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Exploring the causal role of
plasma metabolites and
metabolite ratios in prostate
cancer: a two-sample Mendelian
randomization study

Changzhou Feng† , Haining Li† , Chu Zhang, Ying Zhou,
Huanhuan Zhang, Ping Zheng, Shaolin Zhao*, Lei Wang* and
Jin Yang*

Department of Clinical Laboratory, The First People’s Hospital of Lianyungang, The Affiliated
Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of
Nanjing Medical University, Lianyungang, Jiangsu, China

Background: Prostate cancer (PCa), the most prevalent malignant neoplasm
in males, involves complex biological mechanisms and risk factors, many
of which remain unidentified. By employing a novel two-sample Mendelian
randomization (MR) approach, this study aims to elucidate the causal
relationships between the circulating metabolome and PCa risk, utilizing
comprehensive data on genetically determined plasma metabolites and
metabolite ratios.

Methods: For the MR analysis, we utilized data from the GWAS Catalog
database to analyze 1,091 plasma metabolites and 309 ratios in relation to
PCa outcomes within two independent GWAS datasets. The inverse variance
weighted (IVW) method was the primary approach for determining the
existence of the causal relationship, supplemented by additional MR methods
for heterogeneity, pleiotropy, and cross-validation. The false discovery rate
(FDR) and Bonferroni correction were applied to identify the most significant
causative associations. Additionally, reverse MR and Steiger filtering were
conducted to ascertain whether PCa influenced the observed metabolite levels.
Furthermore, metabolic pathway analysis was conducted with MetaboAnalyst
6.0 software.

Results: In the MR analysis, our findings reveal three overlapped metabolite
ratios (arginine to glutamate, phosphate to uridine, and glycerol to
mannitol/sorbitol) inversely associated with PCa risk. Following FDR correction
(FDR < 0.05), cysteinylglycine disulfide was identified as a potential
reducer of PCa risk, whereas Uridine and N-acetyl-L-glutamine (NAG)
were pinpointed as potential risk factors. Notably, NAG (OR 1.044; 95%
CI 1.025–1.063) emerged as a metabolite with significant causal influence,
as confirmed by stringent Bonferroni correction (P < 0.05/1400). Steiger’s
directionality test (P < 0.001) and reverse MR confirmed the proposed causal
direction. Furthermore, metabolic pathway analysis revealed a significant
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association between the “Glutathione Metabolism” pathway and PCa
development.

Conclusion: This study provides novel insights into the potential causal effects
of plasma metabolites and metabolite ratios on PCa. The identified metabolites
and ratios could serve as candidate biomarkers, contributing to the elucidation
of PCa’s biological mechanisms.

KEYWORDS

metabolites, metabolites ratios, prostate cancer (PCa), risk, Mendelian randomization
(MR)

1 Introduction

Prostate cancer (PCa) is projected to be the most frequently
diagnosed cancer (29%) and the second leading cause of cancer-
related mortality (11%) among males in the United States in 2024
(Siegel et al., 2024), as well as a significant cause of mortality
worldwide (Sung et al., 2021).The effective prevention and treatment
of PCa are crucial in reducing morbidity and mortality. Recent
epidemiological studies have identified multiple genetic, lifestyle,
and environmental factors associated with PCa risk (Maomao et al.,
2022; Jiang et al., 2023). Notably, an increasing number of genetic
susceptibility variants involved in the biological mechanisms of
PCa have been identified through Genome-Wide Association
Studies (GWAS) (Chen et al., 2024). However, these factors
alone cannot fully explain the etiology and biological mechanisms
of PCa. Moreover, the complex interplay among these factors
complicates the determination of potential causality underlying
their associations with PCa risk.

Circulating plasma metabolites, small molecules originating
from cells, tissues, and biological fluids, encompass a variety of
compounds such as amino acids, peptides, carbohydrates, lipids,
and xenobiotics. It is noteworthy that metabolomics can offer
novel insights into the biological mechanisms of diseases by
revealing intermediate metabolites and altered metabolic pathways,
a technique frequently employed to study physiological and
pathophysiological processes in cancer (Chen et al., 2024; Wishart,
2019; Irajizad et al., 2023; Pavlova et al., 2022; Pan et al., 2024).
Several studies have suggested that metabolites, as functional
intermediates, can elucidate potential biological mechanisms related
to the genetics of PCa (Chen et al., 2024; Lin et al., 2022).
However, previous studies have predominantly focused on a
limited subset of metabolites and were constrained by small
sample sizes, potential confounders, and reverse causality.Moreover,
many metabolites, including enzymes, transporters, substrates, and
products of enzymatic reactions, reflect biological processes that
individual plasma metabolites alone cannot reveal. Investigating
cancer risks through metabolite ratios, such as substrate-to-
product or metabolite pairs sharing an enzyme or transporter,
warrants consideration (Chen et al., 2023). A recent mediation
Mendelian randomization (MR) study indicated that the succinate-
to-acetoacetate ratio mediated the effect of CD62L-monocyte %
monocyte on PCa, with a mediation proportion of 16.6% (95% CI:
−163%–196%) (Wu et al., 2024).

MR analysis, an epidemiological research strategy, utilizes
genetic variants as instrumental variables (IVs) to link exposure

with outcome, thereby assessing causal relationships. Compared
to other epidemiological research strategies, MR offers unbiased
estimates on genotypes determined at conception, which are not
commonly susceptible to confounding factors and reverse causality
(Hemani et al., 2018). Owing to this significant advantage, MR has
been extensively applied over the past decade to infer the causality
of risk exposures to diseases, utilizing publicly available GWAS
summary statistics (Lin et al., 2024; Dai et al., 2024; Li et al.,
2022). Recently, Chen YH et a (Chen et al., 2023) extended
the comprehensive genomic atlas of the plasma metabolome,
prioritizing metabolites implicated in human diseases, including
1,091 metabolite levels and 309 metabolite ratios. Additionally,
Wang A et al. (Wang et al., 2023) reported the most recent GWAS
summary statistics on PCa, featuring the largest sample size to date
(726,828).

Herein, we hypothesize that this genetically determined 1,400
plasma metabolome atlas could elucidate the causality of the
plasma metabolome on PCa. Consequently, we implemented a two-
sample MR approach to assess the causal effects of the human
plasma metabolome on PCa and identify potential metabolic
pathways, which might elucidate the mechanism of PCa. To
validate the significant causal associations identified, we conducted
a series of complementary analyses to reinforce their reliability and
robustness.

2 Materials and methods

2.1 Study design

This study systematically investigates the causal relationship
between the plasma metabolome (exposures) and PCa (outcome)
using MR. The methods of this study were in compliance with
the STROBE-MR checklist (Skrivankova et al., 2021). Three
foundational assumptions necessary for MR analysis were satisfied:
(1) genetically determined IVs are strongly associated with the
plasma metabolome; (2) the genetic IVs are not associated with any
confounding factors related to the plasmametabolome and PCa; and
(3) the genetic IVs influence PCa only through their effect on the
plasma metabolome. This study utilized publicly available datasets
which had already received ethical approval and informed consent;
thus, no additional ethical declaration or consent was required. An
overview of this study is depicted in Figure 1.
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FIGURE 1
The overall study workflow of MR analysis.

2.2 Data sources

To mitigate non-independence arising from the overlap of
exposure and outcome samples, datasets for exposure and outcome
were sourced from different databases. In selecting exposure and
outcome GWAS summary statistics, criteria encompassed the
European origin of the population, the larger size of population
samples and SNPs, and the time of data publication. Recently,
Chen et al. (Chen et al., 2023) reported a highly comprehensive
exploration of the genetic influences on the plasma metabolome,
with a focus on metabolites implicated in human diseases. In
their study, a total of 8,299 unrelated individuals of European
ancestries were recruited from the Canadian Longitudinal Study
on Aging (CLSA) cohort (Raina et al., 2019), all of whom had
genome-wide genotyping and measurements of circulating plasma
metabolites. Following rigorous quality control and data curation,
1,091 metabolite levels were quantified in plasma samples by
Metabolon, Inc. (https://www.metabolon.com/) using the Ultrahigh
Performance Liquid Chromatography-Tandem Mass Spectroscopy
(UPLC-MS/MS) platform. Of these, 850 known metabolites were
categorized into eight super pathways: lipid, amino acid, nucleotide,
xenobiotics, cofactor and vitamins, carbohydrate, peptide, and
energy. Furthermore, to elucidate biological processes not apparent
from the study of individual plasma metabolites alone, 309

genetic determinants of metabolite ratios were calculated, including
substrate to product ratios and metabolite pairs sharing an
enzyme or transporter. Notably, the most recent GWAS summary
statistics for PCa, with the largest samples to date (122,188
cases; 604,640 controls; 25,146,978 SNPs) (Wang et al., 2023), was
selected for the primary MR analysis. To validate the conclusions
drawn, GWAS data were obtained from the Prostate Cancer
Association Group to Investigate Cancer Associated Alterations
in the Genome (PRACTICAL) Consortium, comprising 79,148
cases, 61,106 controls, and 19,716,640 SNPs (Schumacher et al.,
2018). An overview of the GWAS summary statistics utilized in
this study is available in the GWAS Catalog (https://www.ebi.ac.
uk/gwas/) (Table 1).

2.3 Selection of instrumental variables (IVs)

To identify the IVs for metabolite levels and ratios, several
procedures were undertaken to verify the validity of the first
assumption. Initially, genetic variants were identified through
association thresholds of p < 1 × 10−5, a standard practice in MR
analysis to encompass a broader range of variation when SNPs
available for exposure are limited (Liu et al., 2024). Subsequently,
SNPs showing independent inheritance and minimal linkage
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TABLE 1 GWAS summary statistics used in this study.

GWAS Catalog (study accession
ID)

Phenotype Sample size (nCase/nControl) nSNPs Year Population

GCST90274714
Prostate cancer (PCa)

726,828 (122,188/604,640) 25,146,978 2023

European
GCST006085 140,254 (79,148/61,106) 19,716,640 2018

GCST90199621 - GCST90200711 1,091 Metabolite levels
2023

GCST90200712 - GCST90201020 309 Metabolite ratios

disequilibrium (LD) (r2 < 0.001, kb = 10,000) within the 1,000
Genomes European subset (Genomes Project et al., 2015) were
identified through a clumping procedure in R software. SNPs that
were ambiguous or palindromic were also excluded. To mitigate the
risk of weak instrument bias, the F statistic (F > 10) was employed
to ascertain if the identified IVs possessed sufficient power to
represent metabolites or metabolite ratios (Burgess et al., 2011). We
also utilized the NHGRI-EBI GWAS Catalog (www.ebi.ac.uk/gwas),
which adheres to the findable, accessible, interoperable, and reusable
(FAIR) data principles, to determine whether selected SNPs (or
those in LD with them) were previously associated with other traits
or diseases (P < 1 × 10⁻⁵) (Sollis et al., 2023). Using the LDtrait
tool, SNPs associated with potential confounders, such as type 2
diabetes mellitus, non-PCa cancer, smoking, alcohol use, stroke,
autoimmune diseases, coronary artery disease, and hyperlipidemia,
were excluded to minimize confounding between significantly
associated metabolites and PCa. To augment the reliability of
our findings, an online power calculator (mRnd) was utilized
to calculate the statistical power for MR (https://cnsgenomics.
shinyapps.io/mRnd/).

2.4 MR analyses

In this study, five complementary MR methods were utilized to
estimate the causal relationship between exposure and outcome,
namely MR-Egger (Bowden et al., 2015), weighted median
(Bowden et al., 2016), inverse variance weighted (IVW), simple
mode, and weighted mode. Among these, the IVW method, which
provides the most accurate causal estimation between exposure and
outcome, served as the primary approach (Burgess et al., 2013).
Furthermore, several supplementary analyses were performed to
validate the robustness of ourMR results.TheMR-Eggermethod not
only identifies violations of the IVs assumption but also calculates
intercepts to assess potential horizontal pleiotropy and bias from
ineffective IVs, providing effect estimates unaffected by these
violations (Bowden et al., 2015). Cochran’s Q statistic was applied
to estimate heterogeneity among the variables (SNPs) (Cohen et al.,
2015). Moreover, the MR-PRESSO global test, an additional MR
method designed to identify and correct horizontal pleiotropic
outliers, was utilized to assess the existence of horizontal pleiotropy
(Verbanck et al., 2018). A “leave-one-out (LOO)” sensitivity analysis
was conducted to determine whether results were affected by a
single SNP (Burgess and Thompson, 2017). Finally, scatter plots

and funnel plots were used to visually display the relationships and
interplay between each genetic instrument.

Notably, all analyses utilized the “TwoSampleMR” (version
0.4.22) and MR-PRESSO packages in R software (version 3.6.0). A
P-value of <0.05 was deemed statistically significant. Moreover, in
light of multiple testing concerns, the false discovery rate (FDR)
and Bonferroni correction were applied to identify statistically
significant results in multiple comparisons. According to prior
studies, FDR < 0.05 and Bonferroni correction are regarded
as indicative of significant causal relationships, with Bonferroni
correction being notably more stringent.

2.5 Reverse Mendelian randomization

To investigate whether the researched outcomes had an impact
on the plasma metabolome, a reverse MR analysis was performed.
In this reverse analysis, SNPs (P < 5 × 10−8, r2 < 0.001, kb =
10,000) selected from GWAS data on PCa as IVs, with blood
plasma metabolite levels as the outcome, were used to assess the
bidirectionality of the previously determined causal relationship.

2.6 Metabolic pathway analysis

Metabolic pathway analysis was conducted using the online
toolMetaconflict 6.0 (https://www.metaboanalyst.ca/) (Chong et al.,
2018). Functional enrichment analyses and the pathway analyses
module were utilized to identify metabolite groups or pathways
potentially relevant to the biological processes underlying PCa.
Importantly, this study focused solely on metabolites that surpassed
the recommended association threshold as determined by IVW
(PIVW-mre < 0.05).

2.7 Glutathione metabolism-related gene
set enrichment analysis (GSEA)

Gene expression data were obtained from the publicly available
microarray dataset GSE46602, hosted in the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo).
This dataset consists of 14 benign prostate gland samples and
36 PCa samples (Mortensen et al., 2015). Subsequently, Gene
Set Enrichment Analysis (GSEA) was conducted using the R
package “clusterProfiler” to identify significantly enriched biological
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pathways. Given the focus of our study, we specifically examined
gene sets related to glutathione metabolism. The analysis was
performed using default parameters, and the resulting p-values
were adjusted using the FDR method to control for multiple
hypothesis testing.

3 Results

3.1 Strength of the instrumental variables
(IVs)

After a rigorous selection process,MR analysis was conducted to
evaluate the causality of 1,091 metabolite levels and 309 metabolite
ratios on PCa using independent GWAS summary datasets.The IVs
generated for the plasma metabolome ranged from 11 to 93 SNPs,
with a minimum F statistic of 19.50, indicating that all IVs were
sufficiently robust for MR analysis. Supplementary Tables S1, S2
displays the characteristics of SNPs and their genetic associations
with the 1,400 plasma metabolome and PCa.

3.2 Overview of MR analysis results among
plasma metabolome on PCa

The IVW method of MR was utilized to establish causality
between the 1,400 plasma metabolome components and PCa,
using independent GWAS summary data. A total of 152 suggestive
and unique causal associations (PIVW-mre < 0.05) were identified,
comprising 117 plasma metabolite levels and 35 metabolite ratios,
as detailed in Supplementary Tables S3, S4. Of the 117 plasma
metabolites, 91 were identified as known metabolites (including
40 lipids, 33 amino acids, 7 xenobiotics, 4 nucleotides, 4 cofactor
and vitamins, 2 carbohydrates, and 1 peptide), while 26 were
unknown or partially characterized, as classified by the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa
and Goto, 2000). Importantly, all overlapping components of
the plasma metabolome exhibited consistent causal effects on
PCa across various GWAS dataset pairs, as shown in Figure 2.
Additionally, the outcomes of heterogeneity analysis employing
Cochran’s Q statistic (applied to both IVW andMR-Egger methods)
and pleiotropy analysis using MR-Egger intercepts and the MR-
PRESSO global test for these suggestive causal associations are
detailed in Supplementary Tables S5, S6.

3.3 Causality of genetically determined
metabolite ratios on PCa

To confirm the robustness of our findings, further screening
was performed on the 152 suggestive associations. Associations
within the plasma metabolome consistently identified across all
five complementary MR methods (IVW, simple mode, weighted
mode, weighted median, and MR-Egger) were included. Figure 3
demonstrates that 20 causal associations were consistent across two
distinct GWAS datasets of PCa. All three causative associations
among the overlapped metabolite ratios were negatively correlated
with PCa risk, specifically: arginine to glutamate ratio, phosphate

to uridine ratio, and glycerol to mannitol/sorbitol ratio, with
corresponding odds ratios (OR) and confidence intervals detailed
in the text. Additionally, no evidence of pleiotropy or heterogeneity
was observed among these associations. However, after applying
FDR correction to these P-values, no significant confirmative
associations were observed, categorizing the results as suggestive
causal associations (Figure 3).

3.4 Causality of genetically determined
metabolite levels on PCa

Among the 17 overlapping metabolite levels, 14 causative
associations passed all sensitivity analyses without evidence
of heterogeneity or horizontal pleiotropy, with three showing
significant association with PCa risk (FDR < 0.05). Significant
associations were observed with cysteinylglycine disulfide levels
negatively correlated with PCa risk, and uridine and N-acetyl-
L-glutamine (NAG) levels positively correlated, as detailed with
corresponding OR and confidence intervals in Figure 3. Bonferroni
correction (P < 0.05/1,400; 3.571 × 10−5) was utilized to identify
the most significant causal relationships among the 1,400 plasma
metabolome components and PCa. Results indicated that NAG
levels are significantly associated with an increased risk of PCa.
The statistical power for the association of NAG levels with PCa
was 1.0, demonstrating robustness against a type I error rate of
0.05. Fixed-effect IVW estimates confirmed the association of
NAG levels with an increased risk of PCa across two datasets.
Specifically, additional methods including the weighted median,
weighted mode, simple mode, and MR-Egger, indicated consistent
results, as shown in Figure 4 and Supplementary Figure S1, S2.
Furthermore, based on the “leave-one-out” analysis, none of the
associations were driven solely by a single SNP, as evidenced in
Supplementary Figures S3–S6. The MR Steiger directionality test
results confirmed the accuracy of our causal direction estimate
(P < 0.001). Reverse MR analysis showed no causal relationship
from PCa to NAG levels, indicating directionality in the observed
association, as detailed in Supplementary Table S7. Consequently, it
was determined that NAG levels might be causally associated with
PCa, underscoring the reliability of the results.

3.5 Metabolic pathway analyses

Metabolic pathway analysis identified five pathways significantly
associated with the development of PCa (P < 0.05): Glutathione
metabolism, Biosynthesis of unsaturated fatty acids, Arginine
and proline metabolism, Tyrosine metabolism, and Pyrimidine
metabolism. Notably, the Glutathione metabolism pathway
emerged as a recurrent feature across two independent PCa
datasets, underscoring its potential role in PCa pathophysiology
(Table 2). To further delineate the molecular underpinnings
of this finding, we performed GSEA focused on glutathione-
related gene sets. This approach enabled a more integrated
assessment of dysregulated metabolic signatures in PCa,
transcending the metabolite-level observations. The GSEA results
revealed a consistent downregulation of multiple glutathione
metabolism-associated gene sets in malignant prostate tissues
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FIGURE 2
Mendelian randomization associations of 117 plasma metabolite levels on the risk of the two different GWAS datasets of PCa (derived from the
random-effect IVW analysis). OR, Odds Ratio.

compared to benign controls. Among these, GOMF_Glutathione_
Transferase_Activity and WP_Glutathione_Metabolism showed
statistically significant enrichment patterns (FDR q < 0.05)
(Supplementary Figure S7).

4 Discussion

In this comprehensive MR analysis, leveraging large-scale
GWAS data, we identified 152 significant associations.These suggest

potential causal influences of the plasma metabolome—including
117 metabolite levels and 35 metabolite ratios—on the risk of PCa.
Of these, 17 metabolite levels and three metabolite ratios exhibited
consistent associations across two independent PCa datasets.
Notably, following stringent Bonferroni correction, plasma NAG
emerged as the most robust causal factor. Furthermore, integrating
metabolite-focused MR findings with GSEA of transcriptomic
data implicated glutathione-related metabolic pathways in PCa
pathogenesis. Collectively, these results underscore the complex
interplay between genetic variation,metabolic profiles, andPCa, and
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FIGURE 3
Forest plots presenting the causal effects of 20 identified overlapping plasma metabolites and metabolite ratios on prostate cancer (PCa) risk. Three
metabolites, highlighted in red fonts, surpassed the FDR correction threshold (FDR < 0.05), exhibiting no pleiotropy or heterogeneity. SNPs, Single
nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; FDR, P-value corrected by FDR.

FIGURE 4
Forest plots depicting the causal effect estimates of N-acetyl-L-glutamine (NAG) levels on prostate cancer (PCa) risk across two independent datasets,
utilizing five complementary MR methods.

may inform the development of novel prevention and therapeutic
strategies.

Effective methods for cancer risk assessment and prevention
remain a paramount priority. Advances in metabolomics have

heightened interest in circulating metabolites as non-invasive
biomarkers that reflect both endogenous metabolic states and
environmental exposures (Qiu et al., 2023). Certainmetabolites have
been implicated in tumor biology; for example, proline—a highly
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TABLE 2 Significant metabolic pathways involved in different GWAS datasets of PCa.

GWAS Catalog (study accession ID) Metabolic pathway Total Expected Hits P-value

GCST90274714
Glutathione metabolisma 28 0.24889 2 <0.05

Biosynthesis of unsaturated fatty acids 36 0.32 2 <0.05

GCST006085

Arginine and proline metabolism 36 0.32 3 <0.01

Tyrosine metabolism 42 0.37333 3 <0.01

Glutathione metabolisma 28 0.24889 2 <0.05

Pyrimidine metabolism 39 0.34667 2 <0.05

aThe significant metabolic pathway overlapped.

abundant amino acid in collagen—contributes to the formation
of extracellular matrices by cancer-associated fibroblasts, thereby
fostering a tumor-promoting microenvironment (Kay et al., 2022).
Moreover, metabolites involved in nucleotide metabolism have
shown potential as therapeutic targets, as their modulation can
impede tumor progression in preclinical models (Stine et al., 2022).
In the present study, the observed positive association between
asymmetric dimethylarginine (ADMA), an endogenous nitric oxide
synthase (NOS) inhibitor, and PCa risk is consistent with emerging
molecular evidence (Reddy et al., 2018; Asha Parveen et al., 2023).
Similarly, dopamine 4-sulfate, a dopamine metabolite implicated in
tumor proliferation, was positively associated with PCa risk. Prior
studies have indicated its potential as a predictive biomarker for
non-muscle invasive bladder cancer (NMIBC) (Cheng et al., 2018),
suggesting that it may exert broader oncogenic influences.

Among the 1,400 plasma metabolites and ratios analyzed,
plasmaNAGdemonstrated themost pronounced causal relationship
with PCa. Mechanistically, NAG is intimately linked to glutamine
metabolism. Glutamine—a central amino acid supporting
biosynthesis, bioenergetics, and cell signaling—furnishes cancer
cells with essential nitrogen and carbon for the synthesis of
nucleotides, amino acids, and lipids, while also maintaining redox
balance (Pavlova et al., 2022). By undergoing N-acetylation,
glutamine’s stability, transport, and downstream metabolic
availability may be enhanced, potentially providing tumor cells
with more refined control over glutamine-derived intermediates.
This regulatory mechanism could bolster cancer cell growth,
survival, and invasive capabilities (Caldovic et al., 2010). Moreover,
within the tumor microenvironment, PCa cells frequently display
metabolic reprogramming driven by oncogenic signals and genetic
alterations, which optimize glutamine uptake and utilization.
Studies in irradiation-resistant HepG2 cells have further highlighted
elevated NAG levels under ferroptotic stress, suggesting a role for
this metabolite in stress response pathways (Yuan et al., 2022).
Although ourMR analysis strongly implicates NAG in PCa etiology,
additional experimental studies are warranted to elucidate the
precise molecular mechanisms involved.

Consideration of multiple-testing adjustments strengthens the
validity of our findings. Beyond the Bonferroni correction, FDR
correction identified cysteinylglycine and uridine as significantly
associated with PCa risk, acting as a protective and risk factor,

respectively. Previous research has documented that elevated
extracellular cysteinylglycine, a metabolite related to glutathione,
can suppress ferroptosis in certain cancer contexts, thereby fostering
tumor growth (Hayashima and Katoh, 2022). Elevated serum
cysteinylglycine levels have also been associated with a heightened
risk of breast cancer (Lin et al., 2007), although other studies have
reported inverse or null associations with certain malignancies
(Houghton et al., 2019; Miranti et al., 2016). Uridine, a pyrimidine
nucleoside abundant in plasma, fulfills multiple biological roles,
including those related to antioxidant capacity and aging (Lai et al.,
2023; Zhang et al., 2022). Functionally, uridine may enhance cancer
cell proliferation and survival by serving as an energy source and
modifying protein O-GlcNAcylation patterns (Yang et al., 2024).
Our MR results, which identify uridine as a risk factor for PCa,
align with these mechanistic insights. Taken together, these findings
suggest that NAG, cysteinylglycine, and uridine may influence
PCa onset and progression, potentially through pathways involving
oxidative stress or ferroptosis regulation.

To our knowledge, this study is the first MR investigation to
integrate genomic data with plasma metabolite ratios to assess
causality in PCa risk. Our analyses identified three metabolite
ratios—arginine to glutamate, phosphate to uridine, and glycerol to
mannitol/sorbitol—that were significantly and inversely associated
with PCa risk across datasets. These ratios integrate multiple
metabolic dimensions: for instance, arginine, as a precursor to
nitric oxide, may enhance immune surveillance, whereas glutamate
supports tumorigenic processes. A higher arginine-to-glutamate
ratio could thus reflect metabolic conditions less conducive to
cancer cell proliferation (Huang et al., 2019). Likewise, while
phosphate contributes to ATP production and phosphorylation
signaling, uridine supports RNA and nucleotide biosynthesis. Thus,
a metabolic environment favoring phosphate over uridine may
be less advantageous for the rapid proliferation of malignant
cells (Pavlova et al., 2022; Lai et al., 2023). The glycerol-to-
mannitol/sorbitol ratio may similarly indicate restricted use of
alternative carbohydrate pathways by cancer cells, potentially
limiting their ability to adapt to oxidative stress and altering their
energy metabolism (Schwab et al., 2024).

Our pathway analyses indicate that alterations in glutathione
metabolism may contribute to the redox imbalances, growth
advantages, and oxidative stress resistance commonly observed in
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PCa. Glutathione, as a key intracellular antioxidant, is integral
to maintaining cellular redox homeostasis. Tumors can exploit
glutathione-related pathways to mitigate oxidative stress, enhance
survival under challenging microenvironmental conditions, and
promote therapeutic resistance. By modulating components of
glutathione synthesis, recycling, or transport, it may be possible
to disrupt this carefully orchestrated balance, rendering cancer
cells more susceptible to oxidative damage. Agents designed to
inhibit key enzymes, transporters, or regulatory factors within this
pathway could diminish the cancer cells’ metabolic flexibility. When
combined with standard treatments—such as androgen deprivation
therapy, chemotherapy, or emerging targeted therapies—these
metabolic interventions may lower the threshold for cancer cell
death, delay resistance, and enhance long-term treatment efficacy.

This study is not without limitations. First, the accuracy of
MR analyses is contingent upon the selection and interpretation
of genetic instruments. The lack of sex-specific instruments
and potential genetic heterogeneity may introduce residual
confounding. Additionally, while MR offers robust evidence for
causal inference, our findings require experimental validation to
unravel the underlying biological mechanisms. These initial results,
however, provide a foundation for future research. We advocate
for enhanced screening protocols in populations with metabolic
dysregulation and recommend longitudinal cohort studies to
identify metabolite-based biomarkers of cancer recurrence. Such
efforts may ultimately improve the clinical prevention, early
detection, and prognosis of PCa.

5 Conclusion

This study reveals novel causal relationships between specific
plasma metabolites and PCa risk, notably identifying N-acetyl-L-
glutamine (NAG) as a key factor and underscoring glutathione
metabolism as a pivotal pathway. By employing a robust two-
sample MR framework, these findings illuminate the intricate
metabolic underpinnings of PCa, thus offering valuable new insights
into its pathophysiological mechanisms. Such revelations not only
enrich our understanding of disease etiology but also point toward
promising biomarkers for early detection, prevention, and targeted
therapeutic strategies.
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