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Introduction: Multifactorial Eye disorders are a significant public health concern
and have a huge impact on quality of life. The pathophysiological mechanisms
underlying these eye disorders were not completely understood since functional
and low-throughput biological tests were used. By identifying biomarkers linked
to eye disorders, metabolomics enables early identification, tracking of the
course of the disease, and personalized treatment.

Methods: The electronic databases of PubMed, Scopus, PsycINFO, and Web
of Science were searched for research related to Age-Related macular
degeneration (AMD), glaucoma, myopia, and diabetic retinopathy (DR). The
search was conducted in August 2023. The number of cases and controls, the
study’s design, the analytical methods used, and the results of the metabolomics
analysis were all extracted. Using the QUADOMICS tool, the quality of the studies
included was evaluated, and metabolic pathways were examined for distinct
metabolic profiles. We used MetaboAnalyst 5.0 to undertake pathway analysis
of differential metabolites.

Results: Metabolomics studies included in this review consisted of 36
human studies (5 Age-related macular degeneration, 10 Glaucoma, 13
Diabetic retinopathy, and 8 Myopia). The most networked metabolites in
AMD include glycine and adenosine monophosphate, while methionine,
lysine, alanine, glyoxylic acid, and cysteine were identified in glaucoma.
Furthermore, in myopia, glycerol, glutamic acid, pyruvic acid, glycine,
cysteine, and oxoglutaric acid constituted significant metabolites, while
glycerol, glutamic acid, lysine, citric acid, alanine, and serotonin are highly
networked metabolites in cases of diabetic retinopathy. The common top
metabolic pathways significantly enriched and associated with AMD, glaucoma,
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DR, and myopia were arginine and proline metabolism, methionine metabolism,
glycine and serine metabolism, urea cycle metabolism, and purine metabolism.

Conclusion: This review recapitulates potential metabolic biomarkers, networks
and pathways in AMD, glaucoma, DR, and myopia, providing new clues to
elucidate disease mechanisms and therapeutic targets. The emergence of
advanced metabolomics techniques has significantly enhanced the capability
of metabolic profiling and provides novel perspectives on the metabolism
and underlying pathogenesis of these multifactorial eye conditions. The
advancement of metabolomics is anticipated to foster a deeper comprehension
of disease etiology, facilitate the identification of novel therapeutic targets, and

usher in an era of personalized medicine in eye research.

metabolomics, biomarkers, metabolic pathways, AMD, glaucoma, DR, myopia

1 Introduction

Globally, at least 2.2 billion individuals have visual impairment,
of which half could have been prevented or has yet to be addressed.
Ocular disorders like cataract, refractive error, age-related macular
degeneration (AMD), glaucoma, and diabetic retinopathy (DR)
contributed to nearly 1 billion cases of visual impairment or
blindness (Steinmetz et al., 2021). The natural disease courses of
common eye disorders are often complicated and interrelated.
These disorders have been linked to a number of genetic and
environmental factors, but little is known about how these variables
interact or play a role in pathogenic pathways (Shastry, 2011). There
are a wide range of anatomical, physiological, and molecular changes
in different eye disorders. These changes can vary depending
on the specific eye disorder and its severity. Some common
anatomical changes include alterations in the morphology and
structure of the eye, while physiological changes may involve
impaired visual functions. Moreover, molecular changes occur
at a cellular level, affecting the functioning of various proteins,
metabolites, and signaling pathways within the eye (Mataruga and
Miiller, 2014; Hameed et al., 2020).

Blindness and visual impairment caused by various eye
disorders have a profoundly severe impact on the quality
of life for many adults and teenagers that have emerged as
major public health issues (Ferris and Tielsch, 2004). The
pathophysiological processes behind eye disease are not completely
understood due to limited information on these kinds of disorders
obtained via low-throughput biological testing and subsequent
functional testing of candidate genes, metabolites, and proteins.
A comprehensive approach to physiological and molecular
alterations must thus be examined in a hypothesis-free manner,
ensuring high-throughput analysis. Different omics, which is the
broad characterization and measurement of biological molecules,
have developed rapidly over the years because of scientific
advances in mass spectrometry, sequencing, and bioinformatics
(Grochowski et al., 2020; Chauhan et al., 2022).

To improve the prognosis for eye diseases, it is crucial to develop
more efficient screening methods and/or diagnostic biomarkers.
Thus, metabolomics is a potential method for identifying numerous
biomarkers to further advance our knowledge on the etiology of
eye diseases. By studying the metabolic profile of individuals with
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eye diseases, researchers can identify specific biomarkers that are
associated with these conditions. These biomarkers could then
be used for early detection, monitoring disease progression, and
developing targeted therapies. Moreover, metabolomics has laid a
basic foundation to understand the underlying mechanisms and
impacted pathways in eye diseases, paving the way for more effective
treatments in the future.

Different studies have examined the relationship between
common ocular disorders and metabolite changes in the eye. It
raises questions about the clear map of potential connections
between metabolites and ocular disorders since metabolites may
have different expression profiles in different ocular conditions. This
review provides a better and more comprehensive understanding
of how alterations in metabolites can affect ocular health in disease
conditions.

2 Overview of metabolomics

Metabolites are low molecular weight organic compounds that
participate in chemical processes within the cells. They are required
for numerous biological functions, including energy generation,
signaling, and gene expression control (Mamas et al., 2011).In 1998,
the term metabolome was first used in relation to the genome,
transcriptome, and proteome. Shortly after, the first academic
articles employing the phrases metabolomics or metabolic profiling
were released (Alseekh and Fernie, 2018). The study of metabolites
in a biological system and how they vary in response to diverse
situations is known as metabolomics. The fundamental goal of the
metabolomics sciences is to discover, characterize, and quantify
the biomolecules and molecular processes that affect the structures
and functions of cells and tissues. Metabolomics has grown in
importance as a technique for studying the underlying causes
of numerous diseases, such as cancer, diabetes, and degenerative
and neurological disorders. Researchers can gain insight into the
metabolic pathways that are linked to these disorders by studying
the metabolites present in various biological samples such as blood,
urine, and tissue (Idle and Gonzalez, 2007).

Metabolomics, while still in its early stages compared to
genomics and proteomics, is quickly becoming an essential
tool in medicine. This study of the metabolome is particularly
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relevant to the phenotype, providing insights into normal and
diseased states, as well as responses to external stimuli. It
serves as a dynamic indicator of genetic, environmental, or
disease-related disruptions and offers a sensitive measure of
disease phenotype due to the direct association of metabolites
with biological processes (Dunn et al., 2011; Trivedi et al., 2017).
Metabolomics offers numerous advantages in the medical domain,
such as identifying biomarkers for disease risk prognosis and
diagnosis, evaluating disease progression, elucidating the impact of
environmental and lifestyle factors on disease, and assessing drug
efficacy, toxicity, and adverse reactions. Furthermore, metabolomics
exhibits stronger associations with disease outcomes than genetics
and requires fewer samples for investigation compared to genetic
research (Nicholson et al., 2012; Jové et al., 2014).

Ocular metabolomics has the potential to revolutionize the
identification and treatment of eye disorders by uncovering
metabolic processes in ocular tissues and fluids. This knowledge
can lead to the development of early diagnosis and interventions,
as well as the identification of specific metabolites associated with
various eye conditions, which used as biomarkers in diagnostic
assays (Young and Wallace, 2009; Tan et al., 2016). It also aids in
tracking the development of diseases and evaluating the efficacy
of therapies by examining changes in metabolite levels over
time. Additionally, ocular metabolomics may reveal individual
variations in metabolite profiles, which may be exploited to
create patient-specific therapy regimens (Bobadilla et al., 2022).
The general overview of metabolomics is illustrated in the
following Figure 1.

5 Development of metabolomics and
its technological advancement

In the late 1940s, Roger Williams put forward an idea that
suggested each person has a unique metabolic profile represented
in their bodily fluids. With a curiosity to identify metabolic
pattern variances across different individuals with schizophrenia,
he conducted a paper chromatography test by examining metabolic
components found in bodily fluids such as saliva and urine
(Williams and Berry, 1951). Technological advancements have
made it possible to quantitatively measure metabolites. In 1971,
Horning and colleagues demonstrated the feasibility of quantifying
chemicals in tissue extracts and urine using gas chromatography-
mass spectrometry (GC-MS) and coined the term “metabolic
profile” (Horning and Horning, 1971). Concurrently, nuclear
magnetic resonance (NMR) technology began detecting metabolites
in raw biological samples. Advancements in magnetic field
strength and magic angle spinning subsequently heightened the
technology’s sensitivity. Nicholson et al. demonstrated the potential
for using NMR spectroscopy to diagnose diabetes mellitus in 1984
(Nicholson et al., 1983).

Growing evidence highlights the significance of metabolism
in various diseases and medical conditions. Metabolomics
offers unprecedented value to fundamental drug research.
This value encompasses the identification of drug targets,
understanding disease etiology and mechanisms, and notably
expedites drug development by predicting pharmacokinetics,

pharmacodynamics, and therapeutic response. Additionally,
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metabolomics facilitates the exploration of medication interactions,
drug the
treatment strategies (Pang and Hu, 2023). Following significant

repurposing, and development of personalized
progress, the primary methods for capturing and analyzing
metabolomes in metabolomics profiling are NMR and mass
spectrometry (MS). Effective sample preparation and data analysis
have also played a crucial role in advancing metabolomics

alongside instrumentation.

3.1 Nuclear magnetic resonance
spectroscopy

Nuclear magnetic resonance is a non-destructive technique that
provides information about the chemical structure and dynamics
of metabolites. Based on their chemical shifts and coupling
constants, metabolites may be identified and quantified using NMR
(Emwas et al., 2019). The foundation of NMR is the idea that
specific atomic nuclei’s magnetic properties can be applied to infer
information about the physical and chemical characteristics of the
atoms or molecules they are included in. In a magnetic field,
magnetic nuclei absorb and re-emit electromagnetic radiation at
a specific resonance frequency determined by the intensity of the
magnetic field and the atom’s isotope’s magnetic characteristics
(Dunn et al., 2011).

The analysis of intact tissue samples in solid form is
also possible using high-resolution magnetic angle spinning
(MAS) NMR. The ordinarily wide spectrum could be made
smaller by rotating a sample quickly at the magic angle
(m = 54.74°) with regard to the magnetic fields direction
(Midelfart, 2009; Moestue et al., 2011). Kryczka et al. conducted
the first MAS NMR analysis of human eye tissues and

identified 29 metabolites. The study revealed a correlation
between tissue biochemical composition and biological activities
(Alia et al., 2009).

NMR-based experiments for fluid

serum, plasma, and CSF require less preparation compared

samples like urine,
to MS investigations. While MS provides molecular formula
information, NMR can distinguish structural isomers. Despite
being less sensitive and requiring larger sample quantities,
NMR spectroscopy offers high quantity, repeatability, and non-
destructiveness to tissue samples, allowing for multiple tests on
the same sample (Dunn etal, 2011). NMR spectroscopy has the
benefit of avoiding sample derivatization, which may introduce
artifacts and decrease the precision of metabolite measurement.
NMR spectroscopy may still be used to identify low-abundance
metabolites, although it does so to a lesser extent than MS
due to its reduced sensitivity (Johnson and Gonzalez, 2012).
By combining these two techniques, researchers can obtain
comprehensive insights into the metabolome and gain a deeper
understanding of metabolic pathways and disease mechanisms
(Ashrafian et al., 2021).

3.2 Mass spectrometry

of a molecule is

(MS) by

The mass determined using mass

spectrometry analyzing the  mass-to-charge
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(Dunn et al.,, 2011).
Gas chromatography-mass spectrometry (GC-MS), liquid

ratio (m/z) of its ions. spectrometers operate in
identify

mass

positive and negative modes to ionized

species.  Peaks in resulting spectra  can

structural composition of the sample

chromatography-mass ~ spectrometry ~ (LC-MS),  capillary
electrophoresis  mass  spectrometry (CE-MS) and Ion
chromatography-mass  spectrometry (IC-MS) are common

pre-mass spectrometer separation techniques that enhance
sensitivity and facilitating metabolite identification (Lu etal.,
2008). GC separates based on volatility or other chemical
characteristics, while LC relies on polarity, with hydrophilic
liquid chromatography (HILIC) and reversed-

phase (RP) methods being common. Capillary electrophoresis

interaction

separates based on polarizability and molecular shape (Muller
and de Villiers, 2023). Likewise, Ion chromatography (IC)
separates analytes through
ionic exchange, commonly used for both anion and cation

is an analytical method that

analysis. IC is effective in detecting small inorganic ions
such as phosphate, nitrate, and sulfate ions, as well as in
analyzing polar metabolites like uric acid and amino acids
(Amin et al., 2008).

Initially, mass spectrometry was used to identify and quantify
individual metabolites in a sample. However, with the development
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of more advanced techniques, mass spectrometry can now
be used to analyze entire metabolic pathways and networks
(Dunn, 2008). One major advance in MS for metabolomics is
the development of high-resolution mass spectrometry (HRMS).
HRMS’s ability to deliver high mass accuracy allows for more
reliable identification of wunknown compounds (Nazifova-
Tasinova et al., 2020).Overall, the use of MS in metabolomics
has become an essential tool for studying metabolic pathways
and networks and has greatly advanced our understanding of
metabolism in health and disease (Chenetal., 2018; Alarcon-
Barrera et al., 2022). Metabolomics in eye research facilitates
the

be used as diagnostic, screening, or prognostic tools in the

identification of disease-related biomarkers which can

clinical setting.

3.3 Sample preparation for metabolomics

The package of metabolomics advancements has revolutionized
sample preparation to provide plausible outcomes, leading to
more reliable and meaningful results The choice of sample
preparation methods is dependent on the purposes of the
investigation. Commonly employed methods include liquid-
liquid extraction (LLE), solid-phase extraction (SPE), and
protein precipitation (PP) (Koleetal, 2011). In LLE, the
sample is mixed with a solvent to draw out the desired
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metabolites, and the mixture is subsequently centrifuged to
separate the solvent from the sample matrix. SPE entails
eluding the metabolites from a solid-phase cartridge before
washing it to get rid of additional matrix components. More
importantly, for the analysis of metabolites with particularly
low abundance, high susceptibility to matrix interference, and
particularly high or low polarity, LLE and SPE are applied
for the purposes of sample enrichment and matrix removal.
PP is the simplest sample preparation method and mainly
applied for general profiling. It separates proteins from biological
materials by adding a precipitating agent to the sample and
centrifuging to separate protein precipitate from the sample matrix
(Li et al., 2019).

3.4 Data analysis

An essential and integral part of metabolomics research is
data analysis. High-throughput NMR and MS spectrum data must
undergo preprocessing to ensure their quality and reliability. During
metabolomics data analysis, there are various steps including
peak picking, retention time alignment, intensity normalization,
compound identification and statistical analysis (Ren et al., 2015).
In metabolomics research, the tasks of peak picking and retention
time alignment are commonly addressed using software tools
such as XCMS, MZmine, and OpenMS. Similarly, intensity
normalization procedures are typically conducted utilizing tools
like MetaboAnalyst, MetaboLights, and MZmine. Furthermore,
the process of compound identification is facilitated by software
solutions such as MetFrag, mzCloud, and MassBank, among
others (Misra and van der Hooft, 2016). Subsequent to the steps
involving filtering, recognition, identification, quantification,
scaling, and normalization of metabolite properties, data analysis
is often carried out either on the spectra themselves or on
the resulting concentration table. Lastly, the statistical analysis
of metabolomics data is commonly executed using software
platforms like MetaboAnalyst, MetaboLights, SIMCA, or other tools
(Chang et al., 2021).

Both parametric and nonparametric tests, including the t-
test, analysis of variance (ANOVA), Mann Whitney U, and
Kruskal Wallis one-way analysis, can be employed to identify
biomarkers associated with the desired outcome (Vinaixa et al.,
2012). Unsupervised multivariate statistical methods such as
principal component analysis (PCA), self-organizing maps
(SOM) and hierarchical cluster analysis (HCA) are valuable for
exploring patterns and clusters, as well as for addressing data
quality concerns such as outliers and batch effects. Concentration
tables and spectra can serve as inputs for supervised algorithms
like partial least square discriminant analysis (PL-SDA) and
orthogonal PLS-DA to make predictions, identify biomarkers,
and distinguish between disease phenotypes and endotypes
(Worley etal., 2013). For large datasets, machine learning
techniques such as hidden Markov models, Bayesian methods,
support vector machines (SVM), random forests, and neural
networks can be beneficial for prediction and biomarker discovery
(Liebal et al., 2020).
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4 Metabolomics approaches

The discipline of health and biomedical sciences has one of
the most interesting applications for metabolomics. An individual’s
specific metabolic profile may be determined by examining
the metabolites found in their biological samples. In a single
examination, hundreds to thousands of metabolites may be assessed,
but their identities might not be known before or after the
investigation (Hotea et al., 2023). Metabolomics data’s volume and
complexity often require high-performance bioinformatics tools for
post-processing and analysis. Metabolomics analysis can encompass
a wide range of samples, including tissue, tears, blood, urine, sweat,
and cultured cells or media (Gonzalez-Covarrubias et al., 2022).

Metabolomics employs two approaches: targeted and
untargeted, both capable of detecting biomarkers but facing
constraints in clinical research. Proper sample preparation,
including extraction, purification, and derivatization, is essential to
remove interfering substances and enhance metabolite detection,
depending on the type, quantity, and intended strategy of
the samples (Lindon et al., 2011).

Untargeted metabolomics is a comprehensive examination
of a biological entity’s metabolite composition under certain
physiological circumstances. Untargeted metabolomics is usually
used to develop hypotheses related to metabolic changes (Schrimpe-
Rutledge et al., 2016). However, it is hard to cover all metabolites
objectively owing to the limits of existing analytical platforms and
the requirements for sample collection and processing (Fiechn, 2002).

Untargeted metabolomics research can uncover new metabolic
processes because of their global character; however, processing
enormous volumes of raw data, challenges in recognizing and
characterizing unknown small molecules, dependence on the
platforms inherent analytical coverage, and bias towards the
detection of high-abundance compounds are the key drawbacks of
untargeted metabolomics (Roberts et al., 2012; Dunn et al,, 2013).

Targeted metabolomics measures specific groups of metabolites
related to chemical composition or biological function, aiding in the
quantification of known compounds, such as in drug metabolism
studies. This approach leverages metabolic kinetics, end products,
routes, and biochemical pathways to generate hypotheses and
gain deeper insights from untargeted investigations (loannidis
and Khoury, 2011). Low-abundance compounds are favored by
techniques like the triple quadrupole mass spectrometer (TQMS),
which also enables the measurement of metabolites with low
concentrations. It is also possible to minimize high-abundance
compounds during sample preparation. With more selectivity
and sensitivity than untargeted techniques, targeted metabolomics
examines a limited number of metabolites (Patti et al., 2012).

5 Methods
5.1 Search strategy

We conducted a systematic review of metabolomics studies
pertaining to common ocular disorders (myopia, age-related
macular degeneration, glaucoma, and diabetic retinopathy) based
on the recommendations of the Meta-analysis of Observational
Research in Epidemiology (DS, 2000). The reporting of the
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study’s findings adhered to the Preferred Reporting Items for
Systematic Review and Meta-Analysis (PRISMA) standards
(Liberati et al., 2009) (Figure 2). We used the following search
terms: ((“metabolomics” OR “metabonomics” OR “metabolome”
OR “metabolites” OR “metabolic profiling”)) AND ((“myopia”
OR “short sightedness” OR “myopic degeneration”) OR (“macular
degeneration” OR “age-related maculopathy” OR “age-related
macular degeneration”) OR (“glaucoma” OR “ocular hypertension”
OR “glaucomatous optic neuropathy”) OR (“diabetic retinopathy”
OR “diabetic eye disease” OR “diabetic macular edema” OR “diabetic
eye complications”) OR (“ocular disorders” OR “eye diseases”)) to
discover relevant metabolomics studies published up to August
2023. In specific to EMBASE, the search term was modified as
(“metabolomics”/exp OR “metabolomics” OR “metabonomics”/exp
OR “metabonomics” OR “metabolome”/exp OR “metabolome” OR
“metabolites”/exp OR “metabolites“ OR “metabolic profiling”/exp
OR “metabolic profiling”) AND (“myopia”/exp OR “myopia”
OR “short sightedness”/exp OR “short sightedness” OR “myopic
degeneration” OR “macular degeneration”/exp OR “macular
degeneration” OR “age-related maculopathy” OR “age-related
macular degeneration”/exp OR “age-related macular degeneration”
OR “glaucoma”/exp OR “glaucoma” OR “ocular hypertension”/exp
OR “ocular hypertension” OR “glaucomatous optic neuropathy”/exp
OR “glaucomatous optic neuropathy” OR “diabetic retinopathy”/exp
OR “diabetic retinopathy” OR “diabetic eye disease”/exp OR
“diabetic eye disease” OR “diabetic macular edema’/exp OR
“diabetic macular edema” OR “diabetic eye complications”/exp
OR “diabetic eye complications” OR “ocular disorders” OR “eye
diseases”/exp OR “eye diseases”). The discovered articles were
imported into citation management software (EndNote version
20, Clarivate, London, United Kingdom) for further screening
and evaluation. Two authors conducted separate searches for
publications and filtered those that were included based on the
title and abstract.

5.2 Inclusion and exclusion criteria

We carried out a thorough analysis of all research written in
English to determine if they used a human metabolomics technique
based on nuclear magnetic resonance (NMR) or mass spectrometry
(MS). Studies were excluded if they used animals or if they didn't
provide adequate metabolic data.

5.3 Quality assessment

QUADOMIC’s technique was used to evaluate the quality
of the studies (Lumbrerasetal., 2008). It is an adaptation of
the QUADAS tool, which considers the challenges posed by
omics and is used to systematically evaluate diagnostic accuracy
investigations. QUADOMICS combines four programs that address
sample characteristics, preanalytical, clinical, and physiological
differences in study participants, as well as overfitting in data
collection and analysis.

The data were collected and synthesized for each paper,
encompassing the quantity of biological samples, detection and
analysis tools, sample size, study design and procedures, and
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repeated biomarker reports. Employing MetaboAnalyst software
(version 5.0) (Pangetal., 2021), pathway analysis and topological
findings were elucidated based on the anticipated disease-
influencing metabolites reported in all the papers included in
the review. The pathway impact value was obtained from the
examination of the pathway topology, while the calculated P-value
was based on the analysis of the pathway enrichment.

6 Application of metabolomics in eye
diseases

In human eyes, ocular fluids and tissues are rich in metabolites.
The common sources of metabolomics samples are retina, aqueous
humor, vitreous, and tear film. Drawings of the aqueous and
vitreous humor are intrusive procedures, and patients having eye
surgery are eligible to provide these samples. Studying ocular
conditions where the blood-retinal-barrier is compromised, such as
DR or AMD, could be helpful with plasma or serum metabolomics
studies (Luo etal., 2020). There are common or distinct ranges
of anatomical, physiological, and metabolic changes in the retina
during the course of AMD, glaucoma, myopia, and DR. These
changes give clues to consider the retina as a primary target for
many researchers to investigate disease biomarkers. The retina is
rich in interphotoreceptor matrix, which is a proteoglycan-based
substance used to exchange metabolites between the retinal pigment
epithelium (RPE) and other layers (Hurley et al., 2015).

Due to the blood-aqueous and blood-retinal barriers, the eye
has a unique metabolome, which makes it a perfect organ for
metabolomics studies. Aqueous and vitreous humor’s metabolomes
could reflect local metabolism, with the systemic environment
having only a modest impact (Zhang et al., 2023). Characterizing
healthy biofluids, researching tissue metabolism, comprehending
disease causes, and developing novel treatments for eye diseases
have all been realized in eye care by using metabolomics. Finding
disease-related biomarkers or risk variables, which can be used as
diagnostic, screening, or prognostic tools in the clinical setting, is an
important clinical application. More studies are still needed to define
the normal metabolome and establish what constitutes normal intra-
and inter-individual variability. The main focus of this review is the
application of metabolomics in AMD, glaucoma, DR and myopia.

6.1 Age-related macular degeneration
(AMD)

By far, age-related macular degeneration (AMD) is a very
common eye disease causing permanent visual impairment over the
age of 65 years, accounting for 8.7% of blindness across the globe
(Friedman BJOC et al., 2004). Currently, there are an estimated 196
million individuals affected by AMD, with projections indicating
a rise to 288 million by 2040 (Wongetal., 2014). There are
two main types of AMD: dry AMD and wet AMD. Dry AMD
represents the predominant manifestation of AMD, encompassing
approximately 85%-90% of all instances (Flaxel et al., 2020). Early
AMD stages involve intracellular lipofuscin accumulation (drusen)
in the RPE and the formation of sub-RPE deposits within the
macula. Progressive deposition of drusen over time may result in
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FIGURE 2

Flow diagram of literature search and study selection for metabolomics of common eye disorders. This portrays the exploration of libraries, the
procedures for literature review, the selection criteria, and the selection process.

macular atrophy and desiccation, culminating in a gradual decline in
visual acuity (Spraul et al., 1999). Wet AMD occurs when abnormal
blood vessels grow underneath the retina and leak blood and fluid
into the macula, causing rapid and severe vision loss. Choroidal
neovascularization (CNV), the most severe form of advanced wet
AMD, leads to rapid central vision loss, while geographic atrophy
(GA), another severe type, is characterized by gradual central
vision decline due to RPE and photoreceptor cell degeneration
(Flaxel etal., 2020). Vascular endothelial growth factor (VEGF)
antibodies may attenuate CN'V progression by retarding the growth
of new vessels, their effects are often temporary, with the condition
frequently progressing to macular atrophy following anti-VEGF
therapy (Chakravarthy etal., 2013). Clinical trials suggested that
the potential contribution of complement system dysregulation to
AMD has led to the emergence of complement inhibition as a
therapeutic strategy for slowing the progression of GA (Desai and
Dugel, 2022;

AMD-related alterations in lipid metabolism and fatty

Spaide and Vavvas, 2023).

acid composition have been found using metabolomics studies
(Suzumura et al., 2020; Heckel et al., 2022). Lipid metabolomics has
shown that the amounts of different lipids, such as phospholipids,
sphingolipids, and triglycerides, are altered in the blood and
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retina of people with AMD. Omega-3 fatty acid downregulation
has been linked to the onset and development of AMD. It has
been shown by the significant lipid buildup that causes drusen
to develop in the macula of those with AMD. Furthermore, AMD
has been linked to elevated cholesterol and atypical lipoprotein
metabolism (Landowski and Bowes, 2022).

In two separate studies using serum and plasma samples,
metabolite analysis of AMD patients found significant differences
between cases and controls. The levels of several metabolites, such
as amino acids, lipids, and carbohydrates, changed as a result
of these alterations. Differential glycerophospholipid metabolism,
lipid super-pathway, and amino acid metabolism (including N-
acetylasparagine, a component of alanine and aspartate) were found
in a comparative investigation of AMD patients (Lains et al., 2018).
The changed metabolite profiles point to possible disturbances in the
retina’s metabolic pathways, which could help AMD advance and
progress (Lains et al., 2018; Shen et al., 2022).

In a targeted metabolomics analysis of samples from the
advanced AMD group showed upregulation of bi- and tripeptides,
covalently modified amino acids, bile acids, vitamin D-related
metabolites, lipoproteins, and their subclasses (cholesterols,
glycerides, and phospholipids) (Osborn etal,, 2013). These also
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suggested dysregulation in various metabolic pathways in the
advanced AMD group. The presence of covalently modified amino
acids and bile acids may indicate oxidative stress and inflammation
in AMD patients (Osborn et al., 2013; Sim et al., 2022).

In a serum sample of neovascular AMD, carnitine shuttle
pathways were significantly increased. This upregulation of carnitine
shuttle pathways plays a crucial role in the pathogenesis of
neovascular AMD (Mitchell et al., 2018). Downregulation of amino
acids (Alanine, Isoleucine, Leucine, Phenylalanine, and Tyrosine)
and citrate levels were reported in AMD patients compared to their
counter-controls (Acar et al., 2020). Depleted citrate and amino
acids showed levels in AMD, which reflects an enhancement in
energy requirements in the disease process (Lainsetal, 2018;
Acar et al., 2020). Tablel provides a summary of metabolomics
studies and significantly changed metabolites observed in AMD
from serum and plasma samples.

6.1.1 Pathway analysis for AMD-related
metabolites

Metabolic pathways related to the development of AMD were
discovered by an analysis using MetaboAnalyst. From this analysis,
15 metabolic pathways were considerably enriched (p < 0.05). All
differential metabolites/biomarkers identified were used as an input
set for pathway analysis.

Arginine and proline metabolism, selenoamino acids
metabolism, long-chain saturated fatty acid mitochondrial beta-
oxidation, bile acid biosynthesis, nicotinate and nicotinamide
metabolism, purine metabolism, thiamine metabolism,
phenylacetate metabolism, methionine metabolism, fatty acid
metabolism, steroidogenesis, alanine metabolism, butyrate
metabolism, and ethanol degradation metabolism were the most
significant pathways as depicted in Figure 3B.

A network of metabolic pathway enrichment analyses
revealed that arginine and proline, long-chain saturated fatty
acid mitochondrial beta-oxidation, fatty acid metabolism,
and nicotinate and nicotinamide metabolism were among
the top networked metabolism pathways (Figures 3A,B). The
analysis of metabolite-metabolite interaction also indicates that
adenosine monophosphate, glycerol, niacinamide, adenosine,
and pyroglutamic acid were exhibited in multiple networks
(Figure 3D). The pathway impact of significant metabolites is

represented in Figure 3C.

6.2 Glaucoma

Glaucoma is responsible for roughly 12% of global blindness,
making it a substantial cause of permanent vision loss (Giingor et al.,
2014). It is projected to impact about 111.8 million people across
the globe by 2040 (Tham etal, 2014). An individual’s age, high
intraocular pressure, inflammation, high myopia, and a family
history of glaucoma have all been identified as factors that can
increase the risk of developing this condition (Evangelho etal.,
2019). Finding early detection tools is important in reducing
the risk of severe visual impairment in glaucoma patients.
Symptoms are not always present in the early stages of the
disease and are usually present in its later stages. Researchers
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continue to explore new treatment targets or biomarkers to address
this issue (Weinreb et al., 2014).

Preliminary research in the ophthalmology field has shown
that utilizing metabolomics can reveal distinctive metabolic
signatures and potential biomarkers for glaucoma. Specifically,
altered metabolism of vitamins, oxidation of fatty acids, and
glutaminolysis may be evident in individuals with the disease
(Doganay et al., 2012; Hysi et al., 2019). For developing target-based
drugs and susceptibility biomarkers, examining glaucoma metabolic
profiles is critical. This exploration of differential metabolites
and metabolic pathways could further aid in comprehending the
pathophysiology of the disease. Such biomarkers have vast potential
in diagnostic applications for this sight-threatening eye condition,
although their values haven't been fully confirmed.

The synthesis of metabolites in metabolomics glaucoma studies
using GC-TOF/MS and LC-TQ-MS from aqueous humor revealed
that glutamate, 3-hydroxykynurenine, lactate, biotin, glucose-1-
phosphate, methylmalonic acid, N-cyclohexyl formamide, sorbitol,
spermidine, D-erythronolactone, dehydroascorbic acid, galactose,
mannose, pelargonic acid, and ribitol were significantly altered
(Chen et al., 2019; Pan et al., 2020; Pulukool et al., 2021). A non-
targeted metabolomics analysis of POAG patients investigated
the differential signature of plasma compared to controls. In
a study employing LC-MS, metabolites such as nicotinamide,
hypoxanthine, 1-methyl-6,7-dihydroxy-1,2,3,4-
tetrahydroisoquinoline were identified as downregulated, whereas

xanthine, and
N-acetyl-L-leucine, arginine, RAC-glycerol 1-myristate, 1-oleoyl-
rac-glycerol, and cystathionine were determined to be upregulated
metabolites (Nzoughet et al., 2020).

Studies from plasma and serum samples unveiled potential
biomarkers including cyclic AMP, 2-methylbenzoic acid, 3’-
sialyllactose, hypoxanthine, uric acid, phenyl lactate, hydroxyphenyl
lactic acid, barbituric acid, L-3phenyllactic acid, palmitoyl carnitine,
hydroxyergocalciferol, sphingolipids, vitamin D-related metabolites,
pentadecanone, heptadecanone, heptadecanediol, ergostanol,
heptadecylbenzenediol, monoglyceride, and ergosterol. These
metabolites underwent significant changes during the disease
course, suggesting their potential as biomarkers for diagnosing and
monitoring disease progression (Burgessetal,, 2015; Tangetal.,
2021; Kang et al., 2022; Zeleznik et al., 2023).
metabolomics  using LC-FIA-MS/MS
on 36 POAG and 27 age-matched controls uncovered the

Targeted plasma

downregulation of paspermidine, spermine, octadecadienyl-
carnitine, octadecenoyl-carnitine and histamine. But other thirteen
significant metabolites (tyrosine, methionine, hexoses group,
phosphatidylcholine acyl-alkyl, methionine sulfoxide, propionyl-
carnitine, phosphatidylcholines, butyrylcarnitine, decenoyl-
carnitine, dodecenoylcarnitine and arginine) were upregulated
(Leruez et al., 2018). Table 2 summarizes metabolites underwent
significant change, study characteristics, and analytical techniques

of glaucoma studies of human subjects.

6.2.1 Pathway analysis of metabolites for
glaucoma

Analysis combining metabolomic data from 10 glaucoma
studies for metabolic pathway enrichment at a 0.05 significance
level was conducted using MetaboAnalyst. This enrichment
of metabolites was performed for samples taken from the
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vitreous, plasma, and that pointed to metabolic

dysregulations in glaucoma patients. The pathway enrichment

serum

and pathway network topology analysis revealed that 14
metabolic pathways related to glaucoma, including glycine and
serine metabolism, alanine metabolism, galactose metabolism,

methionine  metabolism, glutathione metabolism, purine
metabolism, glutamate metabolism, urea cycle, spermidine
and spermine biosynthesis, biotin metabolism, ammonia

recycling, fructose and mannose deregulation, homocysteine
deregulation and nucleotide sugar metabolism were significant
(Figures 4A,B). Metabolic pathway impact and metabolic-metabolic
interactions were figured out and displayed in Figures4C,D,
respectively.
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6.3 Diabetic retinopathy

Diabetic retinopathy (DR) is a prevalent complication of
diabetes mellitus and a significant contributor to visual impairment
among middle-aged and elderly individuals (Wong etal., 2016).
This condition is categorized into non-proliferative (NPDR) and
proliferative (PDR) forms. NPDR is distinguished by the presence
of microaneurysms, retinal hemorrhages, intraretinal microvascular
abnormalities, and alterations in venous caliber, while PDR is
characterized by the development of pathological pre-retinal
neovascularization. Without proper management, this condition
can lead to vision impairments and even blindness (Wong et al.,
2018). Metabolomics is an essential tool in unraveling the
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4 pathophysiology of DR and discovering biomarkers to detect it early
% 5 and provide specialized treatment. Specific metabolic changes have
o S = been identified through the examination of the metabolic profile of
= — . . .

< § S DR patients compared to those without the disease (He et al., 2023).
- In 2016, Xuan and colleagues discovered metabolic alterations
.g ﬁ 8 associated with DR, such as changes in amino acid metabolism,
o 3 S ':; é lipid metabolism, and energy metabolism (Xuan etal., 2020).
w S . . . . .

s f a; 2 The vitreous fluid of patients with DR showed multiple changes
w wn — ~

in these metabolic pathways and disruptions in the regulation

of amino acid metabolism. In particular, there were heightened
proline, phenylalanine, and tyrosine concentrations in the
vitreous humor of patients with advanced RD relative to the
comparison group (Tomita et al., 2021).

Significant changes extend beyond amino acids within DR, as
lipid metabolism is also affected. Lipid accumulation can arise when

phosphatidylcholine, amino acids, and | AUR, PCA,

polyamine families were discovered. 5

18 discriminant metabolites belonging
metabolites downregulated

octadecenoyl-carnitine and histamine)
while 13 metabolites upregulated
(tyrosine, methionine, the group of
hexoses, phosphatidylcholine
acyl-alkyl, methionine sulfoxide,
butyrylcarnitine, decenoyl-carnitine,
dodecenoylcarnitine and arginine)

to the carbohydrate, acyl-carnitine,
propionyl-carnitine, three

octadecadienyl-carnitine,

] g
E E
5 3
9 & £
o 2 3
z & ) lipid metabolism is unduly altered. Research has noted various lipid
.g % 2 species have changed within the vitreous humor of patients with DR
£ & £ which may contribute to the presence of inflammation, stress due
= Z
2 to oxidation, and vascular dysfunction which are observed in DR
>
E (Lépez-Contreras et al., 2020). The exploration of the role of energy
his metabolism using metabolomics showed changes in metabolites
=
© E relating to energy metabolism, including lactate, pyruvate, and
.% - g acetyl-CoA, specifically in vitreous fluid from patients with DR.
3 iy 3 These shifts imply a direction towards anaerobic metabolism and
_g 5 = g :: mitochondrial dysfunction in retinal cells (Hou et al., 2021).
Qa s . s
£ = I® g The biomarkers extracted from serum samples exhibited
e > 5 g o significant indications of perturbed metabolic pathways,
% " specifically those related to glycine, serine, threonine,
:E E urea cycle, taurine, hypotaurine, cysteine, and methionine
g ke "3" (Guo et al., 2022; Yousri et al., 2022; Shen et al., 2023). In case-
=]
< 3 g - control and longitudinal studies utilizing plasma samples,
£ B 8 . . . . . o
o B % disrupted metabolisms of amino acids, leukotrienes, niacin,
% =g 51 pyrimidine, purine, arginine, citrulline, glutamic semialdehyde,
Kol
i <9 dehydroxycarnitine, 2,4-dihydroxybutyric acid, ribonic acid,
E f—_f g ribitol, and 3,4-Dihydroxybenzoic acid have been identified
> : . . o
< B -S E g (Sumarriva et al., 2019; Curovic et al., 2020). Moreover, L-Citrulline,
4 C D . . . C s . .
-%‘ < g€ indoleacetic acid, 1-methylhistidine, 1-phosphatidylcholines,
2 - hexanoylcarnitine, chenodeoxycholic acid and eicosapentaenoic
= o acid emerged as the most discerning metabolic biomarkers
N~ > 5 =
§ g‘g C - for distinguishing the severity of DR in T2DM (Wang et al.,
S EEE . .
E %o 52 2022a). In untargeted metabolomics of TIDM patients, 3,4-DHBA
g = was established as an independent risk marker for DR stage
9 Té -~ E E progression (Curovic et al., 2020).
H 32 EEEER Vitreous-based ~ studi led a broad f
S o S 25 5 8 itreous-based studies revealed a broad spectrum o
+ (@] N8 8 g 8
g 0o = 5§ E8E upregulated metabolites including allantoin, lactate, proline,
'g = dimethylglycine, a-ketoglutarate and pyruvate (Tomita et al., 2021),
S 5 9 while ascorbate, 5-oxoproline, and fumarate exhibited decreased
£ ) g e g . levels alongside a downregulation of glycolysis and activation of
4 233 ¥ the pentose phosphate pathway (Haines et al., 2018). Additionally,
5] 8 s = [[I=1
2 =B =& T1DM patients demonstrated a high concentration of lactate
g -~  u followed by glucose, alanine, valine, glutamine, acetate, leucine,
) . . .
a 5_'%_ & - isoleucine, and succinate (Barba et al., 2010).
P S
§ g % 3 g Metabolic pathways involving carnitine, tryptophan, primary
S IR ~ bile acid biosynthesis, pantothenate and CoA biosynthesis,
c . . . . .
,§ 5 o glutathione, glycine, serine, threonine, cysteine, pentose
~ §'—§ o phosphate, methionine, and aminoacyl-tRNA biosynthesis
g g o S were significantly linked with DR (Chenetal, 20165
s et ~ Sumarriva et al., 2019; Wang et al., 2022).

Frontiers in Molecular Biosciences 14 frontiersin.org


https://doi.org/10.3389/fmolb.2024.1403844
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences

Belete et al.

10.3389/fmolb.2024.1403844

N %6 1. Phenylal , tyrosine and tryptophan biosynt
2. Cysteine and methionine metabolism
3. Glyoxylate and dicarboxylate metabolism
. 4. Glycine, serine and threonine metabolism
= 5. Glutathione metabolism
6. Arginine and proline metabolism
7. Valine, leucine and isoleucine biosynthesis
8. Purine metabolism
© - 9. Galactose metabolism
10.  Valine, leucine and isoleucine degradation
P 11.  Starch and sucrose metabolism
% 12. Amino sugar and nucleotide sugar metabolism
S © - 13.  Phenylalanine metabolism
_? 6 14. Arginine biosynthesis
@ 5. Biotin metabolism
o’ 16.  Aminoacyl-tRNA biosynthesis
< - 17.  beta-Alanine metabolism
£ ‘ 18.  Histidine metabolism
a 5
° 6 1
o o
s, & &
x d 13
o %0 %) @18
T T T T T 1
0.0 02 04 06 08 1
Pathway Impact
FIGURE 4

related metabolites.
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(A) Network view of metabolic pathway enrichment for glaucoma, (B) Summary plot of over-representation analysis (ORA) of metabolic pathways
associated with glaucoma, (C) Overview of pathway impact analysis for glaucoma. The color of the circle indicates the significance level in the
enrichment analysis, while the size of the circle reflects the pathway impact value from the topology analysis. (D) Metabolic-metabolic interaction
network of glaucoma. The metabolite-metabolite interaction network allows for the exploration and visualization of interactions among functionally

Glyoxylic acid

Cyclic AMP
D-Galactose
Pyruvic acid

L-Lactic acid

Thus, the discovery of these metabolic changes in DR carries
important implications for the diagnosis and treatment of this
condition. Metabolomic analysis offers a promising, non-invasive
approach in detecting and classifying the risk associated with this
disease at an early stage. By pinpointing distinctive metabolic
patterns, healthcare professionals can enhance their ability to
manage the DR effectively and apply precise interventions tailored to
each patient’s needs. Additionally, metabolomics holds the potential
to identify innovative targets for therapeutic intervention, paving
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the way for novel treatment strategies (Gonzalez-Covarrubias et al.,
2022). The summary of significant metabolites and metabolic
pathways, study characteristics, and analytical techniques of DR
studies of human subjects is described in Table 3.

6.3.1 Pathway analysis for metabolites related to
DR

At a level of significance of 0.05 (p-value), the analysis of
important metabolites from 13 DR studies was done to look
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for metabolic pathway enrichment. Samples from aqueous and
vitreous humor, plasma, and serum that indicated metabolic
dysregulations in patients with DR were subjected to notable
enrichment of metabolites. The results of the pathway enrichment
and pathway network topology analysis indicated that there were 13
significant metabolic pathways associated with DR. These pathways
include the metabolisms of urea cycle, glycine and serine, arginine
and proline, methionine, aspartate, betaine, ammonia recycling,
alanine, spermidine and spermine biosynthesis, tryptophan,
purine, glutamate and methylhistidine (Figures 5A,B). Figures 5C,D
illustrate the impact of metabolic pathways and metabolic-metabolic
interactions, respectively. It has been shown that the development
and progression of DR are associated with the deregulation of certain
metabolic pathways. This implies that treatment strategies for the
management of DR may benefit from targeting these pathways.

6.4 Myopia

Myopia is the most prevalent refractive abnormality, affecting
approximately 4.76 billion people who are expected to suffer from
myopia by the year 2050, which represents half of the world’s
population. The trend of myopia is predicted to increase from
27% of the world’s population in 2010 to 52% by 2050. In 2000,
the prevalence of high myopia was 2.7%, and it is projected to
9.8% by the year 2050 (Holden et al., 2016). Numerous variables,
including ethnic/genetic predisposition, crowded environments,
early schooling, near-distance activities, and less time spent
outdoors, are believed to increase the risk of myopia development
(Rudnicka et al., 2016). The prevalence of myopia varies greatly
across communities, age groups, and even persons with different
educational levels, and it has been continuously rising over the
last several decades (Holden et al., 2016). Because the underlying
molecular, physiological, and anatomical changes are irreversible,
identifying the genetic basis and environmental factors that
contribute to the development of myopia (She etal., 2021) has
meaningful implications for reducing the growing public health
burden associated with myopia.

In myopic eyes, the molecules generated by cellular metabolism
and their concentrations provide insight into the underlying
biological processes at play (Yuetal, 2020). It is a fact that
innovative research methodologies may give a better insight
into the etiology of myopia, which could ultimately encourage
developments in its prevention and treatment. Progress in analytical
techniques and constant enhancement of computing skills allowed
for the development of metabolomics approaches. The use of
metabolomics offers a holistic approach for comprehending the
molecular alterations associated with myopia (Lauwen et al., 2017).
Anticipating the early identification of individuals at high risk
for myopia and their associated pathological retinal complications
could lead to a more personalized approach to myopia treatment.
Studies have demonstrated differences in the levels of specific amino
acids, lipids, and carbohydrates between myopic and non-myopic
eyes. One potential application of metabolomics in myopia research
is identifying biomarkers for the condition. These biomarkers are
measurable indicators of a disease that can be used to diagnose,
monitor, or predict myopia progression (Lian et al., 2022).
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Aqueous-based investigations of myopia with the help of
UHPLC-QTOF-MS depicted a range of changes among metabolites
(aminocyclohexanecarboxylic acid, amino octanoic acid, L-arginine
citrulline, amino undecanoic acid, dodecanedioic acid, and butyryl-
L-carnitine pantothenic acid) during the course of the disease.
These changes in amino acids contributed to the development and
progression of myopia by affecting the structure and function of the
retina. The key metabolite dysregulates the normal physiological and
impulse signaling of the eye (Barbas-Bernardos et al., 2016).

MS-based analysis of VH samples from myopic patients
their
corresponding abundance levels. Metabolic groups of amino acids,

elucidates  differentially ~expressed metabolites and
lipids, purines, organic acids, organooxygen, organonitrogen,
and indoles were expressed differently in the myopic group
(Tang et al., 2023). The concentrations of glutamine, hypoxanthine,
decanoylcarnitine, Dl-glutamic acid, citrulline, and pyroglutamic
acid were significantly higher while prostaglandin G2, L-threonic
acid, and citramalate showed lower concentrations (Ji et al., 2017).

On the other hand, samples from serum confirmed the
dysregulation of many metabolites and altered metabolic pathways.
The GC-TOF-MS analysis of serum revealed the downregulation
of alanine, mannose, itaconic acid, aconitic acid, O-acetylserine,
phthalic acid, abietic acid, and salicin. Conversely, metabolites such
as citric acid, aminomalonic acid, palmitoleic acid, conduritol-
b-epoxide, shikimic acid, 4-hydroxyphenylacetic acid, hesperitin,
anandamide, oxalacetic acid, pimelic acid, 2-ketoadipate and
N-ethylmaleamic acid were upregulated (Keetal, 2021). The
summary of significant metabolites and metabolic pathways, study
characteristics, and analytical techniques of myopia studies of
human subjects is described in Table 4.

6.4.1 Pathway analysis for metabolites related to
myopia

The metabolic pathway enrichment analysis of 8 human
metabolomics studies pertaining to high myopia on differential
metabolites from aqueous, vitreous, and serum samples revealed
12 significant metabolic pathways. These metabolic pathways
consist of methionine, urea cycle, glycine and serine, ammonia
recycling, arginine and proline, aspartate, spermidine and spermine
biosynthesis, betaine, alanine, malate aspartate shuttle, glutathione,
and glutamate metabolisms (Figures 6A,B).  Figures 6C,D
demonstrate the impact of metabolic pathways and metabolic-
metabolic interactions in myopia, respectively.

6.5 Differential metabolites/potential
biomarkers across common ocular
disorders

Elucidating common metabolic biomarkers for multifactorial
ocular disorders is not a trivial endeavor that may be subjected
to misleading inferences. Keeping all the diverse variations in
sample sources, disease stages, and condition heterogeneity,
certain metabolites have been identified as common to various
ocular disorders. Glycine, lysine, cysteine, alanine, glycerol, and
methionine were among the differential metabolites found in
common among the major ocular conditions. The degree of
significance and regulation of these metabolites in each disease
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condition varies considerably depending on the underlying causes,
souces of the sample, extraction technique and the stage of
the disease.

7 Discussion

This review has highlighted significant metabolic changes in
common multifactorial ocular disorders, including glaucoma, DR,
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AMD, and myopia. Identifying these metabolic changes and their
common pathways plays a crucial role in the progression and
development of these ocular disorders.

The prominent metabolites altered in the pathogenesis process
of AMD range from amino acids (acetylasparagine, a component of
alanine and aspartate metabolism) to lipids (cholesterols, glycerides,
and phospholipids), nucleotide polymorphisms, and vitamin D-
related metabolites. Studies employing ultra-high-performance
liquid chromatography-tandem MS on AMD patients and controls
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discovered substantial variations in plasma metabolites. On the
other hand, lipid profiles, followed by amino acid and nucleotide
profiles, showed the most variance (Lains et al., 2018; Lains et al.,
2019). Another study discovered substantial alterations in the
metabolism of amino acids in AMD patients, including alterations
in N-acetyl-L-alanine, L-tyrosine, L-phenylalanine, L-methionine,
and L-arginine (Luo et al., 2017). In targeted metabolomic analysis,
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patients with increased plasma omega-3 LC-PUFA levels had a lower
chance of developing neovascular AMD (Wang et al., 2016).

In this review, the authors performed pathway analysis using
the list of compound names extracted from eligible studies.
In the pathway analysis considering their p-values, the top
15 impact metabolic pathways belong to lipid metabolism,
primary bile acid biosynthesis, purine metabolism, arginine and
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proline metabolism, steroid biosynthesis, d-glutamine and d-
glutamate metabolism, taurine and hypotaurine metabolism,
nicotinate and nicotinamide metabolism, glycerolipid metabolism,
steroid hormone biosynthesis, tryptophan metabolism, galactose
metabolism, glycerophospholipid metabolism and glutathione
metabolism. The result of this pathway enrichment is consistent with
other studies that have discovered comparable metabolic pathways
linked to arginine and proline metabolism, mitochondrial synthesis,
purine metabolism, thiamine metabolism, methionine metabolism,
fatty acid metabolism, steroidogenesis, alanine metabolism, butyrate
metabolism, and vitamin B6 metabolism (Hou et al.,, 2020). This
implies that figuring out the metabolic pathways and the regulation-
specific mechanisms involved in the pathophysiological process of
AMD and other multifactorial ocular disorders are important.

Another pathway analysis indicated substantial alterations in
glycerophospholipid, purine, taurine, and hypotaurine metabolism,
which may be linked to the activation of oxidative stress in AMD.
Purine, taurine, and hypotaurine metabolic dysregulation may be
associated with disrupted antioxidant defense, neuroprotection,
and cellular energy metabolism deregulation (Lainsetal., 2018;
Lains etal, 2019). Changes in glutamine and glutamate levels
between people with AMD and controls, as well as between
different AMD severity stages, can be linked to problems with
the neurotransmitter supply that is crucial for the retina and
visual pathway (Lains et al., 2018).

Studying the metabolite profiles of aqueous humor and
serum in glaucomatous patients can aid in identifying important
indicators of physiological and pathological states, as well as
elucidating the mechanisms of disease onset and progression.
Metabolic markers play a crucial role in early detection and can
differentiate disease stages. Quantitative analysis of amino acids
(e.g., homocysteine), vitamin B12, and folic acid in the plasma
of PEXG, POAG, and control subjects revealed higher plasma
homocysteine levels in PEXG patients compared to both POAG
and controls (Tranchina et al., 2011).

As revealed in this review, the top enriched metabolic
pathways linked to glaucoma were metabolisms of glycine and
serine, alanine, galactose, methionine, glutathione, purines, and
glutamate. the urea cycle, spermidine and spermine biosynthesis,
biotin, ammonia recycling, fructose, and mannose deregulation,
homocysteine deregulation, and nucleotide sugar metabolism.
The majority of these pathways were traced in a previous meta-
analysis study of open-angle glaucoma from aqueous, plasma, and
serum samples. The top spotted metabolic pathways were glycine,
serine, and threonine metabolism, alanine, aspartate, and glutamate
metabolism, taurine and hypotaurine metabolism, sphingolipid
metabolism, arginine and proline metabolism, glutathione
metabolism, glyoxylate and dicarboxylate metabolism, aminoacyl-
tRNA biosynthesis and biotin metabolism, and beta-alanine
metabolism (Wang et al., 2021).

Regarding DR, numerous significant metabolites of lipids,
amino acids, carbohydrates, peptides, nucleotides, xenobiotics,
cofactors, and vitamins were identified from the reviewed studies.
Across different studies, some of the common metabolites
which showed significant changes in DR case include: allantoin,
lactate, proline, dimethylglycine, a-ketoglutarate, pyruvate, 2,4-
dihydroxybutyric acid, ribonic acid, ribitol, erythritol; gluconic
acid, methionine, gamma hydroxybutyric acid, salicylic acid,
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citric acid, tartaric acid, oxalic acid, S-adenosylhomocysteine,
ethylmalonic acid, ursodeoxycholic acid, diethanolamine,
deoxycholic acid, deoxycholic acid, malonic acid, guanosine
3',5'-monophosphate, malic acid, taurine, L-3-O-Methyl-DOPA
L-cysteine, hydroxypyruvic acid, 3,4-DHBA, thioproline, 3-
methylglutaconate, dipeptides leucylalanine, phenylalanylglycine
and threonylphenylalanine. Studies using plasma samples from
DM patients with mild non-proliferative to proliferative DR
were subjected to a metabolomics investigation employing
the GC-MS technology, which identified significantly changed
metabolites. There was a drop in 1,5-anhydroglucitol, whereas 1,5-
gluconolactone, 2-deoxyribonic acid, 3,4-dihydroxybutyric acid,
erythritol, gluconic acid, lactose/cellobiose, maltose/trehalose,
mannose, ribose, and urea levels increased. A possible disease
biomarker, cytidine, has also been identified (Chen etal., 2016;
Wang et al., 2022; Wang et al., 2022c).

Methionine, allantoin, decanoylcarnitine, arginine, proline,
citrulline, ornithine, and octanoylcarnitine dysregulation were
found in individuals with proliferative DR after a global and
targeted LC-MS metabolomic analysis of vitreous samples from
patients with type 2 diabetes (Paris et al., 2016). The metabolites that
have undergone the biggest alteration may contribute to the DR’s
onset and progression. Many metabolic pathways were impacted,
presumably due to mitochondrial malfunction, oxidative stress, and
endothelial damage in individuals with DR, according to metabolic
pathway analysis. Arginase pathway disruption may lead to DR-
related endothelial dysfunction, decreased nitric oxide availability,
poor vasodilation, and increased production of oxygen and nitrogen
reactive species (Jian et al., 2022).

Eight myopia human metabolomics studies were included in
this review study. The studies utilized samples of aqueous, vitreous,
plasma, and serum. Pathway analysis identified twelve statistically
significant metabolic pathways that were enriched. The serum
metabolism of myopia showed a high enrichment of the TCA
cycle and glyoxylate and dicarboxylate metabolism abnormalities,
indicating a potential role for glycometabolism disorders in the
pathophysiology of myopia. Ocular axial length and refraction
have been shown to be coupled with the expression of metabolic
genes linked to mitochondrial metabolism pathways, indicating an
aberrant energy metabolism during the development of myopia
(Riddell et al., 2016). Given that both AMD and DR have the same
aberrant energy metabolism feature as high myopia, metabolic
regulatory mechanisms regulating the development of myopia, DR
and AMD seem to be related (Mullins et al., 2005; Hou et al., 2021).
Other metabolites such as arginine, citrulline, and sphinganine
were significantly altered in various myopic groups. (Barbas-
Bernardos et al., 2016; Chen et al., 2018).

The metabolic pathways that demonstrated the highest
degree of enrichment in the pathway analysis of myopia were
methionine metabolism, urea cycle metabolism, glycine and
serine metabolism, ammonia recycling, and arginine and proline
metabolism. This finding was consistent with similar studies in
which citrate cycle pathways, metabolism of aspartate, glutamate,
and alanine; the metabolism of glyoxylate and dicarboxylate; and
the biosynthesis of unsaturated fatty acids, exhibited similar degrees
of enrichment (Hou et al., 2023a).

In the realm of ocular diseases, leveraging metabolomics
data can be a powerful tool in unraveling shared metabolic
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pathways and identifying potential biomarkers for diagnosis and
treatment. By employing statistical methods such as multivariate
analysis or pathway enrichment analysis, researchers can account
for confounding factors and distinguish disease-specific metabolic
signatures from commonalities across different ocular conditions.
Adjusting variables like age, gender, or medication usage can
help refine the analysis and enhance the accuracy of identifying
disease-specific metabolic alterations. This approach not only aids
in understanding the underlying mechanisms of a particular ocular
disease but also paves the way for personalized medicine strategies
tailored to individual metabolic profiles.

The major limitation in metabolomics studies, truly unbiased
analyses are challenging to achieve. The metabolite extraction
protocol itself inherently introduces a degree of bias, as certain
metabolites may be preferentially extracted or lost during the
sample preparation process. As such, it is crucial to recognize
that the metabolomics data presented represents a snapshot of
the metabolome that is influenced by the specific extraction
method employed.

8 Conclusion and future perspectives

In the analysis of metabolic interactions, glycine and adenosine
monophosphate were consistently identified as the top metabolites
in AMD, while methionine, lysine, alanine, glyoxylic acid, and
cysteine were found to be frequently associated with glaucoma. In
the context of myopia, glutamic acid, glycine, lysine, citric acid,
alanine, and serotonin were observed to be highly networked
metabolites. Notably, metabolites such as glycerol, glutamic acid,
pyruvic acid, glycine, cysteine, and oxoglutaric acid were identified
as significant in relation to DR. Among the pathways identified,
arginine and proline metabolism, methionine metabolism, glycine
and serine metabolism, urea cycle metabolism, and purine
metabolism have been recurrently associated with these ocular
conditions, highlighting potential commonalities in their metabolic
underpinnings.

Recent developments in metabolomics methods have improved
metabolic profiling considerably, offering important new insights
into the metabolism and underlying causes of various ocular
disorders. Biofluids and tissue samples are essential biological
matrices for investigating ocular disorders, with metabolite
associations between plasma and serum established for disorders
including glaucoma, AMD, DR, and myopia. There is a great deal
of promise in the developing discipline of metabolomics in eye
research to identify biomarkers for disease detection.

Although metabolic research has advanced significantly in
recent years, there are still issues that need to be resolved. The
number of metabolites that have been annotated still remains small
(not more than 30% of the detected molecular features can be
identifiable and quantifiable) and there are inconsistent metabolite
identifications (Muthubharathi et al., 2021). For metabolomics, the
Human Metabolome Database (HMDB) database (Wishart et al.,
2022), which is often used, still keeps extending the number
of metabolites in which advancements contribute to widening
the horizon.

Variations in sample preparation, selection and data analysis
during an experiment may produce findings that are not

Frontiers in Molecular Biosciences

27

10.3389/fmolb.2024.1403844

comparable. It needs standardized methodologies for metabolomics
analysis since many studies lack validation cohorts to identify
possible biomarkers. On the other hand, to define the metabolic
spectrum of disease controlling confounding variables including
diet, gender, systemic and underlying conditions, large-scale
prospective longitudinal studies are required. Metabolomics data
may be affected by the co-occurring systemic disorders that
patients often have. Researchers should make sure that clinical
characteristics, such as blood pressure, blood cholesterol levels,
and disease duration, are similar in order to guarantee a disease-
specific metabolomics combination. The use of metabolomics in eye
research is constrained by the inaccessibility and limited number of
posterior segment tissue samples that are particular to the disease,
which places increased demands on the sensitivity of metabolomics
technology. Many ocular disorders have been treated by combining
metabolomics and other omics, so multi-omics integration will
bring a new layer of knowledge to our understanding of metabolic
processes.
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