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The diagnostic value of a
nomogram based on enhanced
CT radiomics for differentiating
between intrahepatic
cholangiocarcinoma and early
hepatic abscess

Meng-chen Yang, Hai-yang Liu, Yan-ming Zhang, Yi Guo,
Shang-yu Yang, Hua-wei Zhang, Bao Cui, Tian-min Zhou,
Hao-xiang Guo and Dan-wei Hou*

Department of Medical Imaging, Shangluo Central Hospital, Shangluo, China

Objective: This study aimed to investigate the value of a CT-enhanced scanning
radiomics nomogram in distinguishing between early hepatic abscess (EHA) and
intrahepatic cholangiocarcinoma (ICC) and to validate its diagnostic efficacy.

Materials and Methods: Clinical and imaging data on 112 patients diagnosed
with EHA and ICC who underwent double-phase CT-enhanced scanning at
our hospital were collected. The contours of the lesions were delineated layer
by layer across the three phases of CT scanning and enhancement using
3D Slicer software to define the region of interest (ROI). Subsequently, the
contours were merged into 3D models, and radiomics features were extracted
using the Radiomics plug-in. The data were randomly divided into training
(n = 78) and validation (n = 34) cohorts at a 7:3 ratio, using the R programming
language. Standardization was performed using the Z-scoremethod, and LASSO
regression was used to select the best λ-value for screening variables, which
were then used to establish prediction models. The rad-score was calculated
using the best radiomics model, and a joint model was constructed based on
the rad-score and clinical scores. A nomogram was developed based on the
joint model. The diagnostic efficacy of the models for distinguishing ICC and
EHA was assessed using receiver operating characteristic (ROC) curve and area
under the curve (AUC) analyses. Calibration curves were used to evaluate the
reliability and accuracy of the nomograms, while decision curves and clinical
impact curves were utilized to assess their clinical value.

Results: Compared with the ICC group, significant differences were observed
in clinical data and imaging characteristics in the EHA group, including
age, centripetal enhancement, hepatic pericardial depression sign, arterial
perfusion abnormality, arterial CT value, and arteriovenous enhancement
(p < 0.05). Logistic regression analysis identified centripetal enhancement,
hepatic pericardial depression sign, arterial perfusion abnormality, arterial CT
value, and arteriovenous enhancement as independent influencing factors.
Three, five, and four radiomics features were retained in the scanning, arterial,
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and venous phases, respectively. Single-phase models were constructed, with
the radiomics model from the arterial phase demonstrating the best diagnostic
efficacy. The rad-scorewas calculated using the arterial-phase radiomicsmodel,
and nomograms were drawn in conjunction with the clinical model. The
nomogram based on the combined model exhibited the highest differential
diagnostic efficacy between EHA and ICC (training cohort: AUC of 0.972;
validation cohort: AUC of 0.868). The calibration curves indicated good
agreement between the predicted and pathological results, while decision
curves and clinical impact curves demonstrated higher clinical utility of the
nomograms.

Conclusion: The CT-enhanced scanning radiomics nomogram demonstrates
high clinical value in distinguishing between EHA and ICC, thereby enhancing
the accuracy of preoperative diagnosis.

KEYWORDS

early hepatic abscess, intrahepatic cholangiocarcinoma, radiomics, enhancement
scanning, nomogram

Introduction

Hepatic abscesses are relatively common in clinical practice, and
their imaging characteristics vary depending on the stage of the
disease. In recent years, the imaging features of early hepatic abscess
(EHA) have become increasingly atypical, possibly due to antibiotic
misuse (He et al., 2022). The absence of central uniform necrotic
areas, ring target signs, or gas–liquid interfaces within the lesions
makes it challenging to definitively diagnose EHA, often leading
to misdiagnosis as tumorous lesions (Zhuo et al., 2021; Khim et al.,
2019). Intrahepatic cholangiocarcinoma (ICC), the second most
common primary malignant liver tumor, arises from the epithelial
cells of the bile ducts. It exhibits an insidious onset, accounting
for approximately 15% of liver cancer cases. ICC presents with
various imaging features, including clinical fever and honeycomb
changes in some cases (Hu et al., 2022; Entezari and Riaz, 2020).
Therefore, an accurate preoperative diagnosis of ICC significantly
influences treatment options and patient prognosis. Radiomics, a
machine learning-based method introduced by Kumar in 2012,
allows for the extraction of high-throughput radiomics features
(>100 features) from conventional images to quantify lesions. This
emerging technology has gained widespread use in recent years
(Kumar et al., 2012; Chassagnon et al., 2023). However, there are
limited reports in the literature regarding the application of CT-
enhanced scanning radiomics nomograms for differentiating and
identifying liver lesions. This study aims to establish CT-enhanced
scanning radiomics nomograms and assess their clinical utility in
distinguishing EHA from ICC.

Materials and methods

General information

We conducted a retrospective analysis of 53 patients diagnosed
with EHA and 59 patients diagnosed with ICC, who underwent
dual-phase CT-enhanced scanning of the abdomen at our
department between January 2019 and December 2023. The

diagnoses were confirmed by pathology, and clinical data and CT
imaging features were collected for each patient. In the EHA group,
there were 30 male and 23 female individuals with a mean age
of 60.4 ± 12.9 years. In the ICC group, there were 33 male and
26 female individuals with a mean age of 65.3 ± 12.2 years. The
inclusion criteria were as follows: (Ⅰ) all patients were first-time
admissions and underwent CT-enhanced scanning examination;
(Ⅱ) patients with ICC and EHAwho had not received any treatment;
and (Ⅲ) no history of liver surgery. The exclusion criteria were
as follows: (Ⅰ) patients who had undergone drainage of hepatic
abscesses; (Ⅱ) patients who had undergone radiotherapy for other
types of cancer; and (Ⅲ) patients without pathological results. The
collected clinical data and imaging characteristics comprised the
basic dataset, which was then randomly divided into a training
cohort (n = 78) and a validation cohort (n = 34) at a ratio of 7:3
using the R programming language.

CT examination methods

Abdominal plain scanning and dual-phase enhancement
scanning examinations were conducted using Philips IQon Spectral
CT/Brilliance 64-row spiral CT and GE 256-row Revolution CT
equipment. The scanning parameters included a matrix size of
512∗ 512, axial thin-layer thickness of 0.9 mm, and a scanning
range extending from the level of the diaphragm to the level of
the anterior superior spine of the iliac spine. The contrast agent
iophorol was administered at a dosage of 2 mg/kg with an injection
flow rate of 3.5 mL/s through the median vein of the elbow. Scans
were performed in the arterial phase at 25 s and in the venous phase
at 38 s after the injection of the contrast material.

Measurement standards and image analysis

CT values were measured during the scanning, arterial, and
venous phases for all 112 patients. To ensure consistency in the
measurement location and level, all images were synchronized
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across multiple phases using picture archiving and communication
systems (PACS). The measurement area was ensured to be
situated within the substance of the lesion, and the maximum
diameter of the lesion was measured at the level with the
best axial image morphology. A double-blinded review of the
CT images of all patients was performed independently by two
attending physicians from the Department of Imaging. In cases of
disagreement, a third experienced chief physician adjudicated the
decision. The following aspects were discussed: lesion site (right
lobe of the liver and left lobe of the liver), lesion morphology
(regular and irregular), centripetal enhancement (have and no),
hepatic pericardial depression sign (have and no), arterial-phase
perfusion abnormality (have and no), foveal changes (have and
no), maximum diameter of the lesion, CT value of the plain
and arterial and venous phases, magnitude of enhancement in
the arterial phase, and difference in the enhancement of arterial
and venous phases (12 indexes), and the maximum diameter
of the lesion and the plain phase. The maximum diameter
of the lesion in the plain phase and the CT value in each
phase (plain, arterial, and venous) were averaged by the two
attending physicians.

Radiomics data acquisition

The sweeping arterial and venous images of 112 patients were
exported in DICOM format and imported into 3D Slicer software.
Regions of interest (ROIs) were delineated layer by layer along the
edges of the lesions by the two attending physicians mentioned
above. These ROIs were then fused into a 3D volume of interest
(VOI) using the “Fill between slices” function within the software
program. Subsequently, the Radiomics plug-in was utilized to
resample the images for normalization (voxel: 1 mm × 1 mm ×
1 mm) and discretization of gray values (bin width: 25) to mitigate
the effects of heterogeneity (Leijenaar et al., 2015). This process
aimed to reduce variability in radiomics features due to differences
in image resolution and intensity. Following normalization and
discretization, the original features and higher-order features based
on wavelet transform were extracted. A total of 851 radiomics
features were extracted from each of the three phases. These features
included 14 morphological features, 18 first-order features, 65
texture features, and 754 higher-order features based on the wavelet
transform.

Dimensionality reduction screening of
radiomics features and calculation of the
rad-score

First, the ROIs outlined by the two attending physicians were
analyzed for consistency, and the interclass correlation coefficient
was calculated. Data on variables with an interclass correlation
coefficient > 0.75 were retained. Next, the Z-score method was
utilized to standardize all the data, ensuring uniformity in scale
across variables. Subsequently, the standardized data were subjected
to feature selection using LASSO regression with a 10-fold cross-
validation to determine the optimal penalty coefficient λ that
resulted in the smallest error. Redundant features with correlation

coefficients |r| > 0.8 were excluded using Spearman’s correlation
analysis to minimize multicollinearity. The final retained feature
coefficients and their correlation data were utilized to calculate the
rad-score for each phase and construct a logistic regression model.
The rad-score was calculated as follows: Rad-score = I + 1β∗ 1R +
2β∗ 2R + ... (I represents the cutoff value, β represents the value of
each characteristic coefficient, and R represents the value of each
characteristic).

Statistical methods

R 4.3.1 software was utilized to assess the normality of
measurements in the dataset using the Kolmogorov–Smirnov test.
Levene’s test was used to assess the homogeneity of variances. For
normally distributed data, t-tests were conducted (homogeneous
variance) or Welch’s t-tests were applied (heterogeneity of variance).
Non-normally distributed data were analyzed using Wilcoxon’s
rank-sum test, with results expressed as x ± s. Categorical data were
analyzed using the chi-squared test or Fisher’s exact test for special
variables, with frequencies reported as n (%). Single-factor and
multi-factor logistic regression analyses were performed to identify
independent influencing factors and construct various models
in both the training and validation cohorts. Receiver operating
characteristic (ROC) curves were utilized to analyze and calculate
the cutoff value, Jordon’s index, sensitivity, specificity, and area under
the curve (AUC)with a 95% confidence interval (CI) for eachmodel.
Based on the joint model, column line graphs were generated using
R software. Calibration curves were plotted after 1,000 repetitions
using the bootstrap self-sampling method to visually evaluate
the predictive performance of the column line graphs. Decision
curves and clinical impact curves were plotted to evaluate the
clinical utility of the column line graphs. Statistical significance was
set at p < 0.05.

Results

Comparison of general information and CT
features

Of the 14 indicators in the basic dataset, gender, lesion location,
lesionmorphology, honeycomb changes, maximum lesion diameter,
CT value in the plain phase, CT value in the venous phase,
and amplitude of enhancement in the arterial phase were not
statistically significant (p > 0.05) in ICC (Figures 1A–F) and EHA
(Figures 2A–F), whereas the clinical information and imaging
features of age, centripetal enhancement, hepatic pericardial
depression sign, arterial-phase perfusion abnormality, arterial-
phase CT value, and arterial vein-phase enhancement difference
were statistically significant (p < 0.05) in all six indicators.
Specifically, patients with hepatic abscess were generally younger,
ICC had more centripetal enhancement and hepatic pericardial
depression sign, arterial-phase perfusion abnormality was more
common in hepatic abscess, arterial-phase enhancement of ICC
patients was slightly higher than that of patients with EHA, and
arteriovenous enhancement difference of EHA was higher than
that of ICC (Table 1).
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FIGURE 1
Male individual, 65 years old, ICC (A–C). The lesions were located in the right lobe of the liver (white arrow). The enhancement was uneven in the
arterial phase. The enhancement in the venous phase was high and showed centripetal enhancement (D). ROI is outlined on the largest level of the
lesion in the venous phase (E). 3D view of the lesion (F). Pathological findings showed irregular glandular tubular and strip-like interstitial infiltration
with obvious cell atypia, which was consistent with moderately differentiated intrahepatic cholangiocarcinoma (HE × 100).

FIGURE 2
Male individual, 36 years old, EHA (A–C). The lesions were located in the right lobe of the liver (white arrow). Abnormal perfusion could be observed in
the arterial stage. The degree of enhancement in the venous stage was not high (D). ROI is outlined on the largest level of the lesion in the venous
phase (E). 3D view of the lesion (F). The pathology showed extensive neutrophil infiltration with necrosis, consistent with hepatic abscess (HE × 100).
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TABLE 1 Characteristics of patients in the training and validation cohorts.

Characteristic Training cohort Validation cohort

ICC
(n = 42)

EHA
(n = 36)

t/Z/χ2 p-value ICC
(n = 17)

EHA
(n = 17)

t/Z/χ2 p-value

Gender [n(%)] 0.320 0.572 0.472 0.492

  Male 23 (55) 22 (61) 10 (59) 8 (47)

  Female 19 (45) 14 (39) 7 (41) 9 (53)

Age 65.2 ± 11.8 58.1 ± 14.1 2.397 0.018 65.4 ± 12.5 62.7 ± 11.8 0.650 0.520

Diseased region [n(%)] 3.243 0.072 0.118∗

  Left lobe 16 (38) 7 (20) 7 (41) 2 (12)

  Right lobe 26 (62) 29 (80) 10 (59) 15 (88)

Morphology [n(%)] 2.226 0.136 4.371 0.037

  Regular 14 (33) 18 (50) 4 (24) 10 (58)

  Irregular 28 (67) 18 (50) 13 (76) 7 (42)

CR [n(%)] 34.552 <0.001 9.663 0.002

  Have 35 (83) 6 (17) 12 (71) 3 (18)

  No 7 (17) 30 (83) 5 (29) 14 (82)

LED [n(%)] 28.627 <0.001 15.07 0.001

  Have 27 (64) 2 (6) 12 (71) 1 (6)

  No 15 (36) 34 (94) 5 (29) 16 (94)

AAPP [n(%)] 6.980 0.008 4.636 0.031

  Have 11 (26) 20 (56) 3 (18) 9 (53)

  No 31 (74) 16 (44) 14 (82) 8 (47)

Honeycomb change [n(%)] 0.896 0.344 0.486 0.486

  Have 11 (26) 13 (36) 6 (35) 8 (47)

  No 31 (74) 23 (64) 11 (65) 9 (53)

MLD (x ±s, cm) 6.89 ± 3.85 6.14 ± 2.88 0.981 0.340 6.91 ± 3.61 5.02 ± 2.70 183.0 0.193

PSPCTV (x ±s, HU) 33.6 ± 6.5 31.3 ± 7.9 1.393 0.162 33.8 ± 6.13 33.6 ± 10.6 0.061 0.953

APCTV (x ±s, HU) 53.4 ± 9.2 48.4 ± 11.4 2.138 0.033 52.3 ± 12.6 51.9 ± 13.6 0.082 0.935

VPCTV (x ±s, HU) 65.2 ± 14.5 64.0 ± 18.1 0.306 0.757 60.3 ± 12.6 70.5 ± 21.4 −1.699 0.101

APRA (x ±s, HU) 19.9 ± 9.0 17.1 ± 9.2 890.0 0.179 18.5 ± 12.2 18.4 ± 12.1 0.046 0.964

APED (x ±s, HU) −11.7 ± 10.2 −15.7 ± 12.7 969.5 0.032 −7.9 ± 5.5 −18.6 ± 15.5 215.0 0.015

ICC, intrahepatic cholangiocarcinoma; EHA, early hepatic abscess; CR, centripetal reinforcement; LED, liver envelope depression; AAPP, abnormal arterial phase perfusion; MLD, maximum
lesion diameter; PSPCTV, plain scan phase CT value; APCTV, arterial phase CT value; VPCTV, venous phase CT value; APRA, arterial phase reinforcement amplitude; APED, arteriovenous
phase enhancement difference.
Note:∗ is Fisher’s exact test.
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TABLE 2 Multivariate logistic regression analysis of the training cohort.

Characteristic OR (95% CI) β Wald p-value

Age 0.98 (0.92–1.04) −0.022 0.557 0.500

CR 13.71 (3.39–68.6) 2.618 12.138 <0.001

LED 10.76 (2.02–87.1) 2.370 6.620 0.010

AAPP 0.52 (0.09–2.61) −0.697 0.707 0.400

APCTV 0.94 (0.87–1.01) −0.061 2.769 0.042

APED 0.97 (0.91–1.04) −0.025 3.165 0.039

Intercept −2.927 0.629 0.476

CR, centripetal reinforcement; LED, liver envelope depression; AAPP, abnormal arterial phase perfusion; APCTV, arterial phase CT value; APED, arteriovenous phase enhancement difference.

Modeling of clinical and imaging data

The above statistically significant variables (age, centripetal
enhancement, hepatic pericardial depression sign, arterial perfusion
abnormality, arterial CT value, and arteriovenous enhancement
difference) were included in the binary logistic regression
analysis. The results showed that centripetal enhancement,
hepatic pericardial depression sign, arterial-phase CT value, and
arteriovenous-phase enhancement difference were independent
influences; age and abnormal arterial-phase perfusion were not
independent factors (p > 0.05); and centripetal enhancement was
the most sensitive factor (p < 0.001) (Table 2).

Radiomics feature extraction and
nomogram plot

The 3D Slicer Radiomics plug-in was utilized to extract 861
radiomics features from each of the three-phase images. These
included 14 morphological features, 18 first-order features, 75
texture features, and 754 higher-order features based on the wavelet
transform. The base pixel comprised 14 gray-level dependence
matrix (GLDM), 5 neighborhood gray-tone difference matrix
(NGTDM), 16 gray-level size zone matrix (GLSZM), 38 gray-
level co-occurrence matrix (GLCM), and 32 gray-level run length
matrix (GLRLM). Radiomics data typically have high-dimensional
features, and LASSO regression, by applying L1 regularization, can
handle these high-dimensional data, reducing model complexity
and preventing overfitting (Lambin et al., 2012). LASSO regression
and 10-fold cross-validation were used to select the best penalty
factor λ with the lowest error for both the imaging data and
clinical data (Figure 3). Ultimately, a total of 12 features were
retained in each phase (Table 3).The arterial-phase radiomicsmodel
demonstrated optimal efficacy among the radiomics models in
each phase (AUC = 0.905; 95% CI: 0.856–0.943). Consequently,
arterial-phase radiomics data were selected for the calculation of
the rad-score. The rad-score equation derived from the arterial-
phase radiomics data was as follows: Rad-score = 0.091 + 3.057
wavelet-LLL_glcm_MCC+1.508wavelet-LLH_firstorder_Skewness

+1.652 wavelet-LLH_glrlm_ShortRunHighGrayLevelEmphasis +
0.624 original_shape_Flatness-0.589∗wavelet-HLL_glszm_Small
AreaEmphasis. The analysis of sample data (Figure 4) revealed that
the rad-score of the ICC group was significantly lower than that of
the EHA group in both the training (Z = 397, p < 0.001) and the
validation cohorts (Z = 33, p < 0.001). Subsequently, the rad-score
was merged with the clinical model to construct the nomogram
model and plot the nomogram (Figure 5).

Evaluation of the diagnostic efficacy of
each model

The Hosmer–Lemeshow test results for each model in both
the training and validation cohorts indicated p > 0.05, suggesting
that the models were well fitted. ROC curves were plotted based
on the predictive probabilities of each model in both cohorts
(Figure 6). The corresponding AUC values (95% CI), specificity,
sensitivity, cutoff value, and Jordon’s index of each model were
obtained and are given in Table 4. In the training cohort, the clinical
model, arteriomics model, and nomogram model demonstrated
AUC values (95% CI) of 0.890 (0.847–0.932), 0.905 (0.856–0.943),
and 0.972 (0.958–1), respectively. Specificity and sensitivity for
each model were 0.833 and 0.944; 0.861 and 0.857; and 0.977 and
0.914, respectively. In the validation cohort, the clinical model,
arteriomics model, and nomogram model exhibited AUC values
(95% CI) of 0.740 (0.682–0.763), 0.753 (0.706–0.792), and 0.868
(0.814–0.901), respectively. Specificity and sensitivity for each
model were 0.823 and 0.647; 0.750 and 0.778; and 0.813 and
0.944, respectively. Calibration curves of the column–line graphs
for both the training and validation cohorts were plotted to
assess the agreement between the predicted probabilities of the
column–line graphs and the pathological results (Figure 7). The
high agreement indicated good predictive performance. Decision
curves demonstrated that the column–line diagram had a wider
range of risk thresholds than other models, resulting in a higher
net clinical benefit (Figure 8). Furthermore, the clinical impact
curve indicated that the column–line diagram had superior clinical
application value (Figure 9).
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FIGURE 3
LASSO regression feature screening graph. A 10-fold cross-verified LASSO regression was used to screen the radiomics features, and the optimal
parameter λ was selected (A–C). Curves of the changes in the radiomics feature coefficients with λ in the plain scan phase, arterial stage, and venous
stage models, respectively. The dotted line indicates the location of the selected optimal λ (D–F). Curves of the mean square error of the model in plain
scan phase, arterial phase, and venous phase with λ, respectively. The dashed line represents standard deviation of 1 and the location of the
selected optimal λ.

Discussion

At present, there are many tumor-related diagnostic methods,
such as nanotechnology in tumor liquid biopsy and nanomaterial-
assisted metabolic analysis in clinical application (Zhu et al., 2024;
Yang et al., 2022). However, in recent years, the incidence of hepatic
abscesses has increased, attributed to factors such as the aging
population, increased prevalence of diabetes mellitus, and bile
duct diseases (Wang et al., 2023). EHAs often present atypically
in terms of imaging performance during the abscess formation
stage, leading to difficulty in distinguishing them from liver
tumors (Priyadarshi et al., 2022). Similarly, ICC exhibits mixed
imaging manifestations, contributing to a higher misdiagnosis
rate in clinical settings (Ke et al., 2023). Both EHA and ICC
can display irregular lesion morphology, centripetal enhancement,
arterial-phase perfusion abnormalities, and honeycomb changes.
However, the clinical treatments for these conditions are vastly
different. Misdiagnosing a hepatic abscess as ICC and performing
clinical drainage can increase the risk of cancer cell dissemination,
significantly impacting patient prognosis. In our study, we collected
clinical and imaging data from 112 cases and observed several

noteworthy findings. Patients with EHA were generally younger
than those with ICC, consistent with existing literature reports
(Devulapalli et al., 2018). Additionally, ICC exhibited centripetal
enhancement compared to EHA, possibly due to iodine contrast
agent leakage into the vascular space and slower penetration of the
fibrous tissue component of ICC (Iavarone et al., 2013; Wang et al.,
2020; Tarnoki et al., 2021). The presence of hepatic pericardial
depression sign was a typical malignant indicator observed only
in ICC, while perfusion abnormalities in the arterial phase
were predominantly observed in hepatic abscesses, aligning with
previous reports (Li et al., 2023). Furthermore, the magnitude of
enhancement in the arterial phase was slightly higher in ICC than in
EHA, and the difference between arterial and venous enhancement
was greater in EHA than in ICC, consistent with prior studies
(Yu et al., 2014; Oh et al., 2019). However, gender, lesion location,
lesion morphology, foveal changes, maximum lesion diameter, CT
values in the plain and venous phases, and enhancement amplitude
in the arterial phase were not statistically significant in our study.
Notably, foveal changes are often perplexing in clinical practice
and can contribute to misdiagnosis, highlighting the importance of
cautious interpretation.
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TABLE 3 Final screening characteristics and coefficients.

Intercept Phases and characteristics Name of the radiomics feature Coefficient

−0.085 Plain scan phase

wavelet-HLH_firstorder_Skewness −0.101

wavelet-LLH_firstorder_Maximum 0.187

wavelet-HHL_glcm_MCC 0.329

0.091 Arterial phase

wavelet-LLL_glcm_MCC 3.057

wavelet-LLH_firstorder_Skewness 1.508

wavelet-LLH_glrlm_ShortRunHighGrayLevelEmphasis 1.652

original_shape_Flatness 0.624

wavelet-HLL_glszm_SmallAreaEmphasis −0.589

−0.142 Venous phase

wavelet-LLL_glcm_Idmn −0.452

wavelet-LHL_glrlm_RunVariance −0.309

wavelet-HLH_firstorder_Mean −0.069

wavelet-HHH_glcm_Imc1 0.299

Note: + and - in the coefficient represent addition and subtraction in the formula, respectively.

FIGURE 4
Rad-score boxplot to distinguish ICC and EHA. The rad-score of the ICC group was significantly lower than that of the EHA group in both the training
and validation cohorts.

Radiomics has undergone rapid development in the past decade
and has found widespread application in the study of various
systemic diseases. For instance, it has shown high effectiveness
in predicting IDH status in glioma and EGFR mutations in lung
cancer (Bogani et al., 2017). Based on CT radiomics parameters, it
is also possible to distinguish radiation pneumonitis from immune

pneumonitis. These parameters analyze the texture features, shapes,
densities, and other information from CT images, helping doctors
differentiate between different types of pneumonitis on imaging.
Additionally, radiomics parameters can predict PD-L1 and CD8
expression levels, which is crucial for guiding immunotherapy.
Through these parameters, doctors can more accurately assess the
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FIGURE 5
Nomogram of the arterial phase rad-score combined with the clinical model in differential diagnosis of ICC and EHA. CR, centripetal reinforcement;
LED, liver envelope depression; APCTV, arterial-phase CT values; AED, arteriovenous enhancement difference.

FIGURE 6
ROC curve of differential diagnosis of each model in the training and validation cohorts. Radiomics_1, Radiomics_2, and Radiomics_3 represent the
rad-score model in the plain scan phase, arterial phase, and venous phase, respectively. Nomogram stands for the combined model.

tumor microenvironment, develop personalized treatment plans,
and improve treatment efficacy (Wen et al., 2021; Qiu et al., 2022;
Fan et al., 2024). By extracting a large number of quantitative
features from images and analyzing the distribution and relationship
of pixel intensities, radiomics quantifies the biological characteristics
of a disease. This objective assessment of lesion homogeneity is
invaluable for accurate diagnosis and prognosis (Yardımcı et al.,
2020). Radiomics possesses robust capabilities for objective data
mining and quantification (Nie et al., 2019), which are increasingly
vital in disease research. The features extractable through radiomics

encompass three main categories: first-order features based on
grayscale and shape, second-order features based on texture, and
higher-order features (such as filtering and wavelet transforms).
These categories can yield hundreds or thousands of small features.
However, it is not necessarily true that more features lead to
better outcomes. Excessive variables may result in overfitting of
the model, necessitating feature selection to ensure the model
robustness. Hence, the extracted features require careful filtering.
Despite the quantitative information that radiomics offers, which
is often imperceptible to the naked eye, its clinical application
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TABLE 4 Diagnostic efficiency of each model in the training and validation cohorts.

Characteristic Intercept Jordon index Sensitivity Specificity AUC (95% CI)

Training cohort (n = 78)

Clinics 0.268 0.778 0.944 0.833 0.890 (0.847–0.932)

Radiomics_1 0.638 0.303 0.351 0.951 0.606 (0.549–0.651)

Radiomics_2 0.508 0.718 0.857 0.861 0.905 (0.856–0.943)

Radiomics_3 0.416 0.499 0.878 0.622 0.780 (0.727–0.826)

Nomogram 0.673 0.891 0.914 0.977 0.972 (0.958–1)

Validation cohort (n = 34)

Clinics 0.473 0.470 0.647 0.823 0.740 (0.682–0.763)

Radiomics_1 0.442 0.465 0.688 0.778 0.747 (0.697–0.787)

Radiomics_2 0.469 0.528 0.778 0.750 0.753 (0.706–0.792)

Radiomics_3 0.464 0.447 0.583 0.863 0.697 (0.651–0.724)

Nomogram 0.417 0.757 0.944 0.813 0.868 (0.814–0.901)

Note: Radiomics_1, Radiomics_2, and Radiomics_3 represent the rad-score model in the plain scan phase, arterial phase, and venous phase, respectively. The nomogram stands for the
combined model.

FIGURE 7
Calibration curve of the training and validation cohorts.

has been limited due to technical challenges. These include issues
related to improving reproducibility, data openness and sharing, and
low interpretability (Papadimitroulas et al., 2021). Consequently,
the clinical translation of radiomics continues to encounter
significant hurdles.

In this study, 10-fold cross-validation LASSO regression
was used to screen the features, where the coefficients of
non-significant variables were compressed to 0 by adjusting
the parameter λ. Ultimately, a total of 12 features were
selected, with 11 of them being higher-order features based
on the wavelet transform. This observation underscores the

significant role of wavelet features in identifying the nature of
the lesion. As reported in Atto et al. (2013), wavelet features
can categorize image attributes into different subsets and use
distinct algorithms for each subset to enhance image information
and emphasize details, thus offering higher diagnostic value
than other features. Wavelet filtering, a method for image
noise reduction, diminishes smoothing and decomposes image
information in the spatial frequency domain, thereby preserving
more detailed image features (Gungor et al., 2021; Zhang et al.,
2022). Consequently, it finds wide application in digital image
processing. In this study, the nomogram model demonstrated
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FIGURE 8
Decision curves of the clinical model, Radiomics_2 (arterial phase rad-score model), and nomogram model in the training and validation cohorts.

FIGURE 9
Clinical impact curve of the nomogram in the training and validation cohorts.

significant value in distinguishing EHA from ICC. By integrating
the clinical characteristics and imaging parameters of patients,
the nomogram model effectively predicts and differentiates
these two diseases, providing accurate diagnostic information.
The nomogram model generates individualized risk predictions
by combining multiple variables (such as age, gender, tumor
size, and radiomics features), enhancing diagnostic accuracy
and reliability. Consequently, it enables timely and appropriate
therapeutic interventions, which helps reduce misdiagnosis
and overtreatment, thereby improving patient prognosis and
survival rates. Therefore, as a comprehensive assessment tool,
the nomogram model has broad application prospects in liver
disease imaging diagnosis and deserves further promotion and
application.

This study is subject to the following four limitations: (Ⅰ) the
small sample size may introduce bias into the statistical results
of the data; (Ⅱ) the wide time span of the data collected poses

challenges in ensuring the accuracy of the images measured
by the three models; (Ⅲ) in this study, the samples were
randomly divided into groups at a 7:3 ratio; however, the
optimal grouping method should be based on a 5-fold cross-
validation to ensure the reliability and generalizability of the
model; and (IV) the study exclusively utilized the logistic
model algorithm, neglecting the exploration of other higher-
order algorithms such as support vector machines and naive
Bayes. To validate the results and overcome these limitations, a
multi-center, multi-algorithm, and large-sample study should be
conducted.

Conclusion

In summary, CT-enhanced scanning-based radiomics offers
a novel approach to clinical practice, with its nomogram model

Frontiers in Molecular Biosciences 11 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1409060
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Yang et al. 10.3389/fmolb.2024.1409060

proving to be more effective in distinguishing between ICC
and EHA. This improvement in accuracy aids in enhancing
preoperative diagnosis and provides valuable data support for
selecting subsequent clinical treatments.Moreover, the visualization
properties of the nomogram confer significance for clinical
promotion, facilitating its application in clinical settings.
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