
TYPE Original Research
PUBLISHED 14 August 2024
DOI 10.3389/fmolb.2024.1407974

OPEN ACCESS

EDITED BY

Jacopo Troisi,
University of Salerno, Italy

REVIEWED BY

Soumyabrata Banerjee,
Vidyasagar University, India
Lisandro Jorge Falomir Lockhart,
Instituto de Investigaciones Bioquímicas de La
Plata (INIBIOLP), Argentina

*CORRESPONDENCE

Petr G. Lokhov,
lokhovpg@rambler.ru

RECEIVED 27 March 2024
ACCEPTED 30 July 2024
PUBLISHED 14 August 2024

CITATION

Lokhov PG, Trifonova OP, Balashova EE,
Maslov DL, Ugrumov MV and Archakov AI
(2024) Application of clinical blood
metabogram for diagnosis of early-stage
Parkinson’s disease:
a pilot study.
Front. Mol. Biosci. 11:1407974.
doi: 10.3389/fmolb.2024.1407974

COPYRIGHT

© 2024 Lokhov, Trifonova, Balashova, Maslov,
Ugrumov and Archakov. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Application of clinical blood
metabogram for diagnosis of
early-stage Parkinson’s disease:
a pilot study

Petr G. Lokhov1*, Oxana P. Trifonova1, Elena E. Balashova1,
Dmitry L. Maslov1, Michael V. Ugrumov2 and
Alexander I. Archakov1

1Laboratory of Mass Spectrometric Metabolomic Diagnostics, Institute of Biomedical Chemistry,
Moscow, Russia, 2Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of
Developmental Biology of the Russian Academy of Sciences, Moscow, Russia

In terms of time, cost, and reproducibility of clinical laboratory tests, a mass
spectrometric clinical blood metabogram (CBM) enables the investigation of
the blood metabolome. Metabogram’s components provide clinically relevant
information by describing related groups of blood metabolites connected
to humoral regulation, the metabolism of lipids, carbohydrates and amines,
lipid intake into the organism, and liver function. For further development
of the CBM approach, the ability of CBM to detect metabolic changes in
the blood in the early stages of Parkinson’s disease (PD) was studied in this
work. In a case-control study (n = 56), CBM enabled the detection of the
signature in blood metabolites related to 1–2.5 clinical stages of PD, according
to the modified Hoehn and Yahr scale, which is formed by alterations in
eicosanoids, phospholipids and, presumably, in the butadione metabolism. The
CBM component-based diagnostic accuracy reached 77%, with a specificity of
71% and sensitivity of 82%. The research results extend the range of disorders for
which CBM is applicable and offer new opportunities for revealing PD-specific
metabolic alterations and diagnosing early-stage PD.
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1 Introduction

Parkinson’s disease (PD), which usually affects elderly people, is the second most
prevalent neurodegenerative condition of the central nervous system. Due to the aging
population, the incidence of PD has substantially grown. Since the first description of
PD by James Parkinson in 1817 (Parkinson, 2002), the exact mechanism causing this
disease is still unknown. Hallmarked dopaminergic neurons that are destroyed in the
substantia nigra and the formation of Lewy bodies that are largely made of fibrillar α-
synuclein are pathological characteristics of PD (Tansey and Goldberg, 2010). Genetic
studies of familial PD have identified mutations in individual genes in monogenic
PD. In particular, mutations leading to the development of PD are localized in the
genes encoding α-synuclein, dardarin, vacuolar protein sorting-associated protein 35,
parkin ligase, DJ1 deglycase, and acid β-glucosidase (Ross, 2013; Deng et al., 2018).
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There are evidences that oxidative damage and mitochondrial
dysfunction lead to a cascade of events and ultimately contribute
to the degeneration of dopaminergic neurons (Rani and Mondal,
2020). Other studies demonstrated that apoptosis plays a substantial
role in neurological disorders (Tompkins et al., 1997). Recent studies
have linked astrogliosis to the development of PD (Heo et al., 2020).

The neuroinflammatory theory appears to be the most plausible
of the potential causes of PD (Tansey and Goldberg, 2010;
Gelders et al., 2018).The inflammatory process, which is a protective
mechanism against various types of damage, when prolonged,
enhances the progression of neurodegeneration (Snyder et al.,
2017). A role of neuroinflammation in the pathology of PD
was demonstrated in a large number of studies, indicating that
neuroinflammatory processes may play a causative role in the
development of PD (Salama et al., 2020).

Several other factors causing PD, such as reduced Parkin
activity, altered metabolism, aberrant epigenetics, exposure to
toxins, telomere shortening, or protein misfolding, were reported in
a number of studies (Le et al., 2013; Scheffold et al., 2016;Wen et al.,
2016; Rokad et al., 2017; Meng et al., 2020). According to some
studies, PD can be classified as a prion-like disease (Olanow and
Brundin, 2013).

Due to the still unclear etiology and pathogenesis of PD, the
identification of biomarkers for its diagnosis is challenging and has
not been successful yet (Chen-Plotkin et al., 2018). In this situation,
the omics technologies, which enable measuring the diversity of
a biologic system’s molecules in a single-run analysis (e.g., DNA
sequencing in genomics, protein identification technologies in
proteomics, and profiling of low-molecular-weight substances in
metabolomics), may be helpful (Omenn et al., 2012). Among the
omics sciences, metabolomics is the most promising for supplying
useful information for disease diagnostics because metabolites
form molecular phenotypes directly reflecting physiological and
pathological situations in organisms. Thus, in metabolomics
studies of blood, the diagnostic accuracy of diseases often
reaches 90%–95% (Trifonova et al., 2013). Such results stimulate
the introduction of metabolomics technologies in medicine for
the diagnosis of difficult-to-diagnose diseases, including PD, the
etiology and pathogenesis of which is often associated with low-
molecular substances.

A clinical blood metabogram (CBM), a new personalized
metabolomics approach that is a simplified single-subject (N-of-
1) metabolomics analysis, was recently introduced (Lokhov et al.,
2023b). Direct-infusion mass spectrometry (DIMS), principal
component analysis (PCA), and metabolite set enrichment analysis
(MSEA) were used to develop the CBM.Themetabogram avoids the
complexity of each N-of-1 metabolomics study and is characterized
by rapid execution, simple data processing, high reproducibility,
and uncomplicated result interpretation, which should make it
easier to apply CBM in the clinic in the laboratory-developed test
(LDT) format (Figure 1). An LDT is a specific kind of diagnostic
test that is created, produced, and utilized in a single laboratory
(Sharfstein, 2015; FDA., 2018; Genzen, 2019; Schreier et al., 2019)
that is commonly used to implement omics tests.

The blood metabolome groups that deal with humoral control,
lipid-carbohydrate and lipid-aminemetabolism, eicosanoids, amino
acids, lipid intake into the body, and liver function are presented
in the CBM that makes it clinically valuable. The main objective

of this study is to examine the metabogram’s clinical potential in
relation to revealing metabolic features and diagnosing early PD.
To do this, the blood metabolome of patients with PD 1–2.5 stages,
as measured by the modified Hoehn and Yahr scale, was examined
using the CBM.

2 Materials and methods

2.1 Blood samples

Samples of blood plasma used in this study were taken from
a previously published study, where study participants (n = 56)
were recruited at the Republican Clinical Diagnostic Centre of
Extrapyramidal Pathology and Botulinum Therapy (Kazan, Russia)
(Balashova et al., 2018). Briefly, study cohort included untreated
PD patients at 1–2.5 stages according to modified Hoehn and
Yahr scale (stage 1 – unilateral involvement only; stage 1.5 –
unilateral and axial involvement; stage 2 – bilateral involvement
without impairment of balance; stage 2.5 – mild bilateral disease
with recovery on pull test) (Goetz et al., 2004) and controls without
neurodegenerative diseases. The following exclusion criteria were
used for PD patients and control subjects: severe systemic disease,
stroke, brain surgery, Alzheimer’s disease or any other medical
history central nervous system disease, chronic renal failure,
systemic infections, malignancy, cardiac or hepatic dysfunction,
and autoimmune disease. Informed consent was obtained from
all subjects involved in the study. The study was conducted
in accordance with the Declaration of Helsinki, and approved
by the Institutional Ethics Committee of Koltzov Institute of
Developmental Biology of Russian Academy of Sciences (protocol
code 55 and date of approval 9 December 2021).

2.2 Mass spectrometry analysis of blood
samples

The same equipment and materials were used as in the
previously reported study (Balashova et al., 2018), including venous
blood sampling, sample preparation, mass spectrometer analysis,
mass spectra processing, and mass list processing (alignment,
standardization, and normalizing).

Blood samples were taken from the vein before the morning
meal. Samples (3 mL) were placed into glass tubes containing
K2EDTA (BD Vacutainer; Becton, Dickinson and Company,
Franklin Lakes, NJ, United States) and centrifuged within 15 min of
blood collection at 1,600 × g and room temperature. The
resultant blood plasma was subdivided into aliquots that were
pipetted into plastic tubes. These tubes were marked, transported
in special thermocontainers, frozen, and then stored at −80°C
until analysis. The analyzed samples were subjected to one
freeze/thaw cycle.

For plasma deproteinization, aliquots (10 µL) were mixed with
10 µL water (LiChrosolv; Merck KGaA, Darmstadt, Germany)
and 80 µL methanol (Fluka, Munich, Germany) and incubated
at room temperature. After 15 min, samples were centrifuged at
13,000 × g (MiniSpin plus centrifuge; Eppendorf AG, Hamburg,
Germany) for 10 min. Deproteinized supernatants were then
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FIGURE 1
Workflow for producing a clinical blood metabogram. Sampled blood, after sample preparation in order to separate the metabolome fraction, is
subjected to direct-infusion mass spectrometry (DIMS). The resulting mass peaks are aligned with the predefined sets of mass spectrometric peaks
corresponding to the components of the metabogram (predesigned template of personal metabogram). Mass peak intensities are converted into
Z-scores and averaged to obtain metabogram component values showing the state (normal, upregulated, or downregulated) of the blood
metabolome (i.e., clinically relevant information). Adapted from (Lokhov et al., 2023b).

transferred to clean plastic Eppendorf tubes, and fifty volumes
of methanol containing 0.1% formic acid (Fluka) were added
to each tube. The resulting solutions were subjected to mass
spectrometry analysis.

Sampleswere analyzedwith amaXis hybrid quadrupole time-of-
flight mass spectrometer (Bruker Daltonics, Billerica, MA, United
States) equipped with an electrospray ionization (ESI) source. The
mass spectrometer was set up to prioritize the detection of ions with
a mass-to-charge ratio (m/z) ranging from 50 to 1,000 and a mass
accuracy of 1–2 parts per million (ppm). Spectra were recorded
in the positive ion charge detection mode. Samples were injected
into the ESI source using a glass syringe (Hamilton Bonaduz AG,
Bonaduz, Switzerland) connected to a syringe injection pump (KD
Scientific, Holliston, MA, United States). The flow rate of samples
to the ionization source was 180 μL/h, and samples were injected in
a randomized order (e.g., control samples were run between case
samples). Mass spectra were obtained using DataAnalysis version
3.4 (Bruker Daltonics) to summarize 1-min signals. Ion metabolite
masses were determined from the mass spectrum peaks obtained
using the DataAnalysis program. All peaks above noise level (signal
to noise ratio >1) were selected, and the metabolite ion masses
were pooled and processed using Matlab program (version R2019a;
MathWorks, Natick, MA, United States). For the recalibration
of all the peak m/z values, the internal standard losartan (m/z
423.169) was used.

Standardization of mass peak intensities was performed as
described previously (Lokhov et al., 2020) by dividing the intensity
by the standardization value, which was calculated for each peak
separately as follows: the 50 Da range (which started 25 Da before
and ended 25 Da after the m/z of the mass peak) was selected; all
peaks inside the range were sorted in descending order according
to their intensities; the intensity of the 150th peak was selected as
the standardization value. Standardized intensities improved further
analysis due to the correction of ion suppression of peak intensities
(Lokhov et al., 2020). Standardized mass lists were normalized by
applying the normalize function (which brings the sum of the
intensities of the peaks in the spectrum to 1) of the Matlab program.

The alignment of the m/z values of the mass peaks between different
mass spectra was performed as described previously (Lokhov et al.,
2011). The alignment algorithm used was previously specially
developed and tested for the high-resolution mass spectra of blood
metabolites obtained by DIMS and implemented as an iterative
process based on the detection of correlation of mass spectrometry
peak patterns.

2.3 Design of metabogram template for
personal metabograms

The details of the metabogram construction using a reference
cohort of healthy subjects are described in a previous study
(Lokhov et al., 2023b). Briefly, DIMS was used to analyze blood
plasma samples from 48 healthy people (reference cohort) to
develop the metabogram template (Figure 1). The lists of mass
peaks that were produced after mass spectra processing (alignment,
standardization, and normalization) were analyzed using principal
component analysis (PCA). The metabogram components were
formed by the mass peaks corresponding to the highest positive or
lowest negative coefficients (loadings) of the first seven principal
components. The resulting sets of m/z values of mass peaks are
presented in Supplementary Table S1. 70% of blood metabolome
variance is explained by these sets of mass peaks, which were used in
this study as a template to quickly produce personal metabograms.
The composition of metabogram components (Figure 2) was
determined by identifying themetabolite classes with which they are
enriched. For this,MSEAwas used (Xia andWishart, 2010). Clinical
blood tests (n = 71) were also used to determine the biological
significance of the metabogram components (Lokhov et al., 2023b).
Each metabogram component has two Z-score scales reflecting
its measure, named the “positive” and “negative” parts, because
the principal components involved in the development of the
metabogram have both positive and negative coefficients (loadings).
In short, the original variables that comprise the principal
components are linear combinations of their coefficients. The
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FIGURE 2
Composition of the clinical blood metabogram components. The
composition of the metabogram components was measured by
determining with which classes of metabolites they are enriched.
Enrichment reliability expressed in p-values is presented in a
previously published paper (Lokhov et al., 2023b).

structure of the data may be seen in the coefficients of each principal
component. Larger positive or negative values indicate variables
that contribute more to the component. M/z values corresponding
to the highest and lowest coefficients of the first seven principal
components—referred to the “positive” and “negative” parts of the
metabogram components—were used to construct CBM reflecting
the underlying data of the blood metabolome. In total, it amounted
to about 5% each for the “positive” and “negative” parts of the
detected peaks. The Z-score is a common way of representing data
on a unitless scale and is the raw score minus the population
mean, divided by the population standard deviation. With a normal
distribution, the Z-score is connected to the p-values; for example,
1.64 corresponds to p = 0.05 (one-tailed), which is thought to be
the cutoff for statistical significance and enables the detection of the
sample’s deviation from the population. The metabogram’s Z-scores
from −1.64 to +1.64 are considered to be in the normal range; up-
and downregulation are represented by higher and lower Z-score
values, respectively.

The components of the metabogram are formed by the
functionally related metabolites of the blood involved in humoral
regulation (component 1, called “regulatory”), lipid -carbohydrate
metabolism (component 2), phospholypolysis (component 3,
called “phospholipolytic”), lipid-amine metabolism (component
4), oxidized fatty acids (component 5, called “eicosanoid”), lipid
intake into the organism (component 6, called “alimentary”),
and liver function (component 7, called “hepatic”), thereby
providing clinically relevant information. It should be noted that
the identity of obtaining a CBM (sampling, sample processing,
mass spectrometry, CBM design, and composition of metabogram
components as presented in Supplementary Table S1), established in

the first article that introduced the concept of CBM (Lokhov et al.,
2023b) and further tested in subsequent studies, allows the
obtained data to compare and relate the results obtained
to the characteristics of the prototype of the same CBM-
based LDT test.

2.4 Personal clinical blood metabograms

The study cohort (see Section 2.1), which included control
individuals and patients with early-stage PD, was used to obtain
personal CBMs. After standardization and normalization, the
produced mass lists were aligned with the m/z values of the
metabogram template (i.e., with 7 m/z sets corresponding to seven
metabogram components; see Section 2.3). To obtain Z-scores of
the metabogram components, the mass peak intensities belonging
to the same metabogram component were converted into Z-scores
and averaged (Lokhov et al., 2023b).

2.5 Cluster analysis

A cluster analysis was performed to give an overview of the
metabograms of patients with the early clinical stage of PD. To do
this, the pdist function (Matlab) was used to determine the Euclidian
distances between the Z-scores of the metabograms’ components.
The linkage function created an agglomerative hierarchical cluster
tree by calculating the distance between clusters using the
“ward” algorithm. The dendrogram function was used to plot the
dendrogram.

2.6 Diagnostic parameters

To assess the diagnostic potential of the metabogram for
early clinical stage PD, the following diagnostic parameters
were evaluated: sensitivity—the percentage of correctly identified
positive results (the deviation is correctly assigned to metabogram
component with Z-score out of normal range, i.e., Z-score < −1.64
or >1.64); specificity—the percentage of correctly identified negative
results (the deviation from normal range is correctly not assigned
to metabogram component with Z-score in normal range); and
accuracy—the percentage of correctly identified positive and
negative results.

The ROC curve was built by the perfcurve function (Matlab).
The function also returned sensitivity and specificity values for
diagnostics depending on the selected threshold Z-score value
separating cases from controls and the optimal Z-score value for the
highest diagnostic accuracy.

2.7 CBM signature of Parkinson’s disease

Considering the cluster analysis data and using the metabogram
components that exhibit the greatest diagnostic power, a PD
signature was formed. To confirm the inter-disease specificity of
the PD signature, the ROC curves were built to separate control
and patients with type 2 diabetes mellitus and obesity from control.
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TABLE 1 Study cohort characteristics.

Characteristics Values

Control
subjects

Subjects with
PD

Number 28 28

Age (years; mean ± s.d.
(range))

62.8 ± 8.7 (45–77) 62.6 ± 8.6 (37–77)

Gender (males/females) 14/14 14/14

PD stages (1/1.5/2/2.5)a — 6/6/12/4

aPD, stages are according to modified Hoehn and Yahr scale (Goetz et al., 2004).

Metabogram data for these subjects was taken from previous studies
conducted on CBM research (Lokhov et al., 2023c; Lokhov et al.,
2024). In the first case, the PD signature was directly applied
to the metabogram data of diabetic patients. In the second
case, the difference in the signature of obesity and PD, such
as downregulation in the positive part of the first component
of CBM at obesity, was additionally taken into consideration.
Other differences between signatures were not considered
since the absolute unspecificity of the PD signature for obesity
was achieved.

3 Results

3.1 Studied subjects

Equally sized cohorts of patients and control subjects were
obtained, aligned by gender and age, allowing for case-control
comparison. Table 1 presents the clinical characteristics of
the cohorts. The individual characteristics of the subjects are
presented in Supplementary Table S2.

3.2 Metabogram data

Mass spectrometry analysis, as the first analytical step of the
CBM production (Figure 1), generated typical mass spectra of
the low-molecular-weight fraction of blood plasma samples. On
average, ∼9.7 thousand peaks were detected in the spectrum, which
corresponds to the number of mass peaks in spectra used to design
CBM (Lokhov et al., 2023b) and in other CBM-related studies
(Lokhov et al., 2023a; 2023c; Lokhov et al., 2024). Aligned and
standardized mass lists are presented in Supplementary Table S3.
These mass spectrometry data were used to obtain personal
metabograms for all subjects participating in the study
(Figure 3).

Figure 3 demonstrates that the components of the metabogram
of PD patients deviate more frequently than those of controls,
as evidenced by the frequencies of these deviations (Figure 4).
Metabolites related to the negative components 3 and 5 and
the positive component 4 are downregulated most frequently
(Figure 4).

3.3 Statistical data and diagnostic
parameters

The t-test results demonstrating the significance of the difference
in the metabogram components in the case-control comparison are
presented in Table 2. The difference for the negative component
5 is statistically significant (p-value 0.005), which indicates that
PD-specific changes in metabogram can be attributed to the
downregulation of the eicosanoids (Figure 2).

To assess the diagnostic capabilities of the CBM, generally used
diagnostic parameters were calculated. Table 3 displays sensitivity,
specificity, and accuracy calculated based on the divergence of
metabogram’s components from the normal range. The data in the
table show the metabogram’s negative component 5 demonstrates
the most diagnostic power for detecting the early clinical stage of
PD with an accuracy of 62.5% (sensitivity of 32.1%, specificity of
92.9%) when a Z-score of −1.64 (corresponds to p = 0.05) is used
to separate cases from controls. The lower diagnostic capability was
demonstrated by the positive part of component 4 and the negative
part of component 3, with diagnostic accuracy of 55.3% and 57.1%,
respectively.

The diagnostic potential of these components of the CBM
was also assessed by building an ROC curve to determine
the optimal threshold for separating cases from controls that
provides the best diagnostic parameters. Figure 5A demonstrates
that the accuracy of diagnostics was increased for the above-
mentioned metabogram components to 76.8%, 67.9%, and 64.3%.
This result confirms the diagnostic power of the CBM by a generally
accepted method and shows that the Z-scores of the metabogram
components can be further processed to improve diagnostic
parameters.

In addition to the fact that individual components of the
metabogram are associated with PD, and some of them even have
diagnostic power, the combinations formed by these components
of the metabogram are also an important diagnostic feature—a
signature of the disease. To identify such signatures, the patterns
formed by deviating metabogram components were identified
by cluster analysis (Figure 6). Clusters associated with stages of
PD development were not revealed. One cluster, which can be
seen as typical for PD, was created by various combinations
of the most often deviating metabogram components (see
cluster 2 on Figure 6). Therefore, it may be claimed that for a
significant part of patients with early-stage PD, the CBM will
show a PD-specific signature reflecting disease-associatedmetabolic
alterations.

To confirm the inter-disease specificity of the PD signature,
the ROC curves were built and compared with the ROC curves
separating control from patients with type 2 diabetes mellitus
and obesity (Figure 5B). The PD signature showed high sensitivity
to PD at low specificity, while for other diseases the AUC was 0.49
and 0.5, which confirmed the inter-disease specificity of the PD
signature. Therefore, if a PD signature is detected, early-stage PD
is likely to be suspected. However, the absence of the PD signature
does not exclude the underlying pathological condition. Perhaps the
signature has not yet been formed at an early stage of disease in
many patients, or it reflects only the dominant form of metabolic
alterations in PD.
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FIGURE 3
Metabogram data for control subjects and subjects with early-stage PD. Each row corresponds to the Z-scores of the metabogram components for an
individual (components 1 to 7 for the “positive” and “negative” parts). Z-score is a measure of the metabogram components (from −1.64 to +1.64 is the
normal range; up- and downregulation correspond to higher and lower Z-score values, respectively). Background color coding: red indicates
upregulation in the corresponding metabogram component; yellow indicates downregulation in the corresponding metabogram component.

4 Discussion

Thebasicmethods for diagnosing PD, a progressive degenerative
condition of the central nervous system, are a medical history
and a neurological examination (Jankovic, 2008). While effective
treatment for PD depends on an early diagnosis (Gelb et al.,
1999), a clinical diagnosis cannot be made until there is a
large loss of dopaminergic neurons (Gibb and Lees, 1988).
Moreover, the cost of the imaging of dopamine (Dopa) uptake

efficiency diagnostic test based on positron emission tomography
(PET) is high. As a result, a novel diagnostic laboratory test
is needed. Biomarker discovery for such tests is hampered by
PD’s ambiguous pathophysiology and complex character, and the
use of panoramic techniques, as suggested, is more promising in
this situation. Unfortunately, because of the consistency needed
for clinical test registration, the clinical use of such ‘panoramic’
procedures, to which metabolomic analysis is related, is quite
difficult. LDT usage gets around this problem. LDTs are defined
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FIGURE 4
The frequency of deviations in the blood metabogram components for early-stage PD. The metabogram component deviates from the norm if the
Z-score of the metabogram component is below −1.64 (indicating downregulation of the metabolites related to the metabogram component) or
above 1.64 (indicating upregulation of the metabolites related to the metabogram component).

TABLE 2 Statistical significance of the deviation of the metabogram
components in early PD (1–2.5 stages) from the control.

Metabogram Component t-test (p-valuea)

Positive 1 0.783

2 0.939

3 0.424

4 0.082

5 0.639

6 0.129

7 0.193

Negative 1 0.46

2 0.499

3 0.124

4 0.184

5 0.005a

6 0.913

7 0.760

All 0.180

ap-value of statistically significant deviation from control.

by the Food and Drug Administration (United States) as tests that
are created, produced, and used in the same laboratory (FDA,
2018). Therefore, the execution of metabolomics analysis in
LDT format is sufficiently streamlined due to putting protocol
development and standardization tasks under the purview of a
single laboratory.

Although metabolomics, which measures the groups of
metabolites that make up the metabolome, has been around for
more than 20 years and the technologies it uses are nearly perfect,
its application in medicine, even as LDT, is quite limited. Main
cause of this is the preciseness of measurements, which allows for
the precise measurement of numerous metabolites in a single run.
Widely used in metabolomics, mass spectrometry techniques are
typically capable of detecting hundreds of metabolites, which is
essential for gathering biochemical data (Viant et al., 2017). Despite
the use of cutting-edge mass spectrometry-based metabolomics
technologies, the vast majority of the sample’s metabolites remain
unknown (de Jong et al., 2017). Typically, only highly abundant and
well-separated metabolites are identified. This is due to the difficulty
of producing a clear mass spectrometric image of low-abundance
metabolites, which constitute the majority of any metabolome.
This means that the complexity of metabolomic measurements
restricts the use of metabolomics in LDT format (Nalbantoglu,
2019; Lichtenberg et al., 2021; Lokhov et al., 2021).

The concept of the metabogram—a simplified single-subject
metabolomics study—was developed to address this issue. The
metabogram technique eliminates metabolite identification step
(Lokhov et al., 2023b). Only groups of related metabolites are
processed in the metabogram for this reason, and the use of MSEA
(Xia and Wishart, 2010) quickly determines the enrichment of these
groups with metabolite classes. As a result, group analysis takes
the place of the challenging identification of individual metabolites.
Additionally, data repeatability is improved by averaging metabolite
data (peak intensities) within groups. Formetabogram components,
the coefficient of variation can be as low as 1.8% (Lokhov et al.,
2023b), which is much lower than what is often found for individual
metabolites (Crews et al., 2009). In order to validate the clinical
utility of CBM for PDdiagnosis, peoplewith early PDwere evaluated
using CBM in this study.

According to the data obtained, it can be argued that, in terms of
the frequency of occurrence and the joint appearance, PD-specific
changes can be attributed to the downregulation of metabolites
related to the eicosanoid component (negative part of component
5), the phospholipolytic component (negative part of component
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TABLE 3 Diagnostic parameters of the metabogram components for the detection of early-stage PD.

Metabogram component Diagnostic parameters (%)

Sensitivity Specificity Accuracy

Upregulation of the metabolites (Z-score >1.64 for the metabogram components)

Positive parts of metabogram components

1 3.6 92.9 48.2

2 3.6 92.9 48.2

3 3.6 96.4 50.0

4 0 92.9 46.4

5 10.7 92.9 51.8

6 0 100.0 50.0

7 10.7 92.9 51.8

All (1–7) 4.6 94.4 49.5

Negative parts of metabogram components

1 21.4 92.9 57.1

2 0 92.9 46.4

3 0 92.9 46.4

4 7.1 92.9 50.0

5 0 96.4 48.2

6 10.7 92.9 51.8

7 0 92.9 46.4

All (1–7) 5.7 93.4 49.5

Downregulation of the metabolites (Z-score < -1.64 for the metabogram components)

Positive parts of metabogram components

1 0 96.4 48.2

2 3.6 92.9 48.2

3 7.1 96.4 51.8

4 14.3 96.4 55.3

5 3.6 96.4 50.0

6 10.7 96.4 53.6

7 0 96.4 48.2

All (1–7) 5.6 95.9 50.8

Negative parts of metabogram components

1 0 100.0 50.0

2 0 100.0 50.0

(Continued on the following page)
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TABLE 3 (Continued) Diagnostic parameters of the metabogram components for the detection of early-stage PD.

Metabogram component Diagnostic parameters (%)

Sensitivity Specificity Accuracy

3 17.9 96.4 57.1

4 0 100.0 50.0

5a 32.1 92.9 62.5

6 10.7 96.4 53.6

7 0 92.9 46.4

All (1–7) 8.9 96.9 52.8

aMetabograms component demonstrating the best diagnostic performance.

FIGURE 5
ROC curves based on the Z-score of the clinical blood metabogram (CBM) components for the diagnosis of Parkinson’s disease (PD). (A) ROC curves
for the three metabogram components, which consist of the PD-specific signature: the negative parts of components 3 and 5, and the positive part of
component 4. (B) ROC curve for the PD-specific signature, which consists of three metabogram components. Z-score −1.64 is used to distinguish
between PD cases and controls. The PD signature was applied to patients with obesity and type 2 diabetes mellitus to show its inter-disease specificity.

3), and the positive part of component 4 (called the “phospholipid-
amine” because of the co-directed changes in phospholipids and
amino acids described by its negative part).

The most frequent deviation from the norm was revealed in
the eicosanoid component of the metabogram (Figure 4). This
deviation in patients with early-stage PD occurred 4.5 times more
often than in the control group. A distinctive feature of this
component of the metabogram is its enrichment with eicosanoids
such as prostaglandins and leukotrienes. The close involvement
of various eicosanoids in the development of PD can be read
in the review by Chiurchiù V. et al. (2022). A variety of studies
using both different biomaterials for research and the diversity of
eicosanoids themselves led to the observation of multidirectional
changes in their concentrations in PD.However, it can be argued that
a group of eicosanoids in the blood decreases with PD (Zhang et al.,
2021; Chistyakov et al., 2023) and even some eicosanoids exhibit

neuroprotective effects (Rajan et al., 2020). Perhaps this group
of eicosanoids is responsible for the decreased Z-score of this
component of the metabogram.

The association of blood phospholipids with PD is an established
fact and was already proposed for diagnostic purposes (Li et al.,
2015). Oxidative stress is a significant factor in the onset and course
of PD. Important elements of cellular membranes, phospholipids
are essential for preserving the integrity and functionality of cells.
Patients with PD have much higher lipid peroxidation products
in their brains, which may be a connection between membrane
damage and changes in phospholipid levels. However, it is possible
that the detected changes in the phospholipolytic component may
be due to a change in the concentration of phospholipids or may
be associated with the activity of phospholipases. Previously, it was
found that there is a link between phospholipases and PD (Mendez-
Gomez et al., 2018; Wu et al., 2021). Thus, phosphatidic acid, a
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FIGURE 6
Cluster analysis of blood metabograms of PD patients involved in the study. Each row corresponds to the metabogram components for an individual
(components 1 to 7 for the “positive ” and “negative ” parts). Color coding: red indicates upregulation in the corresponding metabogram component;
yellow indicates downregulation in the corresponding metabogram component. The metabograms with no deviations (❶ ) in components and
metabograms considered PD-specific (❷ ) are selected.

product of phospholipase PLD2 activity, is a second messenger in
many cellular pathways and appears to be key to PLD2-induced
neurodegeneration. The fact that α-synuclein is a regulator of PLD2
activity suggests that regulation of PLD2 activity may be important
in the progression of PD.

Regarding downregulation reflected by the positive component
4, metabolites associated with it were not identified during the CBM
design (Lokhov et al., 2023b).The list ofmolecularweights forwhich
potential candidates exist was sparse and included several quasi-ions
to which several elemental compositions corresponded (C2H2O4,
С4Н6О3, С4Н6О3, С5Н6О5) (Lokhov et al., 2024). The elemental
composition ofC2H2O4 in themetabolite database corresponds only
to oxalic acids, a degradation product of vitamin C, a deficiency
of which in the body is associated with the development of PD
(Brown, 2017). For the elemental formula C4H6O3, among the
candidates are metabolites related to the butanoate metabolism
pathway, such as acetoacetic acid (ketone body) and succinic acid
semialdehyde. For C5H6O5, there is no alternative to oxoglutaric

acid, which also belongs to butanoate metabolism. Interestingly,
ketone bodies are associatedwith the development of PD, attributing
neuroprotective properties to them (Maalouf et al., 2009).Moreover,
the butadione metabolism pathway includes the formation of
gamma-aminobutyric acid (GABA), and the connection between
its level decrease and PD is well-known (Błaszczyk, 2016). Since
the metabolites of this metabogram component were not reliably
identified either according to metabolomics standards or during the
design of a metabogram, the connection of this component with the
butanoate metabolism pathway is hypothetical.

Based on the results obtained, several types of metabograms
can be distinguished in early PD (Figure 6). A metabogram
without abnormalities, a metabogram with various non-systematic
abnormalities that can be attributed to an individual’s disease course,
or an individual health condition defined by other diseases, and a
metabogram that can be attributed to a PD-specific metabotype.
The last one manifests in the blood level of eicosanoids and
is often associated with changes in the phospholipolytic and
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FIGURE 7
An example of the clinical blood metabogram. The percent of blood metabolome variance that the metabogram component explains is indicated by
the superscript “Var.” The metabogram components are measured by the Z-score value, whose normal range is from −1.64 to 1.64. Higher and lower
Z-scores are related to up- and downregulation of the blood metabolites corresponding to the metabogram component. The metabogram
components most often deviated at PD are highlighted by background color. (Lokhov et al., 2023c).

phospholipid-amine components. Figure 7 shows a metabogram in
a simple format, showing the names of the components, the blood
metabolome variance explained by each component, and the Z-
scores of the components. The figure also provides a PD-specific
signature – the components that contribute to the diagnosis of
PD and can be potentially used to monitor the level of metabolic
alterations during PD development and treatment. The inability to
diagnose PD, as well as to monitor its course and the outcome of
treatment in patients who do not have a PD-specificmetabotype can
be attributed to the limitations of CBM.

As said in the introduction, it's critical to remember that PD
has a diverse pathogenesis involving a range of small molecular
compounds. The specified metabolite composition of CBM
components may cause some PD-specific metabolic alterations in
the blood are undetected by CBM. Such alterations either do not
have a significant effect on the main groups of blood metabolites
reflected in CBM or refer to metabolites assigned to the remaining
30% of the variance of the blood metabolome not covered by CBM.
However, modifying the CBM for a specific disease to increase
its capabilities is beyond the scope of this work, which consists
of testing a previously developed CBM design. The peculiarity of
this approach is visible when comparing the results obtained with
a previously conducted classical metabolomic study to search for
biomarkers or a multimarker diagnostic signature of PD. In contrast
to CBM, an AUC of 0.91 was achieved to diagnose PD in this single
disease-focused study (Balashova et al., 2018). Contrariwise to such
single-disease studies, the same CBM design applied to multiple
diseases is more consistent with omics tests that identify changes at
a significant portion of the metabolomic level, offering diagnostic
capabilities for a variety of diseases.

From the described metabolic alterations, an additional
feature of the PD signature can be suggested. The neuroprotective
eicosanoids, whose reduction is reflected in the signature, not
only inhibit neuroinflammation but also suppress oxidative
stress (Tassoni et al., 2008). The change in the phospholipolytic
component, as above indicated, can be caused by peroxidase
oxidation and activation of phospholipase, which is recognized as an

integral component of the oxidant stress response system (Adibhatla
and Hatcher, 2008). The change in the metabolism of butadione led
to the downregulation of ketone bodieswith antioxidative properties
(Kolb et al., 2021). Thus, the ketone body β-hydroxybutyrate
is a direct antioxidant for hydroxyl radicals, an inhibitor of
mitochondrial reactive oxygen species (ROS) production, and
promotes the transcriptional activity of antioxidant defenses (Rojas-
Morales et al., 2020). It can be assumed that the PD signature not
only reflects the role of oxidative stress in PD development but also
may indicate the risk of developing PD through the reflection of a
reduced level of antioxidant activity in the organism. However, the
confirmation of this assumption requires additional research.

The specificity of the identified signature to PD is also confirmed
by its difference from previously published signatures of obesity and
type 2 diabetesmellitus widespread in the population (Lokhov et al.,
2023c; Lokhov et al., 2024). Moreover, when interpreting a PD-
specific signature, the influence of the gut microbiota on CBM
can be taken into consideration, the link to which was also
described (Lokhov et al., 2023a).

The results of this study should also be assessed in the light
of atypical parkinsonisms, the differential diagnosis of which
from PD remains challenging. Although accurate diagnosis in the
early stages of the disease plays an important role in prognosis
and treatment strategy, distinguishing PD from, for example,
parkinsonian-type multiple system atrophy (MSA-P) due to the
similarity of symptoms can be difficult (Wenning et al., 1997;
Goetz et al., 2004). The existence of the different clusters formed
by metabograms in Figure 6 may be caused by MSA-P or other
atypical parkinsonisms (progressive supranuclear palsy, corticobasal
degeneration, and dementia with Lewy bodies). However, due to
the rarity of their occurrence and the small cohort used, such a
connection cannot be identified in this study, and this hypothetical
statement rather serves as the basis for further research. Further
studies in larger cohorts that include different parkinsonisms
in sufficient numbers to obtain statistically significant data will
demonstrate the potential of CBM in the differential diagnosis of PD
and other parkinsonisms.
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As for the clinical implications of the results of this work, an
interpretation of the CBM can now be made for PD patients. This
makes it possible to accurately analyze the metabolic changes in
such patients and the dysfunctions of the body caused by these
changes, relating or separating them from those specific to PD.
Considering the pilot nature of the study, the feasibility of predicting
the course of PD, assessing the effectiveness of treatment, and
differentiating PD from atypical parkinsonism will become possible
after additional research.

5 Conclusion

The measurement of the metabolome for clinical use is eagerly
awaited and shows great promise. The metabolome, as its name
suggests, is a level of organization of biological systems that is
directly related to the global biochemical phenotype. One such
attempt is the CBM, which, as demonstrated in previous studies,
possesses the performance characteristics of a clinical test, and
provides data that is clinically relevant. In this work, CBM was
used to diagnose early PD, a condition that is very challenging to
diagnose by laboratory testing, and its efficacy was verified. CBM
allowed revealing a PD-specific metabotype, the measure of which
not only provides diagnostic information but also opens up new
opportunities to monitor PD progression and evaluate response to
PD treatment.
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