics
experimental datasets than are present in the lipidome and
metabolome datasets respectively. However, irrespective of these
differences, we observed that major distinctions among disease
states are a result of cross-layer interactions: with protein-
metabolite interactions being particularly notable. Specifically, we
observed an overall increase in cross-layer interaction with disease
severity using both data-driven and hypothesis-driven seeds for the
network exploration. We tested network statistics to confirm the
network behaviour across disease states in both the original datasets
and the validating datasets and found that cross-layer interactions
within networks could be a distinctive feature of severe COVID-19.

From the evaluation of interactions associated with the disease states,
we identified biosignatures of different omics types that discriminate
specific disease states (Table 5; Supplementary Table S3). These
biosignatures are differentially associated with the disease states
(Overmyer et al., 2020; Su et al., 2020). Further, from the enrichment
analysis of these discriminatory biosignatures (Supplementary Files S3,
S4), we notice cytokine-, regulatory-mediated, and cellular responses to
infection processes were apparent among disease-state discriminating
transcripts and proteins identified from both the data-driven and the
hypothesis-driven approach. This gives us a general overview that,
despite the heterogeneity of COVID-19 disease outcomes, the
biological processes and pathways underlying the disease could be
related, but with varying expression levels of the biosignatures
involved. As expected, we identified the metabolic processes related
to the disease-discriminatory metabolites. However, other metabolite-
related pathways relating to the degradation and/or synthesis of essential
amino acids were noticeable among moderate and severe disease-state-
discriminating metabolites (Supplementary File S4 Tables S5, S6, S12).
Knowing that these essential amino acid processes contribute to protein
synthesis, therefore, suggests that the disturbance of protein synthesis
could contribute to the severity of the disease.

This study did not consider the different treatments received by the
patients reported in (Su et al., 2020), and (Overmyer et al., 2020), as a
study variable during the harmonization and analysis processes. This is
partly attributed to the different treatment options used and the limited
treatment information reported in the study, especially by (Su et al.,
2020), thus making it a difficult study variable to consider. We
prioritized the patients’ disease states by categorizing them based on
the severity of their COVID-19 condition—whether mild, moderate, or
severe. This classification, inclusive of patients with potential co-
infections or commodifies, was maintained throughout the
harmonization process and subsequent downstream analysis.

We acknowledge that both (Su et al., 2020), and (Overmyer et al.,
2020), utilized different approaches in blood sample collection and
processing thereof, which may have impacted the expression levels of
the various multi-omics features. Also, the issue of different methods,
instruments, or scales used to collect data could have contributed to
heterogeneity among the datasets making data merging a non-trivial
task. However, we performed data cleaning, implemented the
normalization statistical method, and performed data
harmonization on the multi-omics experimental datasets (as
described in the methods section) before downstream analysis as a
measure of controlling heterogeneity and facilitate data merging. In

addition, we have combined the co-expression graphs from both
studies, as a way of controlling the impact of the between-study
methodological differences on the multi-omics feature expression
levels as well as any bias introduced during the harmonization
process. We only used lipidomics experimental data from a single
study and it is likely therefore that this part of our analysis was
proportionally underpowered relative to that involving transcripts,
proteins, andmetabolites. Furthermore, most of the lipids used for the
analysis were uncharacterized and we were therefore unable tomap to
lipid names as well as perform enrichment analyses on them. In the
multi-layered networks we created, we also did not discover any
protein-lipid edge types. This may be attributable in part to the
protein-lipid bipartite data and the seed exploration during
random walk analysis as well as limited information on interaction
involving annotated features and unannotated features. Furthermore,
future investigations could consider incorporating not only
characterized (annotated) lipids but also additional data types such
as epigenomics, microbiomics, and immunomics. Moreover, from the
analysis, we observed more transcript-transcript interactions as
compared to other omics features. This observation is at least partly
attributable both to the unevenness in the number of features measured
in the different omics experiments (with the transcriptomics
experiment examining between 5 and 100 times more features than
other types of omics experiments) and the fact that more research
efforts have been focused on transcriptomics analyses than on those of
other omics types. Despite these limitations, our study has some obvious
strengths, especially using the hypothesis-driven approach, we provide
insight into the specific roles of IL6 and IL6R in COVID-19 progression,
providing targeted insights into this crucial pathway. On the other hand,
the data-driven approach revealed connections between biosignatures,
like STAT1 and SOD2, highlighting their previously unknown influence
on disease course and generating exciting new avenues for exploration.
The results presented revealed biosignatures and their interactions
related to disease severity. Having demonstrated that cross-layer
interactions could be a distinctive feature, if not a hallmark, of
severe COVID-19, it warrants deeper investigation into the potential
causal relationships that these cross-layer interactions, have with disease
progression: relationships that might illuminate ways to prevent and/or
reverse this progression.

IL6 is a vital innate immune cytokine in protection against other
viral infections such as influenza A virus, which can cause
pneumonia (Guirao et al., 2020). An increase in IL6 levels has
previously been observed in patients with respiratory dysfunction,
implying a possible mechanism of cytokine-mediated lung damage
caused by COVID-19 infection (Gou et al., 2020; Guirao et al., 2020).
Our hypothesis-driven approach revealed that higher COVID-19
disease severity was associated with an increased number of
interactions between IL6 and other multi-omics layers, therefore
suggesting that our approach may discriminate between COVID-19
and other respiratory disorders. However, to confirm we will need
future studies on the evaluation of network-based multi-omics
approaches for COVID-19 compared to other infectious diseases,
including those of viral and bacterial nature.

Our study suggests a deeper understanding of the underlying
biological interactions in different phases of COVID-19 disease. The
results (Figures 4, 5, along with Table 5; Supplementary Table S3 and
Supplementary Material S2) present an extensive analysis of multi-
layered graphs generated by complementary approaches including
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data-driven and hypothesis-driven seeds, and shed light on the complex
interactions underlying different phases of COVID-19. These findings
suggest a nuanced understanding of how various molecular features
interact and influence disease severity. However, heterogeneity,
different sample sizes, and sensitivity of types of samples used for
sequencing across studies might be a potential source of bias. The
hypothesis-driven approach offers a reductionist strategy for
experimental proof whereas the data-driven approach offers a
holistic strategy and hypothesis generation. We recommend
considering both data- and hypothesis-driven approaches in studies
utilizing multiple source omics datasets. Also, the complexity of disease
severity harmonization, identifier mapping, and feature selection might
be potential sources of bias in our studies.

The multi-omics harmonization process and integration strategy
implemented in this study can be applied to other infectious and complex
diseases, thus contributing to aggregating data from multiple sources for
downstream analysis. Importantly, the algorithmic framework
implemented in this study can be translated to other diseases to
investigate biosignatures that underly disease progression, and relevant
drug targets, and to understand diseasemechanisms from the perspective
of different omics layers (Yan et al., 2018). For instance, the methods and
algorithm from this study can be used to investigate the underlying
biology of complex diseases such as cancer in the context of investigating
cancer subtypes and identifying the omics alterations that could help
discriminate tumors, thus leading to proper diagnostics and prognosis
(Menyhárt and Győrffy, 2021). It is however important to consider a
more comprehensive list of seeds to help interpret and extend
the findings.

In the biomedical context, data integration across different
omics layers may help detect biosignatures connecting genomic
events to clinical factors (such as response to treatment, mRNA
expression levels). This would help to predict the drivers of disease
outcomes, eventually leading to better patient stratification that can
be translated to better clinical tests, early intervention, and more
efficient personalized therapies (Menyhárt and Győrffy, 2021).

Conclusion

In this work, we delved into the identification and characterization
of biosignatures and their specific molecular features that underly
various phases of COVID-19 disease, by using an integrative and
network-based approach to analyse multi-omics data. We
emphasized the critical importance of integrating multi-omics data,
to elucidate the molecular dynamics responsible for the wide-ranging
clinical presentations of COVID-19. This integration considers both
prior knowledgebases and multi-omics data from independent studies.

Our study not only pinpoints biosignatures that distinguish
between disease states, but also demonstrates a correlation between
the severity of disease states of COVID-19 and cross-layer
interactions of proteins, transcripts, metabolites, and lipids.

We are confident that the presented multi-omics data
harmonization and network-based analysis approach can also be
applied to other diseases. To facilitate replication of our approach,
we provide a containerized workflow with an expanded readme file at
https://github.com/francis-agamah/Multi-source-multi-omics-network-
analysis. All other data and its Supplementary Material files generated
during this study are included in the github repository.
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ONLINE RESOURCE:
We have hosted interactive networks on the website (http://
cytoscape.h3africa.org). The graphs hosted on the website describe
interactions between proteins (green nodes), transcripts (grey
nodes), lipids (pink nodes), metabolites (cyan nodes), and seeds
(yellow nodes) across mild, moderate, and severe COVID-19 states.
The edges describe protein-protein interactions (green edges),
lipid-lipid interactions (pink edges), transcript-transcript interactions
(grey edges), metabolite-metabolite interactions (cyan edges),
protein-metabolite (blue edges), transcript-metabolites
(blue edges).

References

Acevedo, A., Duran, C., Ciucci, S., Gerl, M., Cannistraci, C. V., et al. (2018). LIPEA.
https://lipea.biotec.tu-dresden.de/home (Accessed January 26, 2023).

Adossa, N., Khan, S., Rytkönen, K. T., and Elo, L. L. (2021). Computational strategies
for single-cell multi-omics integration. Comput. Struct. Biotechnol. J. 19, 2588–2596.
doi:10.1016/j.csbj.2021.04.060

Agamah, F. E., Bayjanov, J. R., Niehues, A., Njoku, K. F., Skelton, M., Mazandu, G. K.,
et al. (2022). Computational approaches for network-based integrative multi-omics
analysis. Front. Mol. Biosci. 9, 1214. doi:10.3389/fmolb.2022.967205

Alqutami, F., Senok, A., and Hachim, M. (2021). COVID-19 transcriptomic atlas: a
comprehensive analysis of COVID-19 related transcriptomics datasets. Front. Genet. 12,
2500. doi:10.3389/fgene.2021.755222

André, S., Picard, M., Cezar, R., Roux-Dalvai, F., Alleaume-Butaux, A.,
Soundaramourty, C., et al. (2022). T cell apoptosis characterizes severe
Covid-19 disease. Cell Death Differ. 29 (8), 1486–1499. doi:10.1038/s41418-
022-00936-x

Arazi, A., Pendergraft, W. F., Ribeiro, R. M., Perelson, A. S., and Hacohen, N. (2013).
Human systems immunology: hypothesis-based modeling and unbiased data-driven
approaches. Seminars Immunol. 25, 193–200. doi:10.1016/j.smim.2012.11.003

Aschenbrenner, A. C., Mouktaroudi, M., Krämer, B., Oestreich, M., Antonakos, N.,
Nuesch-Germano, M., et al. (2021). Disease severity-specific neutrophil signatures in
blood transcriptomes stratify COVID-19 patients. Genome Med. 13 (1), 7–25. doi:10.
1186/s13073-020-00823-5

Baptista, A., Brière, G., and Baudot, A. (2024). Random Walk with Restart on
multilayer networks: from node prioritisation to supervised link prediction and
beyond. BMC Bioinforma. 25 (1), 70–19. doi:10.1186/s12859-024-05683-z

Baptista, A., Gonzalez, A., and Baudot, A. (2022). Universal multilayer network
exploration by random walk with restart. Commun. Phys. 5 (1), 170–179. doi:10.1038/
s42005-022-00937-9

Barberis, E., Timo, S., Amede, E., Vanella, V. V., Puricelli, C., Cappellano, G., et al.
(2020). Large-scale plasma analysis revealed new mechanisms and molecules associated
with the host response to SARS-CoV-2. Int. J. Mol. Sci. 21 (22), 8623. doi:10.3390/
ijms21228623

Barh, D., Tiwari, S., Weener, M. E., Azevedo, V., Góes-Neto, A., Gromiha, M.M., et al.
(2020). Multi-omics-based identification of SARS-CoV-2 infection biology and
candidate drugs against COVID-19. Comput. Biol. Med. 126, 104051. doi:10.1016/j.
compbiomed.2020.104051

Bernardes, J. P., Mishra, N., Tran, F., Bahmer, T., Best, L., Blase, J. I., et al. (2020).
Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid
cells, and plasmablasts as hallmarks of severe COVID-19. Immunity 53 (6), 1296–1314.
e9. doi:10.1016/j.immuni.2020.11.017

Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W. C., Uhl, S., Hoagland, D., Møller, R.,
et al. (2020). Imbalanced host response to SARS-CoV-2 drives development of COVID-
19. Cell 181 (5), 1036–1045. doi:10.1016/j.cell.2020.04.026

Bouhaddou, M., Memon, D., Meyer, B., White, K. M., Rezelj, V. V., Correa Marrero,
M., et al. (2020). The global phosphorylation landscape of SARS-CoV-2 infection. Cell
182 (3), 685–712. doi:10.1016/j.cell.2020.06.034

Carvelli, J., Demaria, O., Vély, F., Batista, L., Chouaki Benmansour, N., Fares, J., et al.
(2020). Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis.
Nature 588 (7836), 146–150. doi:10.1038/s41586-020-2600-6

Chattopadhyay, P., Khare, K., Kumar, M., Mishra, P., Anand, A., Maurya, R., et al.
(2022). Single-cell multiomics revealed the dynamics of antigen presentation, immune
response and T cell activation in the COVID-19 positive and recovered individuals.
Front. Immunol. 13, 7319. doi:10.3389/fimmu.2022.1034159

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., et al. (2020).
Epidemiological and clinical characteristics of 99 cases of 2019 novel
coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395,
507–513. doi:10.1016/S0140-6736(20)30211-7

Ciccarelli, M., Merciai, F., Carrizzo, A., Sommella, E., Di Pietro, P., Caponigro, V.,
et al. (2022). Untargeted lipidomics reveals specific lipid profiles in COVID-19 patients

with different severity from Campania region (Italy). J. Pharm. Biomed. analysis 217,
114827. doi:10.1016/j.jpba.2022.114827

Cihan, M., Doğan, Ö., Ceran Serdar, C., Altunçekiç Yıldırım, A., Kurt, C., and Serdar,
M. A. (2022). Kynurenine pathway in Coronavirus disease (COVID-19): potential role
in prognosis. J. Clin. laboratory analysis 36 (3), e24257. doi:10.1002/jcla.24257

Cizmecioglu, A., Akay Cizmecioglu, H., Goktepe, M. H., Emsen, A., Korkmaz, C.,
Esenkaya Tasbent, F., et al. (2021). Apoptosis-induced T-cell lymphopenia is related to
COVID-19 severity. J. Med. virology 93 (5), 2867–2874. doi:10.1002/jmv.26742

Coperchini, F., Chiovato, L., Croce, L., Magri, F., and Rotondi, M. (2020). The
cytokine storm in COVID-19: an overview of the involvement of the chemokine/
chemokine-receptor system. Cytokine growth factor Rev. 53, 25–32. doi:10.1016/j.
cytogfr.2020.05.003

Daamen, A. R., Bachali, P., Owen, K. A., Kingsmore, K. M., Hubbard, E. L., Labonte,
A. C., et al. (2021). Comprehensive transcriptomic analysis of COVID-19 blood, lung,
and airway. Sci. Rep. 11 (1), 7052–7119. doi:10.1038/s41598-021-86002-x

Dai, W., Lund, H., Chen, Y., Zhang, J., Osinski, K., Jones, S. Z., et al. (2021).
Hypertriglyceridemia during hospitalization independently associates with mortality in
patients with COVID-19. J. Clin. Lipidol. 15 (5), 724–731. doi:10.1016/j.jacl.2021.08.002

Del Valle, D. M., Kim-Schulze, S., Huang, H. H., Beckmann, N. D., Nirenberg, S.,
Wang, B., et al. (2020). An inflammatory cytokine signature predicts COVID-19
severity and survival. Nat. Med. 26 (10), 1636–1643. doi:10.1038/s41591-020-1051-9

Domingo-Fernández, D., Baksi, S., Schultz, B., Gadiya, Y., Karki, R., Raschka, T., et al.
(2021). COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-effect
knowledge model of COVID-19 pathophysiology. Bioinformatics 37 (9), 1332–1334.
doi:10.1093/bioinformatics/btaa834

Eriksson, O., Bhalla, U. S., Blackwell, K. T., Crook, S. M., Keller, D., Kramer, A., et al.
(2022). Combining hypothesis-and data-driven neuroscience modeling in FAIR
workflows. Elife 11, e69013. doi:10.7554/eLife.69013

Eteraf-Oskouei, T., andNajafi,M. (2022). The relationship between the serotonergic system
and COVID-19 disease: a review. Heliyon 8, e09544. doi:10.1016/j.heliyon.2022.e09544

Franz, M., Rodriguez, H., Lopes, C., Zuberi, K., Montojo, J., Bader, G. D., et al. (2018).
GeneMANIA update 2018. Nucleic acids Res. 46 (W1), W60–W64. doi:10.1093/nar/
gky311

Fraser, D. D., Slessarev, M., Martin, C. M., Daley, M., Patel, M. A., Miller, M. R., et al.
(2020). Metabolomics profiling of critically ill coronavirus disease 2019 patients:
identification of diagnostic and prognostic biomarkers. Crit. Care Explor. 2 (10),
e0272. doi:10.1097/CCE.0000000000000272

García-Pérez, B. E., González-Rojas, J. A., Salazar, M. I., Torres-Torres, C., and
Castrejón-Jiménez, N. S. (2020). Taming the autophagy as a strategy for treating
COVID-19. Cells 9 (12), 2679. doi:10.3390/cells9122679

Gou, X., Yuan, J., Wang, H., Wang, X., Xiao, J., Chen, J., et al. (2020). IL-6 during
influenza-streptococcus pneumoniae co-infected pneumonia—a protector. Front.
Immunol. 10, 3102. doi:10.3389/fimmu.2019.03102

Guirao, J. J., Cabrera, C. M., Jiménez, N., Rincón, L., and Urra, J. M. (2020). High
serum IL-6 values increase the risk of mortality and the severity of pneumonia in
patients diagnosed with COVID-19.Mol. Immunol. 128, 64–68. doi:10.1016/j.molimm.
2020.10.006

Gygi, J. P., Maguire, C., Patel, R. K., Shinde, P., Konstorum, A., Shannon, C. P., et al.
(2023). Integrated longitudinal multi-omics study identifies immune programs
associated with COVID-19 severity and mortality in 1152 hospitalized participants.
bioRxiv, 2023. 11. 03.565292. doi:10.1101/2023.11.03.565292

Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., et al. (2020).
Impaired type I interferon activity and inflammatory responses in severe COVID-19
patients. Science 369 (6504), 718–724. doi:10.1126/science.abc6027

Hammoudeh, S. M., Hammoudeh, A. M., Bhamidimarri, P. M., Al Safar, H.,
Mahboub, B., Künstner, A., et al. (2021). Systems immunology analysis reveals the
contribution of pulmonary and extrapulmonary tissues to the immunopathogenesis of
severe COVID-19 patients. Front. Immunol. 12, 595150. doi:10.3389/fimmu.2021.
595150

Frontiers in Molecular Biosciences frontiersin.org22

Agamah et al. 10.3389/fmolb.2024.1393240

https://www.frontiersin.org/articles/10.3389/fmolb.2024.1393240/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1393240/full#supplementary-material
http://cytoscape.h3africa.org
http://cytoscape.h3africa.org
https://lipea.biotec.tu-dresden.de/home
https://doi.org/10.1016/j.csbj.2021.04.060
https://doi.org/10.3389/fmolb.2022.967205
https://doi.org/10.3389/fgene.2021.755222
https://doi.org/10.1038/s41418-022-00936-x
https://doi.org/10.1038/s41418-022-00936-x
https://doi.org/10.1016/j.smim.2012.11.003
https://doi.org/10.1186/s13073-020-00823-5
https://doi.org/10.1186/s13073-020-00823-5
https://doi.org/10.1186/s12859-024-05683-z
https://doi.org/10.1038/s42005-022-00937-9
https://doi.org/10.1038/s42005-022-00937-9
https://doi.org/10.3390/ijms21228623
https://doi.org/10.3390/ijms21228623
https://doi.org/10.1016/j.compbiomed.2020.104051
https://doi.org/10.1016/j.compbiomed.2020.104051
https://doi.org/10.1016/j.immuni.2020.11.017
https://doi.org/10.1016/j.cell.2020.04.026
https://doi.org/10.1016/j.cell.2020.06.034
https://doi.org/10.1038/s41586-020-2600-6
https://doi.org/10.3389/fimmu.2022.1034159
https://doi.org/10.1016/S0140-6736(20)30211-7
https://doi.org/10.1016/j.jpba.2022.114827
https://doi.org/10.1002/jcla.24257
https://doi.org/10.1002/jmv.26742
https://doi.org/10.1016/j.cytogfr.2020.05.003
https://doi.org/10.1016/j.cytogfr.2020.05.003
https://doi.org/10.1038/s41598-021-86002-x
https://doi.org/10.1016/j.jacl.2021.08.002
https://doi.org/10.1038/s41591-020-1051-9
https://doi.org/10.1093/bioinformatics/btaa834
https://doi.org/10.7554/eLife.69013
https://doi.org/10.1016/j.heliyon.2022.e09544
https://doi.org/10.1093/nar/gky311
https://doi.org/10.1093/nar/gky311
https://doi.org/10.1097/CCE.0000000000000272
https://doi.org/10.3390/cells9122679
https://doi.org/10.3389/fimmu.2019.03102
https://doi.org/10.1016/j.molimm.2020.10.006
https://doi.org/10.1016/j.molimm.2020.10.006
https://doi.org/10.1101/2023.11.03.565292
https://doi.org/10.1126/science.abc6027
https://doi.org/10.3389/fimmu.2021.595150
https://doi.org/10.3389/fimmu.2021.595150
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1393240


Jain, R., Ramaswamy, S., Harilal, D., Uddin, M., Loney, T., Nowotny, N., et al. (2021).
Host transcriptomic profiling of COVID-19 patients with mild, moderate, and severe
clinical outcomes. Comput. Struct. Biotechnol. J. 19, 153–160. doi:10.1016/j.csbj.2020.
12.016

Jia, H., Liu, C., Li, D., Huang, Q., Liu, D., Zhang, Y., et al. (2022). Metabolomic
analyses reveal new stage-specific features of COVID-19. Eur. Respir. J. 59 (2), 2100284.
doi:10.1183/13993003.00284-2021

Karim, H., and Khan, M. S. (2020). A systematic review on coronavirus disease 2019
(COVID-19).

Kaye, A. G., and Siegel, R. (2020). The efficacy of IL-6 inhibitor Tocilizumab in
reducing severe COVID-19 mortality: a systematic review. PeerJ 8, e10322. doi:10.7717/
peerj.10322

Khan, S. A., Goliwas, K. F., and Deshane, J. S. (2021). Sphingolipids in lung
pathology in the coronavirus disease era: a review of sphingolipid involvement in
the pathogenesis of lung damage. Front. Physiology 12, 760638. doi:10.3389/fphys.
2021.760638

Krishnan, S., Nordqvist, H., Ambikan, A. T., Gupta, S., Sperk, M., Svensson-
Akusjärvi, S., et al. (2021). Metabolic perturbation associated with COVID-19
disease severity and SARS-CoV-2 replication. Mol. Cell. Proteomics 20, 100159.
doi:10.1016/j.mcpro.2021.100159

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z.,
et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web server
2016 update. Nucleic acids Res. 44 (W1), W90–W97. doi:10.1093/nar/gkw377

Law, H. K., Cheung, C. Y., Ng, H. Y., Sia, S. F., Chan, Y. O., Luk, W., et al. (2005).
Chemokine up-regulation in SARS-coronavirus–infected, monocyte-derived human
dendritic cells. Blood 106 (7), 2366–2374. doi:10.1182/blood-2004-10-4166

Lawler, N. G., Gray, N., Kimhofer, T., Boughton, B., Gay, M., Yang, R., et al. (2021).
Systemic perturbations in amine and kynurenine metabolism associated with acute
SARS-CoV-2 infection and inflammatory cytokine responses. J. Proteome Res. 20 (5),
2796–2811. doi:10.1021/acs.jproteome.1c00052

Li, X., Geng, M., Peng, Y., Meng, L., and Lu, S. (2020). Molecular immune
pathogenesis and diagnosis of COVID-19. J. Pharm. analysis 10 (2), 102–108.
doi:10.1016/j.jpha.2020.03.001

Li, Z.-B., Liu, J., Zhang, S. Q., Yu, Y., Liang, H. F., Lu, Q. Q., et al. (2022). Novel
potential metabolic biomarker panel for early detection of severe COVID-19 using full-
spectrum metabolome and whole-transcriptome analyses. Signal Transduct. Target.
Ther. 7 (1), 129. doi:10.1038/s41392-022-00976-2

Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., et al. (2020). Single-cell landscape
of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26 (6),
842–844. doi:10.1038/s41591-020-0901-9

Lucas, C., Wong, P., Klein, J., Castro, T. B. R., Silva, J., Sundaram, M., et al. (2020).
Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584
(7821), 463–469. doi:10.1038/s41586-020-2588-y

Madhurantakam, S., Lee, Z. J., Naqvi, A., Karnam, J. B., Muthukumar, S., and Prasad,
S. (2023). Multiplex sensing of IL-10 and CRP towards predicting critical illness in
COVID-19 infections. Biosens. Bioelectron. X 13, 100307. doi:10.1016/j.biosx.2023.
100307

Martínez-Fleta, P., Vera-Tomé, P., Jiménez-Fernández, M., Requena, S., Roy-Vallejo,
E., Sanz-García, A., et al. (2022). A differential signature of circulating miRNAs and
cytokines between COVID-19 and community-acquired pneumonia uncovers novel
physiopathological mechanisms of COVID-19. Front. Immunol. 12, 815651. doi:10.
3389/fimmu.2021.815651

Masoodi, M., Peschka, M., Schmiedel, S., Haddad, M., Frye, M., Maas, C., et al. (2022).
Disturbed lipid and amino acid metabolisms in COVID-19 patients. J. Mol. Med. 100
(4), 555–568. doi:10.1007/s00109-022-02177-4

Menyhárt, O., and Győrffy, B. (2021). Multi-omics approaches in cancer research
with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct.
Biotechnol. J. 19, 949–960. doi:10.1016/j.csbj.2021.01.009

Merad, M., and Martin, J. C. (2020). Pathological inflammation in patients with
COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20 (6),
355–362. doi:10.1038/s41577-020-0331-4

Messner, C. B., Demichev, V., Wendisch, D., Michalick, L., White, M., Freiwald, A.,
et al. (2020). Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19
infection. Cell Syst. 11 (1), 11–24. doi:10.1016/j.cels.2020.05.012

Moore, J. B., and June, C. H. (2020). Cytokine release syndrome in severe COVID-19.
Science 368 (6490), 473–474. doi:10.1126/science.abb8925

Oliveira, L. B., Mwangi, V. I., Sartim, M. A., Delafiori, J., Sales, G. M., de Oliveira, A.
N., et al. (2022). Metabolomic profiling of plasma reveals differential disease severity
markers in COVID-19 patients. Front. Microbiol. 13, 844283. doi:10.3389/fmicb.2022.
844283

Overmyer, K. A., Shishkova, E., Miller, I. J., Balnis, J., Bernstein, M. N., Peters-Clarke,
T. M., et al. (2020). Large-scale multi-omic analysis of COVID-19 severity. Cell Syst.,
2020.07.17.20156513. doi:10.1101/2020.07.17.20156513

Ovsyannikova, I. G., Haralambieva, I. H., Crooke, S. N., Poland, G. A., and Kennedy,
R. B. (2020). The role of host genetics in the immune response to SARS-CoV-2 and

COVID-19 susceptibility and severity. Immunol. Rev. 296 (1), 205–219. doi:10.1111/
imr.12897

Páez-Franco, J. C., Maravillas-Montero, J. L., Mejía-Domínguez, N. R., Torres-Ruiz,
J., Tamez-Torres, K. M., Pérez-Fragoso, A., et al. (2022). Metabolomics analysis
identifies glutamic acid and cystine imbalances in COVID-19 patients without
comorbid conditions. Implications on redox homeostasis and COVID-19
pathophysiology. Plos one 17 (9), e0274910. doi:10.1371/journal.pone.0274910

Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., et al.
(2021). MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional
insights. Nucleic acids Res. 49 (W1), W388–W396. doi:10.1093/nar/gkab382

Patel, H., Ashton, N. J., Dobson, R. J. B., Andersson, L. M., Yilmaz, A., Blennow, K.,
et al. (2021). Proteomic blood profiling in mild, severe and critical COVID-19 patients.
Sci. Rep. 11 (1), 6357. doi:10.1038/s41598-021-85877-0

Piñero, J., Ramírez-Anguita, J. M., Saüch-Pitarch, J., Ronzano, F., Centeno, E., Sanz,
F., et al. (2020). The DisGeNET knowledge platform for disease genomics: 2019 update.
Nucleic acids Res. 48 (D1), D845–D855. doi:10.1093/nar/gkz1021

Perreau, M., Suffiotti, M., Marques-Vidal, P., Wiedemann, A., Levy, Y., Laouénan, C.,
et al. (2021). The cytokines HGF and CXCL13 predict the severity and the mortality in
COVID-19 patients. Nat. Commun. 12 (1), 4888.

Quartuccio, L., Fabris, M., Sonaglia, A., Peghin, M., Domenis, R., Cifù, A., et al.
(2021). Interleukin 6, soluble interleukin 2 receptor alpha (CD25), monocyte colony-
stimulating factor, and hepatocyte growth factor linked with systemic
hyperinflammation, innate immunity hyperactivation, and organ damage in
COVID-19 pneumonia. Cytokine 140, 155438. doi:10.1016/j.cyto.2021.155438

Rincon-Arevalo, H., Aue, A., Ritter, J., Szelinski, F., Khadzhynov, D., Zickler, D., et al.
(2022). Altered increase in STAT1 expression and phosphorylation in severe COVID-
19. Eur. J. Immunol. 52 (1), 138–148. doi:10.1002/eji.202149575

Risitano, A. M., Mastellos, D. C., Huber-Lang, M., Yancopoulou, D., Garlanda, C.,
Ciceri, F., et al. (2020). Complement as a target in COVID-19? Nat. Rev. Immunol. 20
(6), 343–344. doi:10.1038/s41577-020-0320-7

Roberts, I., Wright Muelas, M., Taylor, J. M., Davison, A. S., Xu, Y., Grixti, J. M., et al.
(2022). Untargeted metabolomics of COVID-19 patient serum reveals potential
prognostic markers of both severity and outcome. Metabolomics 18 (1), 6. doi:10.
1007/s11306-021-01859-3

Robinson, P. C., Richards, D., Tanner, H. L., and Feldmann, M. (2020). Accumulating
evidence suggests anti-TNF therapy needs to be given trial priority in COVID-19
treatment. Lancet Rheumatology 2 (11), e653–e655. doi:10.1016/S2665-9913(20)
30309-X

Salomão, R., Assis, V., Neto, I. V. O., Petriz, B., Babault, N., and Durigan, J. L. Q.
(2023). Involvement of matrix metalloproteinases in COVID-19: molecular targets,
mechanisms, and insights for therapeutic interventions. Biology 12 (6), 843.

Samaee, H., Mohsenzadegan, M., Ala, S., Maroufi, S. S., and Moradimajd, P.
(2020). Tocilizumab for treatment patients with COVID-19: recommended
medication for novel disease. Int. Immunopharmacol. 89, 107018. doi:10.1016/j.
intimp.2020.107018

Schulte-Schrepping, J., Reusch, N., Paclik, D., Baßler, K., Schlickeiser, S., Zhang, B.,
et al. (2020). Severe COVID-19 is marked by a dysregulated myeloid cell compartment.
Cell 182 (6), 1419–1440. e23. doi:10.1016/j.cell.2020.08.001

Shen, B., Yi, X., Sun, Y., Bi, X., Du, J., Zhang, C., et al. (2020). Proteomic and
metabolomic characterization of COVID-19 patient sera. Cell 182 (1), 59–72. doi:10.
1016/j.cell.2020.05.032

Sheshan, V.S., Shenoy, V., Neelakant, M., Prasad, V., and Kavya, S. (2021). To
correlate serum lipid parameters with clinical outcome in COVID-19 patients. SAS
J. Med. 7 (7), 295–302. doi:10.36347/sasjm.2021.v07i07.001

Shirato, K., and Kizaki, T. (2021). SARS-CoV-2 spike protein S1 subunit induces pro-
inflammatory responses via toll-like receptor 4 signaling in murine and human
macrophages. Heliyon 7 (2), e06187. doi:10.1016/j.heliyon.2021.e06187

Sims, J. T., Krishnan, V., Chang, C. Y., Engle, S. M., Casalini, G., Rodgers, G. H., et al.
(2021). Characterization of the cytokine storm reflects hyperinflammatory endothelial
dysfunction in COVID-19. J. Allergy Clin. Immunol. 147 (1), 107–111. doi:10.1016/j.
jaci.2020.08.031

Singhal, T. (2020). A review of coronavirus disease-2019 (COVID-19). indian
J. Pediatr. 87 (4), 281–286. doi:10.1007/s12098-020-03263-6

Song, J.-W., Lam, S. M., Fan, X., Cao, W. J., Wang, S. Y., Tian, H., et al. (2020). Omics-
driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis.
Cell metab. 32 (2), 188–202. doi:10.1016/j.cmet.2020.06.016

Stephenson, E., Reynolds, G., Botting, R. A., Calero-Nieto, F. J., Morgan, M. D.,
Tuong, Z. K., et al. (2021). Single-cell multi-omics analysis of the immune response in
COVID-19. Nat. Med. 27 (5), 904–916. doi:10.1038/s41591-021-01329-2

Su, Y., Chen, D., Yuan, D., Lausted, C., Choi, J., Dai, C. L., et al. (2020). Multi-omics
resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 183,
1479–1495.e20. doi:10.1016/j.cell.2020.10.037

Suhre, K., Sarwath, H., Engelke, R., Sohail, M. U., Cho, S. J., Whalen, W., et al. (2022).
Identification of robust protein associations with COVID-19 disease based on five
clinical studies. Front. Immunol. 12, 781100. doi:10.3389/fimmu.2021.781100

Frontiers in Molecular Biosciences frontiersin.org23

Agamah et al. 10.3389/fmolb.2024.1393240

https://doi.org/10.1016/j.csbj.2020.12.016
https://doi.org/10.1016/j.csbj.2020.12.016
https://doi.org/10.1183/13993003.00284-2021
https://doi.org/10.7717/peerj.10322
https://doi.org/10.7717/peerj.10322
https://doi.org/10.3389/fphys.2021.760638
https://doi.org/10.3389/fphys.2021.760638
https://doi.org/10.1016/j.mcpro.2021.100159
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1182/blood-2004-10-4166
https://doi.org/10.1021/acs.jproteome.1c00052
https://doi.org/10.1016/j.jpha.2020.03.001
https://doi.org/10.1038/s41392-022-00976-2
https://doi.org/10.1038/s41591-020-0901-9
https://doi.org/10.1038/s41586-020-2588-y
https://doi.org/10.1016/j.biosx.2023.100307
https://doi.org/10.1016/j.biosx.2023.100307
https://doi.org/10.3389/fimmu.2021.815651
https://doi.org/10.3389/fimmu.2021.815651
https://doi.org/10.1007/s00109-022-02177-4
https://doi.org/10.1016/j.csbj.2021.01.009
https://doi.org/10.1038/s41577-020-0331-4
https://doi.org/10.1016/j.cels.2020.05.012
https://doi.org/10.1126/science.abb8925
https://doi.org/10.3389/fmicb.2022.844283
https://doi.org/10.3389/fmicb.2022.844283
https://doi.org/10.1101/2020.07.17.20156513
https://doi.org/10.1111/imr.12897
https://doi.org/10.1111/imr.12897
https://doi.org/10.1371/journal.pone.0274910
https://doi.org/10.1093/nar/gkab382
https://doi.org/10.1038/s41598-021-85877-0
https://doi.org/10.1093/nar/gkz1021
https://doi.org/10.1016/j.cyto.2021.155438
https://doi.org/10.1002/eji.202149575
https://doi.org/10.1038/s41577-020-0320-7
https://doi.org/10.1007/s11306-021-01859-3
https://doi.org/10.1007/s11306-021-01859-3
https://doi.org/10.1016/S2665-9913(20)30309-X
https://doi.org/10.1016/S2665-9913(20)30309-X
https://doi.org/10.1016/j.intimp.2020.107018
https://doi.org/10.1016/j.intimp.2020.107018
https://doi.org/10.1016/j.cell.2020.08.001
https://doi.org/10.1016/j.cell.2020.05.032
https://doi.org/10.1016/j.cell.2020.05.032
https://doi.org/10.36347/sasjm.2021.v07i07.001
https://doi.org/10.1016/j.heliyon.2021.e06187
https://doi.org/10.1016/j.jaci.2020.08.031
https://doi.org/10.1016/j.jaci.2020.08.031
https://doi.org/10.1007/s12098-020-03263-6
https://doi.org/10.1016/j.cmet.2020.06.016
https://doi.org/10.1038/s41591-021-01329-2
https://doi.org/10.1016/j.cell.2020.10.037
https://doi.org/10.3389/fimmu.2021.781100
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1393240


Sun, C., Sun, Y., Wu, P., Ding, W., Wang, S., Li, J., et al. (2021). Longitudinal multi-
omics transition associated with fatality in critically ill COVID-19 patients. Intensive
care Med. Exp. 9 (1), 13–14. doi:10.1186/s40635-021-00373-z

Sun, J. T., Chen, Z., Nie, P., Ge, H., Shen, L., Yang, F., et al. (2020). Lipid profile
features and their associations with disease severity and mortality in patients
with COVID-19. Front. Cardiovasc. Med. 7, 584987. doi:10.3389/fcvm.2020.
584987

Suvarna, K., Salkar, A., Palanivel, V., Bankar, R., Banerjee, N., Gayathri J Pai, M., et al.
(2021). A multi-omics longitudinal study reveals alteration of the leukocyte activation
pathway in COVID-19 patients. J. Proteome Res. 20 (10), 4667–4680. doi:10.1021/acs.
jproteome.1c00215

Takeshita, H., and Yamamoto, K. (2022). Tryptophan metabolism and COVID-19-
induced skeletal muscle damage: is ACE2 a key regulator? Front. Nutr. 9, 868845. doi:10.
3389/fnut.2022.868845

Theken, K. N., Tang, S. Y., Sengupta, S., and FitzGerald, G. A. (2021). The roles of
lipids in SARS-CoV-2 viral replication and the host immune response. J. lipid Res. 62,
100129. doi:10.1016/j.jlr.2021.100129

Thomas, T., Stefanoni, D., Reisz, J. A., Nemkov, T., Bertolone, L., Francis, R.O., et al. (2020).
COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels
and renal status. JCI insight 5 (14), e140327. doi:10.1172/jci.insight.140327

Valdeolivas, A., Tichit, L., Navarro, C., Perrin, S., Odelin, G., Levy, N., et al. (2019).
Random walk with restart on multiplex and heterogeneous biological networks.
Bioinformatics 35 (3), 497–505. doi:10.1093/bioinformatics/bty637

van Eijk, L. E., Offringa, A. K., Bernal, M. E., Bourgonje, A. R., van Goor, H.,
Hillebrands, J. L., et al. (2022). “The disease-modifying role of taurine and its
therapeutic potential in coronavirus disease 2019 (COVID-19),” in Taurine 12: a
conditionally essential amino acid (Springer), 3–21.

Veras, F. P., Pontelli, M. C., Silva, C. M., Toller-Kawahisa, J. E., de Lima, M.,
Nascimento, D. C., et al. (2020). SARS-CoV-2–triggered neutrophil extracellular
traps mediate COVID-19 pathology. J. Exp. Med. 217 (12), e20201129. doi:10.
1084/jem.20201129

Wang, W., Lei, W., Jiang, L., Gao, S., Hu, S., Zhao, Z. G., et al. (2021). Therapeutic
mechanisms ofmesenchymal stem cells in acute respiratory distress syndrome reveal potentials
for Covid-19 treatment. J. Transl. Med. 19 (1), 198–213. doi:10.1186/s12967-021-02862-x

Weiner, J., Suwalski, P., Holtgrewe, M., Rakitko, A., Thibeault, C., Müller, M., et al.
(2021). Increased risk of severe clinical course of COVID-19 in carriers of HLA-C* 04:
01. EClinicalMedicine 40, 101099. doi:10.1016/j.eclinm.2021.101099

Xiao, K., Hou, F., Huang, X., Li, B., Qian, Z. R., and Xie, L. (2020). Mesenchymal stem
cells: current clinical progress in ARDS and COVID-19. Stem Cell Res. Ther. 11 (1),
305–307. doi:10.1186/s13287-020-01804-6

Yan, J., Risacher, S. L., Shen, L., and Saykin, A. J. (2018). Network approaches to
systems biology analysis of complex disease: integrative methods for multi-omics data.
Briefings Bioinforma. 19 (6), 1370–1381. doi:10.1093/bib/bbx066

Yang, N., and Shen, H.-M. (2020). Targeting the endocytic pathway and autophagy
process as a novel therapeutic strategy in COVID-19. Int. J. Biol. Sci. 16 (10), 1724–1731.
doi:10.7150/ijbs.45498

Zarkovic, N., Jakovcevic, A., Mataic, A., Jaganjac, M., Vukovic, T., Waeg, G., et al.
(2022). Post-mortem findings of inflammatory cells and the association of 4-
hydroxynonenal with systemic vascular and oxidative stress in lethal COVID-19.
Cells 11 (3), 444. doi:10.3390/cells11030444

Žarković, N., Jastrząb, A., Jarocka-Karpowicz, I., Orehovec, B., Baršić, B., Tarle, M.,
et al. (2022). The impact of severe COVID-19 on plasma antioxidants. Molecules 27
(16), 5323. doi:10.3390/molecules27165323

Zayet, S., Kadiane-Oussou, N. J., Lepiller, Q., Zahra, H., Royer, P. Y., Toko, L., et al. (2020).
Clinical features of COVID-19 and influenza: a comparative study on Nord Franche-Comte
cluster. Microbes Infect. 22 (9), 481–488. doi:10.1016/j.micinf.2020.05.016

Zhong, W., Altay, O., Arif, M., Edfors, F., Doganay, L., Mardinoglu, A., et al. (2021). Next
generation plasma proteome profiling of COVID-19 patients with mild to moderate
symptoms. EBioMedicine 74, 103723. doi:10.1016/j.ebiom.2021.103723

Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., Qi, Y., et al. (2020). Pathogenic T-cells
and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients.
Natl. Sci. Rev. 7 (6), 998–1002. doi:10.1093/nsr/nwaa041

Frontiers in Molecular Biosciences frontiersin.org24

Agamah et al. 10.3389/fmolb.2024.1393240

https://doi.org/10.1186/s40635-021-00373-z
https://doi.org/10.3389/fcvm.2020.584987
https://doi.org/10.3389/fcvm.2020.584987
https://doi.org/10.1021/acs.jproteome.1c00215
https://doi.org/10.1021/acs.jproteome.1c00215
https://doi.org/10.3389/fnut.2022.868845
https://doi.org/10.3389/fnut.2022.868845
https://doi.org/10.1016/j.jlr.2021.100129
https://doi.org/10.1172/jci.insight.140327
https://doi.org/10.1093/bioinformatics/bty637
https://doi.org/10.1084/jem.20201129
https://doi.org/10.1084/jem.20201129
https://doi.org/10.1186/s12967-021-02862-x
https://doi.org/10.1016/j.eclinm.2021.101099
https://doi.org/10.1186/s13287-020-01804-6
https://doi.org/10.1093/bib/bbx066
https://doi.org/10.7150/ijbs.45498
https://doi.org/10.3390/cells11030444
https://doi.org/10.3390/molecules27165323
https://doi.org/10.1016/j.micinf.2020.05.016
https://doi.org/10.1016/j.ebiom.2021.103723
https://doi.org/10.1093/nsr/nwaa041
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1393240

	Network-based integrative multi-omics approach reveals biosignatures specific to COVID-19 disease phases
	Background
	Materials and Methods
	Study design and procedures

	Data sources
	Multi-omics experimental data
	Protein-protein interactome
	Metabolite-metabolite interactome
	Lipid-lipid interactome
	COVID-19 knowledge graph
	Cross-layer interactome
	Harmonizing the clinical severity of patients
	Data pre-processing
	Feature mapping to unified identifiers
	Building a unified knowledge graph
	Building disease-state specific omics-graphs

	Random walk network analysis
	COVID-19 disease state graph exploration by a random walk with restart
	Identifying seed nodes for multi-layered network exploration
	Ranking candidate multi-omics features for COVID-19 disease states
	Enrichment analysis
	Metabolite pathway
	Lipid pathway
	Gene ontology analysis


	Results
	Harmonized clinical severity between patients’ metadata
	Integrative network-based multi-omics analysis
	Construction of disease-state specific omics-graphs
	Identified seed nodes for network exploration
	Random walk analysis on disease-state specific omics-graphs using data-driven seeds
	Random walk analysis on disease-state specific omics-graphs using hypothesis-driven seeds
	Evaluating features and interactions of generated multi-layered graphs
	Evaluating multi-layered graphs generated using data-driven seeds
	Evaluating multi-layered graphs generated using hypothesis-driven seeds
	Characterizing multi-layered graphs

	Identifying disease states biosignature
	Biosignatures discriminating between disease states based on data-driven seeds
	Biosignatures discriminating between disease states based on hypothesis-driven seeds

	Enrichment analysis reveals enriched processes and pathways
	Enrichment analysis of biosignatures that discriminate disease states based on data-driven seeds
	Enrichment analysis of biosignatures that discriminate disease states based on hypothesis-driven seeds
	Comparing results from data-driven and hypothesis-driven approach
	Validating the integrative network-based multi-omics-driven data approach and replicating results from independent data


	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


