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Background: Head and Neck Squamous Cell Carcinoma (HNSCC) is the seventh
most highly prevalent cancer type worldwide. Early detection of HNSCC is one of
the important challenges in managing the treatment of the cancer patients.
Existing techniques for detecting HNSCC are costly, expensive, and invasive
in nature.

Methods: In this study, we aimed to address this issue by developing classification
models using machine learning and deep learning techniques, focusing on
single-cell transcriptomics to distinguish between HNSCC and normal
samples. Furthermore, we built models to classify HNSCC samples into HPV-
positive (HPV+) and HPV-negative (HPV−) categories. In this study, we have used
GSE181919 dataset, we have extracted 20 primary cancer (HNSCC) samples, and
9 normal tissues samples. The primary cancer samples contained 13 HPV− and
7 HPV+ samples. Themodels developed in this study have been trained on 80%of
the dataset and validated on the remaining 20%. To develop an efficient model,
we performed feature selection using mRMR method to shortlist a small number
of genes from a plethora of genes. We also performed Gene Ontology (GO)
enrichment analysis on the 100 shortlisted genes.

Results: Artificial Neural Network based model trained on 100 genes
outperformed the other classifiers with an AUROC of 0.91 for HNSCC
classification for the validation set. The same algorithm achieved an AUROC
of 0.83 for the classification of HPV+ and HPV− patients on the validation set. In
GO enrichment analysis, it was found that most genes were involved in binding
and catalytic activities.

Conclusion: A software package has been developed in Python which allows
users to identify HNSCC in patients along with their HPV status. It is available at
https://webs.iiitd.edu.in/raghava/hnscpred/.
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1 Introduction

Head and neck cancer, encompasses a variety of malignancies
that affect the respiratory tract and upper digestive tract. Head and
Neck Squamous Cell Carcinoma (HNSCC) is the most typical kind
among the head and neck cancer (Mody et al., 2021). In 2020,
562,328 people were diagnosed with head and neck cancer (HNC)
worldwide, with a total count of 277,587 deaths due to the disease
(Broutian et al., 2020). These carcinomas often develop in the
salivary glands, larynx, oral cavity, throat, and sino-nasal tract
epithelium. A number of head and neck malignancies are linked
to the human papillomavirus (HPV) infection, notably HPV-16.
However, some malignancies are also related to the other
carcinogens like smoking, excessive alcohol, and other factors
depending on the country or area. Hence, we can classify this
cancer into two major categories—HPV-negative and HPV-
positive. The median age of diagnosis for HPV associated
HNSCC is about 66 years, whereas for HPV-associated

oropharyngeal cancer the median age is ~53 years (Johnson
et al., 2020).

Distinguishing between HPV-positive and HPV-negative Head
and Neck Squamous Cell Carcinoma (HNSCC) samples holds
profound significance in clinical practice as it unveils distinct
molecular mechanisms underlying tumorigenesis and guides
tailored therapeutic interventions. HPV-positive HNSCCs,
primarily driven by high-risk human papillomavirus (HPV)
infection, often manifest with activated cell cycle pathways,
particularly the retinoblastoma protein (pRB) pathway, leading to
enhanced cell proliferation (Leemans et al., 2018). Conversely, HPV-
negative tumors frequently arise from genomic instability induced
by environmental factors such as tobacco and alcohol exposure,
resulting in diverse genetic alterations, such as mutations in tumor
suppressor genes and oncogenes. Consequently, HPV-positive
tumors exhibit heightened sensitivity to radiotherapy and
chemotherapy due to their intact DNA repair mechanisms and
increased expression of apoptosis-regulating proteins (Fakhry et al.,
2008). Conversely, HPV-negative tumors, characterized by aberrant
DNA repair pathways and resistance to apoptosis, necessitate more
aggressive therapeutic strategies. Understanding the HPV status in
HNSCC thus facilitates personalized treatment approaches,
optimizing patient outcomes by targeting specific molecular
vulnerabilities (Dok and Nuyts, 2016). Better understanding the
HPV status of HNSCC tumors enables clinicians to tailor treatment
strategies and provide accurate prognostic information, ultimately
improving patient management and outcomes (Ang et al., 2010;
Chaturvedi et al., 2011; Gillison et al., 2012). The mechanisms of
HPV+ and HPV- associated HNSCC are explained in Figure 1.

Despite thorough and targeted treatment efforts, the chances of
survival are reduced due to the majority of head and neck cancer
cases being diagnosed at advanced stages. The traditional diagnosis
of HNSCC is based on the physical examination, radiological
investigation, and histological analysis of the tissue sections
obtained from biopsies or surgical resections. These procedures
can take a lot of time and are susceptible to mistakes in
observation or interpretation, which can lead to discrepancies in
cancer grading and prognostication (Mahmood et al., 2021). In
addition to this, most of the HNSCC cancers are detected at a later
stage. The reasons range from limited symptomatology in early-
stage patients, swift progression from early to advanced stage,
indistinctive diagnostic characteristics, and imprecise history
information (Basheeth and Patil, 2019).

Identification of molecular biomarkers of HNSCC can lead to
early diagnosis of this cancer and can also help in preventive
management of HNSCC. The cancer biomarkers not only
influence diagnosis but they also have the potential to improve
the treatment outcomes using targeted therapy. The currently
known biomarker of HNSCC is PD-L1 which is commonly used
in treatment decision making in advanced stage of HNSCC. It has a
moderate predictive value and has many limitations due to the lack
of standardization and highly dynamic nature of PD-L1 expression.
Currently, there are no any other FDA approved molecular
biomarkers for HNSCC diagnosis or prognosis (Basheeth and
Patil, 2019).

In this study, we made an attempt to identify biomarkers for
HNSCC using single-cell sequencing data. On the basis of the
100 biomarkers identified in this study, we have developed a

FIGURE 1
Mechanisms of head and neck squamous cell carcinoma
(HNSCC) for HPV-positive and HPV-negative HNSCC patients.
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method that can predict the HNSCC cancer along with HPV+ or
HPV− status. Single-cell data collected from individual cells using
next-generation sequencing methods provides a better knowledge of
the activity of a single cell in relation to its microenvironment
(Eberwine et al., 2014). Cell-to-cell variation can be revealed by
single-cell sequencing of RNA or epigenetic alterations, which may
aid the populations in quickly adapting to new circumstances (Saliba
et al., 2014). The significance of gene mosaicism, as well as intra-
tumor genetic heterogeneity in the genesis of cancer or response to
therapy, can be uncovered by single-cell precision (Gawad et al.,
2016). Single-cell technology makes it possible to detect molecular
alterations in individual cancer cells. This can increase the research
of more specialized biomarkers with excellent resolution, leading to
the development of a complete landscape of distinct cell types within
tumors (Radpour and Forouharkhou, 2018). The full workflow of
this study is described in Figure 2.

2 Materials and methods

2.1 Data collection

We retrieved the dataset used in this study (GSE181919) from
National Centre for Biotechnology Information’s (NCBI) Gene
Expression Omnibus (GEO) (Clough and Barrett, 2016; Choi
et al., 2023). The GSE181919 dataset comprise of 37 tissue

specimens from 23 patients with Head and Neck Squamous
Cell Carcinoma (HNSCC), covering a range of tissues,
including normal tissues (n = 9), precancerous leukoplakia
(n = 4), primary HNSCC (n = 20), and metastasized tumors
(n = 4). Choi et al. methodology involved aligning sequencing
data to the human reference genome (GRCh38) and processing it
using CellRanger 2.1.1 by 10X Genomics. Subsequently, cell-level
transcripts were clustered using the “Seurat”package’s shared
nearest neighbor method. To ensure the clarity in the dataset, we
chose two distinct groups: normal tissue (n = 9) and primary
HNSCC tissues (n = 20). Therefore, in this study, we have only
taken 29 total samples comprising 20 primary cancer samples,
and 9 normal samples. In addition, these cancer samples are
divided into 13 HPV− and 7 HPV+ samples. The information on
whether the samples were derived from HPV+ or HPV− patients
was derived from the metadata provided on GEO. This dataset
used Illumina HiSeq 4000 as the platform for scRNA sequencing.
The 80% of this dataset was used to train machine learning (ML)
and deep learning (DL) models and 20% was used as
validation set.

2.2 Data pre-processing

After the retrieval of data from GEO, we processed the data
using in-house python scripts. Firstly, we converted the sparse data

FIGURE 2
The full workflow of the study.
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into a matrix and removed insignificant columns from our training
data. The genes that had no mapped readings to more than 80% of
the cells were eliminated, and cells containing zeroes were filtered
leading to 2,604 genes. The sequencing depth affects the range of
values for the features, which necessitates normalizing the count
data before doing any sort of analysis. Hence, we performed counts
per million (CPM) normalization and log transformation on the
data using scanpy package in python (Wolf et al., 2018).

2.3 Feature selection

We applied feature selection to the set of 2,604 genes obtained
after pre-processing to obtain a set of biomarkers for HNSCC. This
was achieved using mRMR (Minimum Redundancy and Maximum
Relevance) feature selection algorithm (Radovic et al., 2017). mRMR
selects a subset of features that have the least correlation amongst
themselves but high correlation with the output class. The advantage
of using this method is that it provides with a small set of features
with high predictive potential. The redundancy between genes is
taken into account in this technique in addition to the relationship
between samples and genes. The most relevant feature will be
considered out of the numerous identical features. We used the
value K = 100 for mRMR to extract 100 most relevant genes for the
prediction of HNSCC (Zhao et al., 2019a). This strategy has been
previously demonstrated to be useful and often utilized in single-cell
RNA sequencing analysis (Ding and Peng, 2005; Radovic
et al., 2017).

2.4 Top dysregulated genes

After extracting the top 100 genes from feature selection, we
performed a T-test analysis for the mean expression of genes in the
cells of the groups Normal vs. Cancer and Cancer HPV+ vs. Cancer
HPV−. We also wished to identify the top most dysregulated genes
in both the comparisons. To achieve this, we found mean
difference between the two classes in both comparisons
(Normal vs. Cancer and Cancer HPV+ vs. Cancer HPV−), and
reported the 10 most dysregulated (5 upregulated and
5 downregulated) genes with the highest difference in means
for each comparison.

2.5 Machine learning models

We have developed various machine learning (ML) models to
classify between normal subjects and HNSCC patients. In addition,
we have also classified HNSCC patients into HPV positive and
HPV negative. These machine learning models include Extreme
Gradient Boosting (XGB), Decision Tree (DT), K-Nearest
Neighbors (KNN), Extra Trees (ET), Logistic Regression (LR),
and Random Forest (RF) algorithms. Hyperparameter tuning was
also used to optimise the parameters of these algorithms. The DT
classifier is a supervised machine learning model that classifies the
output by learning decision rules from input, the KNN classifier
predicts on the basis of the maximum number of votes cast in
support of the class that is closest to the nearest neighbouring data

point, LR classifier uses a logistic function to calculate the
likelihood of an event, XGB Classifier is a distributed gradient-
boosted decision tree machine learning package that offers
simultaneous tree boosting, and RF classifier trains a number of
decision trees to produce a single tree. A technique for ensemble
supervised machine learning that makes use of decision trees is
called extra trees. (Breiman, 2001; Wu et al., 2002; Geurts et al.,
2006; Stoltzfus, 2011; Bulac and Bulac, 2016; Chen and Guestrin,
2016). These methods have previously been used in many studies
(Aggarwal et al., 2023; Arora et al., 2023; Kaur et al., 2023;
Srivastava et al., 2023).

2.6 Deep learning models

Along with the ML models, we have also applied deep learning
classification technique—Artificial Neural Network (ANN) to classify
the data (Wang, 2003). In this method, networks are composed of
multiple layers, and each layer has a number of nodes (or neurons)
that support decision making. The model architecture of ANN used in
this study includes three hidden layers and an output layer. A dropout
of 0.5 is implemented at each step to lessen the overfitting by neural
network. Biological neuron networks served as the basis for this
strategy. Artificial neurons, which are constructed from a network
of connected units or nodes and are conceptually similar to the
neurons in the human brain, are used to build ANNs. They consist
of several layers, and inside each layer there are multiple nodes (or
neurons) that support decision-making. The anticipated label
(Diseased or Normal) of the sample is the final result. The final
result classifies the samples into HNSCC positive or negative, and if
found HNSCC positive then whether the patient is HPV positive or
negative is identified.

2.7 Cross validation

The dataset was primarily composed of training data, which
made up 80% of it and validation set, which made up the remaining
20%. In the LOOCV (Leave One out Cross Validation) approach, the
whole training set is separated into N equivalent folds using the
LOOCV technique, with (N-1) being utilized for training and the
single fold being used for testing. Each fold serves as testing data for
the technique’s N iterations. The overall performance was calculated
as the mean of N iterations. This is a common practice inmany types
of studies (Peng et al., 2015; Vabalas et al., 2019).

2.8 Evaluation parameters

To evaluate the efficacy of various prediction models, we
employed a number of evaluation indicators. In this study, we
used both threshold-independent and threshold-dependent
parameters. To calculate threshold-dependent characteristics like
sensitivity (Sens), specificity (Spec), precision, F1-Score, and
accuracy (Acc), we utilised the following formulae. We also used
the conventional threshold-independent parameter Area Under the
Curve (AUC) to assess the performance of the models. The metrics
calculated in this study are mentioned in Eqs 1–5.
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Sensitivity � Pt

Pt +Nf
(1)

Specificity � Nt

Nt + Pf
(2)

Accuracy � Pt +Nf

Pt +Nt + Pf +Nf
(3)

F1-score � 2Pt

2Pt + Pf +Nf
(4)

Precision � Pt

Pt + Pf
(5)

Where, Pt is true positive, Nt is true negative, Pf is false positive,
and Nf is false negative.

3 Results

3.1 Feature selection

We applied a feature selection technique called mRMR to obtain
a list of highly relevant features (genes) for the detection of HNSCC
samples from a set of 2,604 genes that were obtained after data pre-
processing (Zhao et al., 2019b). We obtained a subset of 100 genes
that were able to classify HNSCC and non-HNSCC samples as well
as HPV+ and HPV− samples correctly.

3.2 Top dysregulated genes

After performing T-test on selected 100 genes for Normal vs.
Cancer and Cancer HPV+ vs. Cancer HPV− groups. It was found
that all the genes were significantly differentially expressed with
p-values<0.05 in Normal vs. Cancer comparison whereas 94 genes
out of 100 were significantly differentially expressed with
p-values<0.05 in Cancer HPV+ vs. Cancer HPV− comparison. The
list of selected 100 genes along with their p-values, mean gene
expressions, mean expression difference, and t-statistics for Normal
vs. Cancer and Cancer HPV+ vs. Cancer HPV− are given in
Supplementary Tables S1, S2, respectively. We also identified the top

10 dysregulated genes (5 upregulated and 5 downregulated) on the basis
of mean difference between two classes in both the comparisons. The
top 10 dysregulated genes for Normal vs. Cancer and Cancer HPV+ vs.
Cancer HPV− are given in Tables 1, 2, respectively.

3.3 Model performance for HNSCC vs.
non-HNSCC

We applied various MLmodels like DT, RF, ET, XGB, and KNN
on our dataset, where we used 80% of dataset GSE181919 for
training, 20% of dataset GSE181919 as validation set, and. It was
observed that machine learning models were able to achieve an
AUROC of 0.85 (XGB, ET) on the validation set. In order to increase
the AUROC, we applied DL algorithm—ANN on the dataset and
observed that the AUROCs increased to 0.91 for the validation set.
The complete results for the ML and DL performances are given
in Table 3.

3.4 Model performance for HPV+ vs. HPV−

After classification of samples as HNSCC or non-HNSCC, we
attempted to classify whether an HNSCC sample belonged to an
HPV+ or HPV− class. Hence, we developed ML and DL models to
further classify the HNSCC samples as HPV+ and HPV−. The
maximum AUROC achieved by ML models was 0.81 (XGB) for the
validation set. After employing ANN classifier to the data, it was
observed that the AUROC increased to 0.84 for the validation set.
The results for HPV+ and HPV− classification from HNSCC
patients are summarized in Table 4.

3.5 Gene ontology

The Gene Ontology (GO) encapsulates our understanding of the
biological world in three ways: molecular function, cellular
component, and biological process (Ashburner et al., 2000; Gene
Ontology Consortium, 2021). 100 genes that may serve as potential

TABLE 1 Top 10 dysregulated genes for Normal vs. Cancer.

Gene Mean gene
expression cancer

Mean gene
expression normal

Mean difference
(cancer-normal)

T-Statistic p-value Up/
Downregulated

CFD 0.773 57.497 −56.724 −85.985 0.000e+00 Downregulated

DCN 4.840 35.536 −30.696 −72.891 0.000e+00 Downregulated

GSN 2.566 29.935 −27.369 −76.183 0.000e+00 Downregulated

MGP 0.707 13.759 −13.052 −56.266 0.000e+00 Downregulated

MFAP4 0.206 7.802 −7.596 −82.346 0.000e+00 Downregulated

RPL28 63.478 15.950 47.528 103.250 0.000e+00 Upregulated

EEF1A1 85.286 35.414 49.872 82.304 0.000e+00 Upregulated

RPS19 77.935 17.512 60.423 92.379 0.000e+00 Upregulated

RPLP1 111.729 30.115 81.614 95.136 0.000e+00 Upregulated

B2M 158.129 43.524 114.605 107.234 0.000e+00 Upregulated
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biomarkers of HNSCC were retrieved once mRMR analysis was
complete. On these 100 retrieved genes, we next ran Gene Ontology
(GO) enrichment analysis using PantherDB to map the biological
processes, cellular components, and molecular functions of the
chosen genes (Mi et al., 2013). The findings of the GO
enrichment analysis for all 100 selected genes are displayed in
Supplementary Tables S3–S5, respectively. The results of Gene
Ontology for Biological Processes and Cellular Component are
shown in Figure 3A, B respectively. We see that the majority of

genes have a role in the binding activities of many metabolic
processes as shown in Figure 3C. The genes and their roles are
described in Figure 3.

4 Discussions

One of the heterogeneous diseases, HNSCC affects the head and
neck region, namely the oral cavity, paranasal sinuses, larynx, nasal

TABLE 2 Top 10 dysregulated genes for Cancer HPV- vs. Cancer HPV+.

Gene Mean gene
expression cancer

Mean gene
expression normal

Mean difference
(cancer-normal)

T-Statistic p-value Up/
Downregulated

B2M 112.908 190.234 −77.326 −40.719 0 Downregulated

HLA-B 27.504 52.285 −24.781 −38.936 0 Downregulated

HLA-A 27.495 47.94 −20.445 −32.086 1.01E-220 Downregulated

HLA-C 25.502 40.151 −14.649 −29.336 1.27E-185 Downregulated

RPLP1 106.477 115.458 −8.981 −5.482 4.24E-08 Downregulated

CXCR4 6.556 5.289 1.267 10.654 1.95E-26 Upregulated

BTG1 12.936 11.385 1.551 9.614 7.81E-22 Upregulated

RPL28 64.482 62.765 1.717 1.887 0.0592 Upregulated

EEF1A1 86.865 84.166 2.699 2.439 0.0147 Upregulated

RPS19 80.110 76.391 3.719 2.797 0.0052 Upregulated

TABLE 3 Performance of ML and DL models for the classification of HNSCC patients and normal subjects.

Training set

Models Accuracy MCC AUROC Sensitivity Specificity Precision F1 score

Decision Tree 0.93 0.85 0.93 0.95 0.91 0.94 0.94

Random Forest 0.96 0.92 0.96 0.98 0.94 0.96 0.97

Logistic Regression 0.92 0.84 0.92 0.95 0.88 0.92 0.94

XGB 0.92 0.83 0.92 0.92 0.92 0.95 0.93

ExtraTree 0.97 0.80 0.90 0.91 0.89 0.91 0.91

KNN 0.93 0.85 0.92 0.96 0.89 0.93 0.94

Deep Learning Model 0.99 0.93 0.97 0.98 0.96 0.97 0.98

Validation Set

Models Accuracy MCC AUROC Sensitivity Specificity Precision F1 Score

Decision Tree 0.85 0.70 0.83 0.97 0.70 0.80 0.88

Random Forest 0.85 0.71 0.83 0.99 0.68 0.79 0.88

Logistic Regression 0.79 0.60 0.77 0.98 0.56 0.73 0.84

XGB 0.86 0.73 0.85 0.98 0.71 0.81 0.89

ExtraTree 0.86 0.74 0.85 0.99 0.71 0.81 0.89

KNN 0.83 0.68 0.81 0.98 0.65 0.77 0.87

Deep Learning Model 0.92 0.82 0.91 0.94 0.89 0.94 0.94
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TABLE 4 Performance of ML and DL models for the classification of HPV+ and HPV− patients from HNSCC patients.

Training set

Models Accuracy MCC AUROC F1 score Sensitivity Specificity Precision

Decision Tree 0.75 0.50 0.75 0.78 0.79 0.71 0.77

Random Forest 0.82 0.63 0.81 0.84 0.87 0.75 0.81

Logistic Regression 0.84 0.67 0.84 0.86 0.86 0.82 0.85

XGB 0.77 0.52 0.76 0.79 0.81 0.71 0.77

ExtraTree 0.84 0.68 0.84 0.86 0.88 0.8 0.84

KNN 0.80 0.59 0.79 0.82 0.84 0.75 0.8

Deep Learning Model 0.991 0.980 0.995 0.992 0.989 0.993 0.995

Validation Set

Models Accuracy MCC AUROC F1 score Sensitivity Specificity Precision

Decision Tree 0.69 0.35 0.65 0.74 0.76 0.59 0.72

Random Forest 0.84 0.88 0.80 0.83 0.91 0.92 0.94

Logistic Regression 0.80 0.54 0.75 0.85 0.9 0.61 0.81

XGBClassifier 0.82 0.61 0.81 0.86 0.87 0.74 0.86

ExtraTree Classifier 0.46 −0.11 0.76 0.52 0.58 0.33 0.47

K Neighbours classsifier 0.49 −0.06 0.55 0.55 0.58 0.38 0.52

Deep Learning Model 0.84 0.70 0.83 0.88 0.98 0.68 0.79

FIGURE 3
The figure displays the Gene Ontology (GO) enrichment analysis results as (A) Biological Process, (B) Cellular Component (CC), and (C) Molecular
Function (MF) for the top 100 selected genes.
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cavity, hypopharynx, and oropharynx. It is described by malignant
and uncontrollable cell proliferation in these locations (Hsieh et al.,
2019). Advancement in the sequence technology allows the
researchers to find various biomarkers such as diagnostic,
predictive, and prognostic biomarkers. These biomarkers help in
better understanding of the disease as well as may aids in designing
novel and effective diagnosis and treatment. A biomarker is
described as a biological molecule present in the blood, other
body fluids, as well as in tissues, that serves as a sign of a normal
or aberrant process, a condition, or a disease by the National Cancer
Institute (NCI). To determine how effectively the body will react to
an illness or condition medication, a biomarker could well be
utilized (Hsieh et al., 2019). This study aims to find out a set of
potential biomarkers from single-cell transcriptomic data of head
and neck cancer patients that can classify HNSCC patients and
normal individuals with reliable accuracy. In addition, we have also
attempted to classify HNSCC patients as HPV+ or HPV−. The
biomarkers identified in this study could aid in the early diagnosis
and screening of HNSCC.

To categorize non-cancer and HNSCC disease cells from their
single-cell RNA seq data, we employed a variety of machine
learning models, including an ANN deep learning model. We
also further tried to categorize the diseased patients into HPV+ and
HPV−. We trained the model with 80% of the dataset GSE181919,
20% of the dataset GSE181919 as validation set. The datasets were
originally quite extensive and had a significant number of features.
During the preprocessing step, the feature count was decreased to a
shallow level of 2,604 genes (features). One of the feature selection
techniques known as mRMR was used to obtain the limited set of
features which could be helpful in categorizing the samples because
many characteristics were correlated. The top 100 genes with the
least amount of redundancy and the most relevance were extracted
from these 2,604 genes (features) using mRMR. Furthermore,
100 genes (features) separated the HNSCC patients from non-
cancer with an accuracy of around 92%, an AUROC of 0.91 in the
validation set. Whereas in the case of HPV classification, the
metrics obtained were, AUROC 0.83% and 98% accuracy on the
validation set. For the detection and categorization of biomarkers,
ANN has proven to be an effective technique among all machine
learning models.

After obtaining the top 100 most relevant genes for the
classification of HNSCC, we performed Gene Ontology (GO)
enrichment analysis using PantherDB and most of the genes
were observed to be related to catalytic and binding activities (Mi
et al., 2013). Some of them also had a role in other essential processes
like ATP-dependent activity, molecular function regulator,
molecular transducer, structural molecule activity, translation
regulator activity, transcription regulator, and transporter activity.
Many of the genes identified in this study have been previously
linked to HNSCC in earlier studies. The gene PLAC9’s
overexpression has been reported in connection with the
inhibition of cell growth regulation and has also been reported in
connection with cancers such as ovarian cancer and breast cancers as
prognostic biomarkers (Ouyang et al., 2018). Gene “ACKR1”, along
with other 3 genes in a study, was reported to be downregulated in
HNSCC patients, which was correlated with poor prognosis (p <
0.05) (Liu et al., 2022). Also, gene “AQP7,” which is involved in
physiologically functional cell migration, was upregulated in MSR of

patients with ten tumors (Zivicova et al., 2018). Whereas, gene
FXYD1 was reported to be downregulated in the cancer samples,
while FXYD4 and FXYD5 were overexpressed (p < 0.05, fold
change>1.5) (Jin et al., 2021). In a study on cancer cells, it was
observed that BTG1 gene overexpression was linked to tumor
growth or lung metastasis, inhibited proliferation, and induced
differentiation in different types of cancer cells (Zhao et al.,
2020). Also, mutations occurring in different genes, including
B2M, CDKN2A, is found to be related with the occurrence and
development of tumors in Head and neck cancer patients (Wang
et al., 2020). As shown in the study Sun et al., 2020, genes such as
MFAP4, CD37, CXCL12, ADH1B, SOD3, SCARA5, ANGPTL1,
FHL1, F10, CXCR4, MEG3, TXNIP, GDF10, and ABI3BP are
downregulated in head and neck squamous cell carcinoma as
they operate as potential tumor suppressor genes, inhibiting
tumor cell proliferation, invasion, and migration while also
promoting apoptosis (Sun et al., 2020). By controlling the
expression of miR-421 and E-cadherin, MEG3 long-encoding
RNA inhibits the development of head and neck squamous cell
carcinoma. However, additional research into MEG3’s downstream
mechanism in controlling the molecular process of epithelial-
mesenchymal transformation (EMT) in head and neck squamous
cell carcinoma (HNSCC) development is required (Ji et al., 2020).
Growth differentiation factor-10 (GDF10), also known as BMP3b, is
a tumor suppressor that belongs to the transforming growth factor-b
(TGF-b) superfamily (Cheng et al., 2016). CIB1, PIM3, SLC16A3,
VOPP1, BMP4, TIGIT, ADAR, and LRRN4CL are studied as
upregulated genes in various cancer types such as squamous
carcinoma cells, breast cancer, head and neck squamous cell
carcinoma, and pancreatic cancer (Baras et al., 2011; Alarmo
et al., 2013; Zheng and Tian, 2014; de Jong et al., 2018;
Notarangelo, 2018; Broutian et al., 2020; Yu et al., 2020; Huo
et al., 2021; Wen et al., 2021; Yang et al., 2022). A complex that
is important in the keratinocyte-intrinsic immune response to
human papillomaviruses (-HPVs) is formed when CIB1 interacts
with the EVER1, and EVER2 proteins (de Jong et al., 2018;
Notarangelo, 2018). It has been observed that nearly all primary
HNSCCs express at least one PIM kinase member at high levels
(Broutian et al., 2020). Immunological checkpoint T cell
immunoreceptor with immunoglobulin and ITIM domain
(TIGIT) is essential for immune suppression. However, it has a
connection to genetics and epigenetics, and a role in tumor
immunity (Wen et al., 2021). The transforming growth factor
(TGF) superfamily includes extracellular signaling molecules
known as bone morphogenetic proteins (BMPs), which are
known to control cell proliferation, differentiation, and motility,
particularly during development. Functional research shows that,
particularly in HNSCC cancer, has connected BMP4 to the
encouragement of cell migration and the suppression of cell
proliferation (Alarmo et al., 2013).

Overall, most of the genes which were obtained from our study
have been reported as promising candidate for biomarkers in
various studies (Zivicova et al., 2018; Broutian et al., 2020; Sun
et al., 2020; Wang et al., 2020; Zhao et al., 2020; Jin et al., 2021; Liu
et al., 2022). However, some genes have not yet been reported in
connection with Head and Neck cancer. These genes may require
further investigation and study. These genes may act as novel
findings which could help in diagnose patients with Head and
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neck cancer. In order to help the scientific community, we created a
Python package called “HNSCPred” based on the aforementioned
work (https://webs.iiitd.edu.in/raghava/hnscpred/). To fully
understand how the discovered genes impact and contribute to
the progression of HNSCC disease, further clinical investigations on
these genes are necessary.
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