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The result of infection of bone with microorganisms is osteomyelitis and septic
arthritis. Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for
most of its cases (more than 50%). Since MRSA is resistant to many treatments,
it is accompanied by high costs and numerous complications, necessitating
more effective new treatments. Recently, development of gelatin nanoparticles
have attracted the attention of scientists of biomedicine to itself, and have been
utilized as a delivery vehicle for antibiotics because of their biocompatibility,
biodegradability, and cost-effectiveness. Promising results have been reported
with gelatin modification and combinations with chemical agents. Although
these findings have been suggested that gelatin has the potential to be a
suitable option for continuous release of antibiotics in osteomyelitis and septic
arthritis treatment, they still have not become routine in clinical practices. The
most deliver antibiotic using gelatin-derived composites is vancomycin which is
showed the good efficacy. To date, a number of pre-clinical studies evaluated
the utility of gelatin-based composites in the management of osteomyelitis.
Gelatin-based composites were found to have satisfactory performance in the
control of infection, as well as the promotion of bone defect repair in chronic
osteomyelitis models. This review summarized the available evidence which
provides a new insight into gelatin-derived composites with controlled release
of antibiotics.
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1 Introduction

Chronic osteomyelitis treatment is considered to be challenging,
since elimination of the main responsible pathogen has remained
a problem for orthopedic surgeons (Kavanagh et al., 2018).
Various bacteria could cause chronic osteomyelitis such as
Staphylococcus aureus, staphylococci, Propionibacterium species,
Enterobacteriaceae species, Pseudomonas aeruginosa, Salmonella
species, and Streptococcus pneumoniae (Hatzenbuehler and Pulling,
2011). Chronic osteomyelitis is accompanied by high rates of
morbidity andmortality (particularly in older patients), and disrupts
the quality of life of those affected with this disease. Similar to
other infections, antibiotic therapy is generally employed to manage
osteomyelitis (Schwarz, 2020).

Osteomyelitis representsa significantbone infection,presenting in
either acute or chronic forms. This condition entails an inflammatory
reaction affecting the bone and its associated structures, triggered by
pyogenicmicroorganismsdisseminatedviathebloodstream,fractures,
or surgical interventions. Chronic osteomyelitis is recognizedwith the
development of low grade inflammation, presence of bacteria and/or
othermicroorganisms in the affected area alongwith pus, sequestrate,
and even fistula (Lew and Waldvogel, 1997).

Mostly, osteomyelitis cause is a microorganism which arrived
to the bone from adjacent infected tissue, blood or even direct
inoculation due to trauma. Usually, hematogenous infections are
resulted from a single microorganism and other types (direct
inoculation and adjacent tissue) resulted in polymicrobial infection.
The challenge in the treatment of osteomyelitis is the ability of
microorganisms to live in the necrotic tissues of the bone for a
substantial period of time especially if the surgical debridement has
not been occurred properly (Lima et al., 2014).

Debridement of necrotic tissues and using antimicrobial agents
are the common methods for treatment of osteomyelitis. Choosing
the best antibiotic against the osteomyelitis-causing microorganism
should be based on primary evaluations including staging, culture,
and determination of susceptibility. Early initiation of antibiotics have
led to themore favorable results (Cierny III, 2011; Hatzenbuehler and
Pulling, 2011; Walter et al., 2012; Lima et al., 2014).

Initiation of osteomyelitis is by establishment of bacteria via
different routes such as direct inoculation, hematogenous seeding
or from airborne infection. By reaching to the bone, bacteria
produce biofilm to protect themselves against antimicrobial agents
and immune system activity such as phagocytosis. Moreover, the
metabolic activity of bacteria is reduced and they change from
motile forms to sessile ones. These changes increase the resistance
of bacteria against different antimicrobial agents as the effective
dose for killing bacteria in biofilms are about 10–100 times the
standard dose which make the antibiotic therapy to the dangerous
and ineffective procedure (Gogia et al., 2009). The antibiotic might
not be delivered well enough, at the required concentration to
remove all bacteria. Persisted cells or biofilm will therefore remain
and despite surgical debridement, therapies fail in ∼20% of subjects.

The complications of osteomyelitis treatment can be attributed
to various reasons, some of which are i) antimicrobial resistance is
widely observed, ii) biofilm production or metabolic alterations
can lead to antibiotic tolerance, iii) antibiotics are unable to
penetrate damaged and infected bone, and iv) antibiotic-protected
reservoirs colonize in the bony substructure. For example,

Figure 1 shows the failure of treatment of osteomyelitis due to
S. aureus through multiple mechanisms outside of previously
known antibiotic resistance (Gimza and Cassat, 2021). Several
studies have reported multidrug-resistant strains of S. aureus in
various types of samples (Sharafati-chaleshtori and Karimi, 2010;
Silago et al., 2020; Zelmer et al., 2022).

Gelatin isanatural,biocompatible, andbiodegradablebiopolymer,
which can perform multiple functions. It has been broadly used in
the food, pharmaceutical, cosmetic, and medical industries, thanks
to its beneficial mechanical and technological properties (Su and
Wang, 2015). In the medical and pharmaceutical areas, gelatin has
been employed for both implants and as a matrix for device coatings.
However, there some disadvantages associated with the use of gelatin,
such as weak mechanical properties, thermal instability, and having
a slow rate of degradation. When gelatin is used in studies involving
longer periods in a biological environment, such as controlled drug
release, cellular adhesion and division, or wound regeneration, it is
advisable that gelatin-based materials do not remain intact over the
long term (Gorgieva and Kokol, 2011). In comparison to collagen,
gelatin, in itshydrolyzed form, ismoreprone todegradationbyvarious
protease enzymes, resulting ina faster breakdown.Gelatin is formedas
adenaturedproductof collagenunder specificconditions, constituting
an uneven protein mixture. Some drawbacks of gelatin could be
simply avoided by gelatin modification, and the production of gelatin
composites to improve the mechanical stability, biocompatibility, and
bioactivity. The drawbacks of gelatin used in biomedical approaches
have become less important owing to progress in manufacturing
technology and our understanding of material chemistry (Bello et al.,
2020). In the following sections, we discuss a variety of biomaterials
based on gelatin and their use in biomedical applications such
as scaffolds, drug delivery, and bone substitutes for the healing
and regeneration of bones.

2 Gelatin for drug delivery

Extensive investigations have been carried out into the use of
gelatin as a drug delivery carrier for various drug types, based on its
properties as an organic biomaterial and its track record of safety in
a number of medical and pharmaceutical applications. Antibacterial
agents, antineoplastic cytotoxic drugs, anti-inflammatory drugs,
and most recently nucleic acids and hydrophobic materials have
all been reported in the literature to be advantageously delivered
by gelatin-based materials (Kumar P. S. et al., 2011; Lee et al., 2013;
Santoro, Tatara andMikos, 2014). Adjusting the properties of gelatin
can result in optimized drug-loading efficiency. Remarkably, the
isoelectric point for gelatin can be aligned with the electrostatic
properties of the drug molecule, which allows it to be employed in
either alkaline or acidic conditions (Tabata and Ikada, 1998).

3 Preparation of gelatin nanoparticles

In the literature, gelatin nanoparticles (GNPs) have recently
been described as a carrier system for drug delivery as well as
gene delivery (Zwiorek et al., 2004; Changez et al., 2005; Jiang et al.,
2012; Elzoghby, 2013; Zhou J. et al., 2018; Zhou X. et al, 2018).
Since the first description in 1978 (Marty & RC, 1978), various
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FIGURE 1
Treatment failure of Staphylococcus aureus osteomyelitis through multiple mechanisms; (A) Invasive staphylococcal infections are characterized by
abscesses. Staphylococcal abscess community (SAC) is composed of bacteria inside the abscess core enclosed by a pseudocapsule containing fibrin
and other extracellular matrix proteins of host, which subsequently lead to the recruitment of immune cells such as viable and non-viable neutrophils.
Strong antibiotic resistance can be observed for bacteria inside a SAC. (B) Invading bacteria form an abscess and severe inflammation in osteomyelitis,
which endangers the blood supply to the bone and therefore develops necrosis. This necrosis results in sequestra tissue lesions in chronic
osteomyelitis, as a nidus during continuous infection. New bone is formed in reaction to the sequestrum, thereby forming the pathological lesion of the
involucrum. The efficacy of systemic antibiotic therapy is greatly reduced due to infection-caused vascular disorders. (C) Bacteria achieve significantly
longer persistence as a result of biofilm formation on bone within bone infection and show greater tolerance to antibiotics. The formed biofilm can
prevent the diffusion and subsequent penetration of antibiotics into deeper layers. The environment of biofilm, which contains large amounts of
nutrients and oxygen, intensifies the development of antibiotic-resistant bacteria, such as small colony variants [SCVs]: “pink cocci,” and persisters:
“organ cocci.” (D) S. aureus invading resident bone cells (such as osteoblasts and osteoclasts) and professional phagocytes (such as macrophages) can
survive inside these cells, leading to increased antibiotic tolerance because the majority of antibiotics have an extracellular action, so that the evidence
showed that the intracellular host environment promotes the construction of persisters and SCVs. (E) Osteocytes are the main cells in the bone matrix
found in lacunae structures and connected to each other through canaliculi, a 3D network of canals. Chronicity of osteomyelitis caused by S. aureus
occurs through colonization of the osteocyte lacuno-canalicular network (OLCN) due to the absence of the antibiotic concentration required to
eradicate the bacteria. Bacteria inside the OLCN may also remain hidden from the host response (Gimza and Cassat, 2021).

methods for preparing GNPs have been described, including the
techniques described below. Some advantages and disadvantages
of several different preparation techniques for gelatin nanoparticles
are shown in Table 1.

3.1 Two-step desolvation

Two-step desolvation is a common method used during GNPs
development. Desolvation is a thermodynamically driven process
for self-assembly of polymeric materials to prepare nanoparticles.
Coester et al., in 2008 (Coester et al., 2000) described a method

involving the addition of a desolvating agent (acetone) to an aqueous
gelatin solution in order to dehydrate the gelatin molecules and
produce triple-helix coiled polymeric nanoparticles. In the first
desolvation step low molecular weight (LMW < 65 kDa) gelatin
components remained in solution, and the HMW precipitate was
then redissolved in water. This solution was subjected to a second
desolvation step involving careful addition of drops of acetone at
monitored pH (2.3–4.0) to avoid the isoelectric point. Small solid
nanoparticles with an identical spherical shape were formed by
adding a cross-linker and stirring for 12 h. After centrifuging at
10.000 g for 30 min in acetone:water (30:70 ratio), the GNPs were
lyophilized 3 times at 2 mbar over the course of 24 h. As shown
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TABLE 1 Some advantages and disadvantages of several different preparation techniques for GNPs (Khan, 2020).

Preparation method Size (nm) Positive aspects Negative aspects

Desolvation 200–500 Simple procedure Agglomeration, polydispersity and stability issues

Two step desolvation 100–300 Homogeneous size Narrow pH range, specific molecular weight requirement

Emul./solventevaporation 100–200 Homogeneous size Difficult procedure of washing for nanoparticles isolation

Reverse phase preparation 40 Small size Nanoparticles isolation

Inverse miniemulsion 150–200 No special gelatin needed High polydispersity and difficult procedure

Nanoprecipitation 200–350 Simple and straight forward procedure High amount of surfactant needed

FIGURE 2
The preparation of valacyclovir (VC)-loaded GNPs via a two-step desolvation process (Sahoo et al., 2015).

in Figure 2, the size of the GNPs produced by this method was
110–257 nm (Sahoo et al., 2015).

3.2 Simple coacervation

Stable and small-scale particles can be prepared by a simple
coacervation method. Coacervation involves the separation of an
aqueous solution of a macromolecular polymer into two non-
miscible liquid phases, with the lower denser phase containing the
macromolecules.Toprepare theNPs, salts (sodiumchlorideorsodium
sulfate), or alcohols (ethanol) can be added. Macromolecules with a
pronounced charge (like proteins or polyelectrolytes), can undergo
complex coacervation. Gelatin molecules are dehydrated at the end
and theGNPs are subsequently cross-linkedwith cross-linking agents
like glutaraldehyde (GA) (Yasmin et al., 2017).

3.3 Solvent evaporation

This approach involves single or double emulsions, such
as oil-in-water (w/o) or double emulsions, water-in-oil-in-
water (w/o/w). A high-speed homogenization or ultrasonic

mixing technique is used to mix an aqueous phase containing
both gelatin and the drug with an oil phase (such as an
organic solution of polymethyl methacrylate or paraffin oil),
which is then crosslinked with GA or possibly genipin.
The solvent can then be evaporated either under reduced
pressure or by constant magnetic stirring at room temperature.
Then, to remove additives like surfactants, the solidified
nanoparticles are aggregated by ultracentrifugation and washed
with distilled water. In the final step the material is lyophilized
(Sahoo et al., 2015).

3.4 Microemulsions

In this technique GNPs were developed using sodium bis (2-
ethylhexyl) sulfosuccinate redispersed in n-hexane (AOT) as a
surfactant and soaked gelatin solution. Nanoparticles crosslinking
by GA and further evaporation of the n-hexane were the final steps
for production of GNPs. N-hexane dissolvent of AOT resulted in
inverted micelles in which the hydrophobic tails pointed to the
outward surface while the hydrophilic head groups are oriented on
the inner side surrounding an aqueous core, withinwhich the gelatin
and cross-linker are dissolved. As a result, the GNPs are produced
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FIGURE 3
The preparation of gelatin nanoparticles by the nanoprecipitation method (Khan and Schneider, 2013).

inside the inner aqueous core of the inverted micelles due to the
cross-linking (Elzoghby, 2013).

3.5 Nanoprecipitation

In the nanoprecipitation method, an aqueous solution
gelatin and the drug is gradually added to ethanol, which
contains poloxamer acting as a stabilizer. Afterwards the cross-
linker GA is added. Then, a spatially confined distribution
occurred due to the miscibility between the solvents. The
solvent droplets were disrupted on the nanoscale, and were
then stabilized by the stabilizer. When the solvent diffusion
was terminated the condensation of the protein took place
(Elzoghby, 2013). Figure 3 shows the preparation of GNPs by the
nanoprecipitation method.

3.6 Microfluidic methods

Development of microfluidic approaches and devices are
possible due to the collaboration between different fields including
physics, chemistry, material science, microelectronics, and fluid
dynamics. Increase of products quality along with reduction of
cost and time by enhancing different biological and chemical

processes are some of the advantages of these devices (Chen and
Lv, 2022). These abilities of these devices increase the attention
to nanomaterial products. Mixture of metal salt with an agent
with reduction ability is a common method for production of
metal nanoparticles. The microfluidic method allowed convenient
optimization of parameters to obtain a narrower size distribution
compared to conventional batch synthesis (Niculescu et al., 2021).
Commonly employed microfluidic technologies encompass the
T-junction, hydrodynamic flow focusing, staggered herringbone,
toroidal mixer, multi-inlet vortex mixers, and others (Xia et al.,
2023). The flow behavior within the microfluidic device operates
within the laminar regime, where viscous forces predominate. In
this regime, laminar flow entails a velocity distribution contingent
upon boundary conditions and mass transfer primarily driven by
diffusion within the microchannel. Typically, in a hydrodynamic
flow-focusing apparatus, a core fluid with a lower flow rate
is enveloped by an outer sheath fluid flowing at a higher
rate. The heightened flow rate of the outer sheath fluid causes
compression within the central flow, thereby diminishing mixing
duration. Consequently, this facilitates diffusivemass transfer within
the focused stream within microchannels. The reaction occurs
predominantly within the centrally focused stream rather than
along the channel walls, resulting in a homogeneous distribution of
particles. The combination of reproducibility and cost-effectiveness
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FIGURE 4
A schematic depiction of a widely utilized traditional technique for nanoparticle (NP) generation namely, the dropwise method (A), is presented.
Microfluidic chips (B) with diverse designs can be employed for NP production, depending on the type of flow utilized. This includes single-phase flow
systems (B1) featuring either two-way (B1.1) or three-way channels (B1.2), as well as multiphase flow configurations (B2) such as liquid–liquid (B2.1),
gas–liquid (B2.2), and liquid–liquid-gas (B2.3) systems (Gimondi et al., 2023).

rendersmicrofluidic flow-focusing technology an appealingmethod
for nanoparticle production (Joseph et al., 2022) (Figure 4).

4 Self-assembly

Some procedures encourage the self-assembly of gelatin
molecules to form nanoparticles.

4.1 Chemical modification

The hydrophilic gelatin molecules can be conjugated to
various hydrophobic molecules to produce amphiphilic polymers.
Hydrophobically modified gelatin can be dissolved in an aqueous
solvent, leading to self-assembly into micelle-like nanospheres,
where the hydrophobic regions are located in the central part,
forming a hydrophobic core which can incorporate hydrophobic
drug molecules, along with an external hydrophilic shell.

In another modification of hydrophilic gelatin, hexanoyl
anhydride, and alpha-tocopheryl succinate (TOS) were used as
hydrophobic groups to be attached to recombinant human gelatin
(rHG) (Figure 5) (Li et al., 2011). The nanoparticle core could be

loaded with the lipophilic drugs, camptothecin or 17-AAG (17-
allylamino-17-demethoxygeldanamycin) by copolymer dilution and
sonication. Any free drug was eliminated after centrifugation and
dialysis, followed by lyophilization.However, the hexanoyl-modified
GNPsdemonstrated some instability in aqueous solution, suggesting
they may not survive in the bloodstream.

Tanigo et al. (2010) reported that simvastatin could be
incorporated into L-lactic acid oligomer (LAo)-grafted gelatin
micelles, thus providing water solubility. After gelatin was
chemically crosslinked to generate gelatin hydrogels, the micelles
were produced. In the presence of collagenase, the hydrogels were
enzymatically cleaved to produce water-soluble gelatin leading to
the release of simvastatin. In another study using double emulsion
or nanoprecipitation methods, the hydrophobic drug, doxorubicin
hydrochloride (DOX)was incorporated into amphiphilic gelatin-co-
poly (lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine
copolymer nanoparticles (Elzoghby, 2013).

4.2 Simple mixing

The solutions of gelatin and drugs could be simply blended
to produce nanoparticles without the gelatin being chemically
modified. Self-assembled GNPs could be formed from mixtures
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FIGURE 5
Schematic of the synthesis of self-assembled hexanoyl-modified GNPs (Li et al., 2011).

with tea catechins or fractionally purified ellagitannins (PPE)
(collectively called tannins) by simple mixing relying on the
formation of hydrogen bonds. It has been established that some
proteins have tertiary structures with fewer hydrophobic regions
that force interactions with the tannin molecules. Gelatin is
enriched with proline residues, producing an extensive random coil
conformation. Therefore gelatin has regions which can interact with
tannin molecules (Elzoghby, 2013).

5 Gelatin-based nanoparticles and
osteomyelitis

A primary challenge in osteomyelitis therapy is the prolonged
presence of the infectious agent within the bone tissue.
Inflammation predominantly occurs in avascular regions, leading to
spatially diminished bactericidal effectiveness of systemic antibiotic
administration and the host immune response (El Zein et al., 2023).
The prevailing treatment protocol for both acute and chronic
osteomyelitis necessitates a comprehensive approach involving
appropriate antimicrobial treatment, surgical intervention, bone
reconstruction, and rehabilitation measures (Barakat et al., 2019).
Penicillin continues to be the primary antibiotic of choice.
For resistant microorganisms, alternatives such as clindamycin,
metronidazole, ticarcillin and clavulanic acid, cephalosporins,
carbapenems, and vancomycin, often in combination with other
antibiotics, may be considered. Empirically, a full course of
parenteral antibiotic treatment spanning 4–6 weeks is typically
prescribed. Alternatively, initial parenteral therapy may be followed
by a 3-week course of oral antibiotics, such as ciprofloxacin
and levofloxacin, known for their excellent oral bioavailability
and ability to penetrate bone tissue (Bury et al., 2021). In light

of this, localized delivery of antibacterial agents emerges as an
attractive option for managing chronic osteomyelitis. Historically,
antibiotic-loaded acrylic cement (ALAC), polymethylmethacrylate
(PMMA) beads, and calcium sulfate pellets have surpassed
systemic antibiotic therapy in Europe (Aiken et al., 2024; Jiang et al.,
2024; Restrepo et al., 2024). Nevertheless, there are drawbacks
associated with the utilization of PMMA and ALAC, notably their
nonbiodegradable nature. For instance, during polymerization
the PMMA reaction is exothermic, which could result in the
destruction of several drugs. Moreover, the antibiotic elution from
PMMA could be sub-optimal causing the bacteria to become
drug-resistant. Furthermore, patients often undergo secondary
surgical procedures for the extraction of the polymeric devices
post-antibiotic release, leading to elevated costs and prolonged
hospital stays. Failure to remove these devices surgically can
result in the formation of foreign bodies, potentially triggering
subsequent inflammation and infection (Gibon et al., 2017).
Therefore, an ideal device should offer sustained release of local
antimicrobial agents. Additionally, it should not hinder the process
of new bone ingrowth and ideally promote bone regeneration.
Consequently, the integration of resorbable osteoconductive
biomaterials with antimicrobial agents appears promising for
one-stage surgery in the treatment of osteomyelitis. Therefore,
biodegradable scaffolds are preferred for sustained release of
drugs to prevent revision surgery. These scaffolds can not only
reduce infection, but also boost the regeneration of the bone.
Some biodegradable biomaterials, such as bioglass, calcium
sulfate, HA-collagen or hydroxyapatite (HAP) are considered to
be osteoconductive, and have a chemical composition making
them compatible with native bone (Cierny III, 2011; Walter et al.,
2012; Lima et al., 2014; Luo et al., 2016; Parent et al., 2016). These
materials can be used for the release of antibiotics to reduce
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FIGURE 6
A Janus nanoplatform (Janus-CPS) has been developed for the simultaneous early detection and combined treatment of rheumatoid arthritis (RA). This
platform consists of CeO2-Pt nanozyme on one side and periodic mesoporous organosilica (PMO) on the other. Micheliolide (MCL), known for its
anti-osteoclastogenesis properties, is encapsulated within the mesopores of PMO to synergistically complement the soothing properties of
nanozymes, thereby effectively managing RA. To achieve the desired efficacy in early RA detection, Janus-CPS loaded with indocyanine green (ICG)
utilizes NIR-II fluorescence imaging (Huang et al., 2024).

infection. For instance, it was shown that the mixture of calcium
sulfate beads and antibiotics was useful in osteomyelitis treatment
(Papagelopoulos et al., 2006). Nevertheless, the efficiency of these
materials is limited by the volume of debrided bone (above
a critical size) that needs to be regenerated in osteomyelitis.
Regarding infected bone defects, scaffold biodegradation speed
should be in line with the time needed for the removal of
the bacteria, and then to allow tissue regeneration (typically
1–4 months). Furthermore, neovascularization should be promoted
by the scaffold. Neovascularization required several sub-processes
including osteoblast movement and stem cell boosting at the site
of the bone defect. Studies also showed that adding elements
such as silicon or boron in to these bioceramic materials

have increased the bone regeneration rate. The antibiotic
teicoplanin was released over 20–30 days from particles of borate-
containing bioactive glass prepared from ammonium phosphate
and chitosan, and this preparation resulted in increased bone
regeneration in a in vivo model of osteomyelitis over 12 weeks of
implantation (Zhang et al., 2010).

Controlled infection offered one-step structural support for the
ingrowth of bone tissue (Krishnan et al., 2020). After 3 months, the
stimulant was rapidly absorbed, and there was still a vacancy in
the bone at the defect site. Therefore, the vancomycin-containing
nanocomposite fibrous scaffold acted as a bi-functional graft,
both decreasing bacterial infection, and regenerating the bone in
osteomyelitis.
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FIGURE 7
Schematic of the potential mechanisms of antibacterial drugs delivered by gelatin nanoparticles that can be useful in the treatment of
infectious diseases (Madkhali, 2023).

There have been studies on strontium-incorporated
hydroxyapatite (Sr-HAP) in orthopedics, dentistry, and bone
tissue engineering. HAP has a Ca:P ratio of 1.67, and can act
as a useful replacement for the apatite naturally found in bones.
Different studies have been conducted on HAP combined with
organic or inorganic polymer systems, as well as for drug delivery
methods including hydro-gels, scaffolds, coatings, thin films,
etc. The extensive adaptability of HAP and its compatibility
with many systems, allows it to act as an appropriate niche for
bone mineralization. Additionally, HAP have favorable features
including its bio-degradability, and -compatibility along with
osteoconductive nature, supporting cell attachment via adhesion
and proliferation (Kumar R. et al., 2011; Olad and Azhar, 2014).
Chitosan (deacetylated chitin) and gelatin (the denatured form of
collagen) are widely used in bone reengineering as these proteins
have high similarity with bone collagens (Olad and Azhar, 2014).
Moreover, when gelatin and HAP are mixed at the ratio of 65:35
they imitate the natural bone composition. In addition to the
eco-friendly and non-toxic properties of chitosan and gelatin, no
immunologic reactions are stimulated (Jiang et al., 2012; Yao et al.,

2015). In comparison to synthetic polymers, natural polymers
degrade rapidly leading to loss of their mechanical properties.
Porous co-polymer systems composed of chitosan and gelatin
combined with HAP have been used in tissue repair as well as
drug delivery systems. Extensive research has been conducted on
their ability to deliver antibacterial and anti-inflammatory drugs,
carrier systems for gene delivery, molecular mechanics, anti-cancer
agents, etc. (Bose and Tarafder, 2012; Zhang et al., 2012; Kalil et al.,
2014). Their high surface energy and bioinertness have led them
to be used as coatings for titanium metallic implants (Oldani and
Dominguez, 2012). Due to their inert behavior, titanium implants
are renowned for having a prolonged lifespan of at least 15 years
with no negative or hazardous reactions. However due to the surface
inconsistency, a fibrous capsule will be produced surrounding the
metal, which protects infections from attack by the host immune
response. As a result, the delivery of antibacterial drugs is difficult,
which prevents the bone from being regenerated (Dawes et al.,
2010). Sun et al. (2023) illustrated that manganese-doped albumin-
gelatin composite nanogels loaded with berberine exhibited the
capability to target inflammatory joints. This targeting ability stems
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from albumin’s inherent high affinity for secreted protein acidic
and rich in cysteine (SPARC), which is notably overexpressed
at the inflammatory sites of gouty arthritis. Both in vitro and
in vivo experimental findings demonstrated that this composite
formulation yielded superior therapeutic outcomes, effectively
alleviating oxidative stress and dampening inflammation (Sun et al.,
2023). Another study documented the efficacy of injectable
vancomycin (Van)-loaded gelatin/nanohydroxyapatite (Gel/n-HA)
composite microspheres (VM) in modulating inflammation in
a rabbit model of osteomyelitis. Injectable VM demonstrated a
successful treatment outcome by virtue of its targeted antibacterial
action, inflammationmodulatory effects, recruitment of osteoblasts,
and promotion of bone regeneration, thus effectively addressing
osteomyelitis (Zhang et al., 2023). In a recent study, a novel
hyaluronic acid/gelatin nanocomposite hydrogel coating was
applied to titanium-based implants in a rat model of implant-
associated infection.This coating demonstrated the ability to remove
biofilms and regulate oxidative stress and inflammatory responses,
thereby promoting osseointegration (Ding et al., 2023). Figure 6
provides an overview of the mechanisms of nanoparticle (NP)
treatment for rheumatoid arthritis, highlighting its role in
addressing the inflammatory aspects of the disease.

Encouraging potential in the management of patients with
persistent osteomyelitis infection a possible solution for non-union
fractures to stimulate bone regeneration (David and Nallaiyan,
2018). David et al. prepared vancomycin-loaded chitosan–gelatin
polyelectrolyte complex combined with gelatin-SrHAP to produce
HV scaffolds at different concentrations HV1-0.5% and HV2-1%.
Scaffolds of HG, HV1, and HV2 were efficiently formed on Cp-
Ti by attachment using dopamine linkers, which formed bidentate
coordination by NH bonds. In addition, the HV2 scaffold greatly
outperformed the Cp-Ti, HG, and HV1 scaffolds in terms of cell
viability. Vancomycin did not have any harmful effect on the cells;
on the contrary, it increased cell proliferation and spreading.

Ciprofloxacin (CFX) hydrochloride (1-cyclopropyl-6-fluoro-
4-oxo-7-piperazin-1-yl-1,4-dihydroquinoline-3-carboxylic acid
hydrochloride) is from second-generation fluoroquinolones
and is a wide spectrum antibiotic influence on both gram
negative and positive bacteria. It has received approval to treat
respiratory tract infections, different bone and joint infections,
urinary tract infections and some topical infections (Tjan-
Heijnen et al., 2001). Pandey et al. (2016) designed a system
composed of gelatin-based chemically cross-linked cryogel,
CaCO3 microspheres, and CFX for treatment of osteomyelitis and
osteoporosis. The porosity, pore volume, swelling ratio, swelling
kinetics, compression strength, and in vitro degradation rate of the
produced cryogel, were all correlated with the amount of gelatin
present, the time of the freezing process, and the number of freeze-
thaw cycles. After an initial burst release of CFX, sustained release
continued over 21 days, and the concentration was maintained
higher than the MIC for the entire research phase. The in vitro
antibacterial activity measurement against S. aureus and Escherichia
coli showed the following zones of inhibition on Mueller-Hinton
agar plates on days 1, 3, 5, and 7: 33, 30, 28, and 27 mm for S
aureus; 43, 37, 37, and 36 mm for E. coli, respectively. As opposed
to a 2D surface, the cell viability, the number of cells within the
growth phase, and the alkaline phosphatase activity in rat osteoblasts
cultured in the cryogel were considerably higher. They concluded

that this microsphere incorporated, CFX-loaded, industrially
amenable cryogel system could be beneficial in osteomyelitis and
osteoporosis treatment.

A number of organic and inorganic particles, including silica
nanoparticles, nano-hydroxyapatite, and poly (lactic-co-glycolic
acid) (PLGA) microparticles, have been investigated as the drug
carriers (Gentile et al., 2016; Qiu et al., 2016). Mesoporous silica
nanoparticles (MSNs) have been explored in tissue engineering
as potential nano-additives. This is because they provide many
advantages, including adjustable particle and pore sizes, a
considerable drug loading capacity, and superb biocompatibility
(Zhou et al., 2015; Chen et al., 2016).

Zhou X. et al. (2018) developed Van@MSNs which was
composed of both vancomycin and MSNs, in combination with
a gelatin matrix to create a composite scaffold. The gelatin-based
composite scaffolds were found to have a very porous microscopic
structure. Improvement of compression property of composite
structures occurred using MSNs. Additionally, in vitro studies
revealed that the Van was released from Van@MSN-incorporated
composite scaffolds continuously almost without an initial burst.
This efficiently prevented S. aureus growth bone mesenchymal stem
cells (BMSCs) homeostasis functions alongwith their differentiation
and promotion were not adversely affected by the drug-loaded
composite scaffold, indicating acceptable biocompatibility. In vivo
study indicated increased bone regeneration along with reduction
of bacterial contamination following utilizing of these antibiotic-
loaded agents. The synthetic Van@MSNs/Gelatin composite
scaffold could be a suitable biomaterial for treating infected bone
by providing a localized and sustained-release of antibiotics.
Another study demonstrated that tannic acid–mineral nanoparticles
embeddedwithin a gelatin-based cryogel notably improved both the
quality and quantity of newly formed bone (Song et al., 2024).

For the controlled release of vancomycin, Zhou et al. created
gelatin scaffolds with varying concentrations of β-TCP (0%, 10%,
30%, and 50%). These scaffolds were denoted G-TCP0, G-TCP1, G-
TCP3, and G-TCP5, respectively (Jiang et al., 2012). The Van release
profile was examined using the Kirby-Bauer method. They then
tested them in rabbit models of chronic osteomyelitis. The infected
bone defects were implanted with scaffolds following complete
debridement. The effectiveness of infection reduction and the repair
of bone defects were investigated using radiographs and histological
analyses. The gelatin/β-TCP scaffolds revealed a homogeneously
interconnected 3D porous structure. The G-TCP0 scaffold had the
longest Van release period of 8 weeks. The Van release time of
the composite scaffolds containing more β-TCP was shorter as its
content increased. Within 3 weeks, Van was fully released from
the G-TCP5 scaffold. The G-TCP3 scaffold was found to be the
most effective in reducing infection and healing bone defects in
rabbits with osteomyelitis. The G-TCP3 scaffold performed well
in terms of porosity, connectivity, and controlled release. As a
result, this scaffold could be employed to treat chronic osteomyelitis
lesions. Table 2 lists some different gelatin composites that have been
investigated in the treatment of osteomyelitis. Furthermore, Figure 7
illustrates the potential mechanisms of antibacterial drugs delivered
via gelatin nanoparticles, which can be beneficial in treating various
infectious diseases. These mechanisms encompass four aspects:
antibiotic delivery, targeting bacterial toxins, impairing bacterial
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cell walls and membranes, and disrupting bacterial DNA, proteins,
and enzymes (Huang et al., 2024).

Although nanoparticles offer innovative approaches to combat
bacterial infections and may potentially mitigate antibiotic
resistance, it is crucial to acknowledge that resistance mechanisms
can still emerge. For example, bacteria may evolve mechanisms
to hinder the attachment of nanoparticles or to efflux them
(Hetta et al., 2023). Hence, GNPs leveraging their aforementioned
characteristics, can serve as carriers to encapsulate metal
nanoparticles like silver or gold nanoparticles, renowned for their
antimicrobial efficacy. The resultant hybrid nanoparticles offer
heightened antibacterial activity and have the potential to diminish
antibiotic resistance by offering an alternative to conventional
antibiotic therapies (Khan and Rasool, 2023). Finally, GNPs
have been widely employed for delivering diverse antibiotics.
They serve the dual purpose of safeguarding these drugs from
degradation in the physiological milieu and facilitating targeted,
controlled release, thereby potentially augmenting their efficacy
whileminimizing side effects (Figure 7). Numerous studies (Table 2)
have successfully loaded antibiotics such as vancomycin, rifampicin,
levofloxacin, ciprofloxacin, and gentamicin into GNPs for targeted
delivery to sites of osteomyelitis infection, resulting in enhanced
antibacterial activity.

6 Conclusion

Gelatin is an optimal delivery system for sustained release
of different biomolecules used widely in regenerative medicine
researches. This macromolecule is a suitable system for drug
delivery due to its low cast, availability, biodegradability, and
biocompatibility. However, induction immune response due to their
potential antigenicity and the risk of contamination of gelatin with
different pathogens especially in animal-origin forms along with
their low batch-to-batch reproducibility have challenged the use of
these molecules in medicine. Development of GNPs increases the
hopes for using gelatin in medicine with more efficacy and less side
effects as these unfavorable effects have not been seen in studies
yet. But safety of starting material and cross-linking agents should
be studied more in further researches. Moreover, the efficacy of
these particles could be improved significantly by conjugation of
other materials to cover these particles limitations. Despite these
promising findings, using these agents have not become a routine
in clinic yet. Due to the favorable release profile of these agents,
delivery of antibiotics such as vancomycin to the infection site via
this module have increased the succession rate of osteomyelitis
eradication (Zhou et al., 2012a). Considering that gelatin can
be chemically modified, and combined with different growth
factors and several antibiotics, gelatin-derived composites could be
promising candidates for bone tissue engineering and therapeutics.
With the recent development of 3D printing technology, substantial
improvements in the biomaterial field have already been made. To
date, a number of in vivo research studies have been conducted to
evaluate the utility of gelatin-based composites in the management
of osteomyelitis.Modification ofGNPs surface via differentmethods
such as coating with ligands and polyethyl glycols along with
using amine derivatives on the surface of these particles are used
for recruitment of these particles in different fields of medicine.

GNPs also have better stability in biological fluids which provide
better controlled drug release in the targeted sites compared to
other colloidal carriers. Gelatin-based composites were found to
have satisfactory performance in the control of infection, as well
as the promotion of bone defect repair in chronic osteomyelitis
models. Therefore, this review of the available evidence provides
a new insight into gelatin-derived composites with controlled
release of antibiotics. When combined with the stimulated repair
of bone defects, these may be a sign of the future development of
osteomyelitis treatment.
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