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Introduction: This study bridges traditional remedies and modern pharmacology by
exploring the synergy between natural compounds and Ceritinib in treating Non-Small
Cell Lung Cancer (NSCLC), aiming to enhance efficacy and reduce toxicities.

Methods: Using a combined approach of computational analysis, machine
learning, and experimental procedures, we identified and analyzed PD173074,
Isoquercitrin, and Rhapontin as potential inhibitors of fibroblast growth factor
receptor 3 (FGFR3). Machine learning algorithms guided the initial selection,
followed by Quantitative Structure-Activity Relationship (QSAR) modeling and
molecular dynamics simulations to evaluate the interaction dynamics and stability
of Rhapontin. Physicochemical assessments further verified its drug-like
properties and specificity.

Results: Our experiments demonstrate that Rhapontin, when combined with
Ceritinib, significantly suppresses tumor activity in NSCLC while sparing healthy
cells. The molecular simulations and physicochemical evaluations confirm
Rhapontin’s stability and favorable interaction with FGFR3, highlighting its
potential as an effective adjunct in NSCLC therapy.

Discussion: The integration of natural compounds with established cancer
therapies offers a promising avenue for enhancing treatment outcomes in
NSCLC. By combining the ancient wisdom of natural remedies with the
precision of modern science, this study contributes to evolving cancer
treatment paradigms, potentially mitigating the side effects associated with
current therapies.
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1 Introduction

Lung cancer, in its various forms, poses a severe global health
challenge. Accounting for approximately 85% of all lung cancer cases,
non-small cell lung cancer (NSCLC) reigns as the most prevalent form
of this malignancy (Sung et al., 2021). As per recent global statistics,
NSCLC maintains a distressingly high mortality rate, cementing its
position as one of the leading contributors to cancer-related deaths
worldwide (Siegel et al., 2024). Concurrently, the incidence rate for
NSCLC continues on an upward trend. Despite significant strides in
diagnostic technologies and therapeutic methodologies, the prognosis
forNSCLC remains bleak, with a 5-year survival rate barely reaching the
20% threshold (de Groot et al., 2018). The persistence of this grim
statistic highlights the urgency for development of more effective
therapeutic strategies in the battle against NSCLC.

A potentially promising approach in ameliorating treatment efficacy
involves sensitizing cancer cells to extant therapeutic agents. Amidst the
plethora of targets, the spotlight has recently shifted towards the
Fibroblast Growth Factor Receptor 3 (FGFR3) (Turner and Grose,
2010). FGFR3, part of the larger fibroblast growth factor receptor
family, has been implicated in numerous cellular processes, including
cell proliferation, survival, and differentiation (Wesche et al., 2011).
Recent studies suggest that modulation of FGFR3 activity could
potentially augment the effectiveness of existing treatments, such as
Ceritinib—an ALK (Anaplastic Lymphoma Kinase) inhibitor (Tang
et al., 2008; Zhang et al., 2013). Despite this promising insight,
therapeutic combinations incorporating FGFR3 inhibition to augment
sensitivity of NSCLC cells to Ceritinib remain largely unexplored.

Historically, the drug development process has heavily leaned on
experimental methodologies. Whilst these approaches have their merit,
they come saddled with a suite of limitations. For instance, these
traditional strategies often prove to be labor-intensive and time-
consuming (Munos, 2009). Moreover, their applicability to high-
throughput screening is limited, thereby underscoring the need for
more efficient methodologies (Paul et al., 2010). Enter the realm of
computational biology, which offers a more expedient alternative to
traditional strategies. With the ability to conduct in silico screenings of
expansive compound libraries, computational approaches promise
significant savings in terms of both time and resources (Ekins et al.,
2007; Green, 2008). These techniques enable prediction of interactions
between small molecules and protein targets, thus providing
preliminary insights into the potential efficacy and toxicity of
candidate inhibitors. Complementing this, molecular dynamics
(MD) simulations furnish a more granular understanding of the
behaviour of protein-ligand complexes over time, thereby enhancing
our grasp of the binding process (Dror et al., 2012; Arnittali et al., 2019).

Herein, we propose a melding of virtual screening and MD
simulations as an integrative approach to identifying prospective
FGFR3 inhibitors. Our overarching goal is to enhance the sensitivity
of NSCLC cells to Ceritinib, offering a potentially viable strategy to
circumvent the common therapeutic resistance observed in NSCLC.
This innovative methodology presents a novel angle to the design of
inhibitors, potentially paving the way for breakthrough combination
therapies for NSCLC (Brown and Toker, 2015; Colmegna et al.,
2018). By boosting the efficacy of treatment regimens, such
therapeutic strategies have the potential to significantly enhance
the prognosis for NSCLC patients, impacting a large patient
population worldwide.

2 Method

2.1 Structure relaxation

In the pursuit of FGFR3 inhibitors, structure-based
computational methodologies were employed, utilizing the
FGFR3 crystal structure (PDB code: 6LVM) in complex with
Pyrimidine Derivative 37b was selected as the receptor protein
(Kuriwaki et al., 2020). All molecular dynamics (MD)
simulations presented in this study were conducted using the
GROMACS 23.1 package (https://www.gromacs.org/). The
AMBER 99SB-ILDN (Lindorff-Larsen et al., 2010) and explicit
solvation were employed, and each system was placed in a
rectangular box of SPC water molecules with a minimum
distance of 10Å between any solute atom and the edges of the
periodic box. Counter ions were added to neutralize the total charge
of the system. The system underwent an energy minimization
process using the steepest descent method, with the maximum
set to 1000.0 kJmol−1nm−1. Subsequently, the system was
equilibrated in two steps: 1) canonical ensemble (NVT, 1ns) and
2) isothermal–isobaric ensemble (NPT, 1ns). Following
equilibration, the MD simulations were run for 500ns. To ensure
numerical stability, all bonds involving hydrogen atoms were
constrained using the default linear constraint solver algorithm
(LINCS) (Hess, 2008). The Vrescale thermostat and
Parrinello–Rahman barostat were utilized with the temperature
set at 300 K and pressure at 1.0bar, with time constants of 0.
1 and 2ps, respectively. The Particle-Mesh Ewald (PME) method
was employed to handle long-range interactions, and a 10Å cutoff
was utilized for van derWaals interactions (Darden et al., 1993). The
time step was set to 2 fs, and a snapshot was collected every 1.0 ps
The free energy landscape (Malmstrom et al., 2015) was obtained by
means of covariance matrix construction and principal component
analysis (PCA) (Campitelli et al., 2021) to explore the local
conformational landscape and return to a local energy minimum.

2.2 Protein preparation

The Schrödinger Protein Preparation Wizard was employed to
meticulously prepare the complex, involving various steps such as
adding missing hydrogen atoms, correcting metal ionization states,
enumerating bond orders in HET groups, determining ligand
protonation states and associated energy penalties, optimizing
histidine residues’ protonation states, rectifying potentially
transposed heavy atoms, optimizing the protein’s hydrogen bond
network, and performing a restrained minimization. The binding
region within the 3D receptor structure, where the Pyrimidine
Derivative 37b binds, was identified as the screening ligands’
target site, and a corresponding grid was created.

2.3 Active learning based virtual screening

Active Learning Glide will generate a receptor grid from a
prepared protein and prepare the TargetMol Natural Compound
Library, which contains approximately 190,000 compounds. All of
these compounds are available for purchase. It will also dock a subset
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of these ligands using Glide SP (Friesner et al., 2004). Active
Learning workflows train a machine learning (ML) model on
physics-based data, such as FEP+(Wang et al., 2015) predicted
affinities or Glide docking scores, iteratively sampled from a full
library using Schrödinger’s deep-learning powered QSAR platform,
DeepAutoQSAR (https://www.schrodinger.com/science-articles/
benchmark-study-deepautoqsar-chemprop-and-deeppurpose-admet-
subset-therapeutic-data). 3 iterative training rounds were set. After
all the ligands have been screened using the last model, a selection of
the top ligands will then be docked using Glide SP.

2.4 Machine learning principles
using AutoQSAR

AutoQSAR is a machine-learning algorithm provided by the
Schrödinger suite that builds and applies QSAR models through
automation (Dixon et al., 2016). In order to build a predictive model,
AutoQSAR takes the one-, two-, and three-dimensional structural
data of a molecule along with a IC50 property to be modeled as an
input. It will then compute the fingerprints and descriptors, using
machine-learning statistical methods to create a predictive QSAR
model. The process utilizes multiple regression algorithms,
including optimal subset multiple linear regression (MLR), partial
least squares regression (PLS), kernel-based least squares regression
(KPLS), and principal component regression (PCR), to construct
numerical models. The predictive accuracy of the model is evaluated
using various parameters such as ranking score, root mean square
error (RMSE), standard deviation (SD), Q2, and R2 values (de
Oliveira and Katekawa, 2018). It is worth mentioning that the
present analysis utilizes a series of Pyrimidine Derivative 37b
(Kuriwaki et al., 2020) and some clinically oriented medicines
from Drugbank for predictive model development.

2.5 Binding pose metadynamics

The metadynamics simulations employed a hill height of
0.05 kcal/mol and a width of 0.02 Å. RMSD calculations were
performed by considering a distance of 3 Å between protein
residues and ligands. Prior to the metadynamics simulations, the
system underwent preparation in an SPC water box, followed by
energy minimization, constraint application, and a gradual
temperature increase to 300 K. The last 0.5 nanoseconds of an
unbiased MD simulation served as the reference for the
subsequent metadynamics protocol.

Three BPMD scores, namely, PoseScore, PersScore, and
CompScore, were utilized to assess the stability of ligand binding.
PoseScore represented the average RMSD from the ligand’s initial
pose, where a steeper increase indicated instability in ligand binding.
A PoseScore below 2 Å was considered indicative of a stable ligand-
protein complex (Fusani et al., 2020). PersScore quantified the
persistence of hydrogen bonds (HB) during the metadynamics
simulations, with higher values indicating greater stability. Finally, the
CompScore, a composite score, was obtained by linearly combining the
PoseScore and PersScore (Jin et al., 2023). Lower CompScore values were
associated with more stable ligand-protein complexes.

2.6 Physicochemical property and medicinal
chemistry property prediction

The most promising compounds, identified through structure-
based virtual screening, underwent further evaluation using
ADMETlab 2.0 (Xiong et al., 2021). The analysis aimed to
provide valuable insights into the compounds’ pharmacokinetic
properties, bioavailability, and overall suitability as potential drug
candidates.

2.7 Molecular dynamic simulation
of desmond

In the initial phase, all-atom molecular dynamics (MD)
simulations were conducted using the Desmond module of the
Schrödinger software package. The simulations were performed
within Maestro, starting with docked complexes that were placed
in a cubic water box with a buffer distance of 10 Å. The systems were
solvated with SPC water models, and a 0.15 M NaCl salt
concentration was introduced for physiological relevance. To
maintain system neutrality, additional Na+ and Cl− ions were
included. Long-range electrostatic interactions were computed
using the particle-mesh Ewald method, while short-range van der
Waals and Coulomb interactions were cutoff at 9.0 Å.

Following solvation, the systems underwent minimization and
equilibration using the default Desmond protocol in Maestro. This
involved restrained simulations in both the NVT (constant number
of particles, volume, and temperature) and NPT (constant number
of particles, pressure, and temperature) ensembles. After
equilibration, a 100 ns MD simulation was performed in the
NPT ensemble with periodic boundary conditions. The
OPLS4 force field was employed to describe interatomic
interactions. The temperature was maintained at 300 K using the
Nosè-Hoover chain thermostat, and the pressure was kept at 1 atm
using the Martyna-Tobias-Klein barostat method.

2.8 Cell culture

Two distinct cell lines were employed for the experimentation:
A549 cells, characterized as an adenocarcinoma human lung
epithelial cell line, and BEAS-2B cells, identified as a human
bronchial epithelial cell line. These cell lines were sourced from
iCell Bioscience Inc. Located in Shanghai, China. Both A549 and
BEAS-2B cell lines have been authenticated using short tandem
repeat (STR) analysis. A549 cells were nurtured using Ham’s F-12K
(Kaighn’s) medium, while BEAS-2B cells were cultivated in
Dulbecco modified Eagle’s medium (DMEM). In both cases, the
culture mediums were supplemented with 10% exosome-depleted
fetal bovine serum (EXO-FBS-50A-1) from System Biosciences, Palo
Alto, CA, to eliminate potential interference from bovine exosomes.
Additionally, a 1% penicillin-streptomycin solution (Tianhang
Biotechnology, Hangzhou, China) was added. The cells were
incubated under controlled conditions at 37°C within a 5% CO2

atmosphere (Exosomes of A549 Cells Induced Migration, Invasion,
and EMT of BEAS-2B Cells Related to let-7c-5p and miR-181b-5p).
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2.9 Cell viability detected by CCK8

After co-cultured for 24 h, cell proliferation was detected with
CCK8 detection kit. Each well was incubated with 10 μL
CCK8 detection reagent at 37°C for 2 h. The OD value of each
well was detected with the microplate reader at 450 nm wavelength
to calculate cell viability.

3 Results

3.1 Relaxation of FGFR3 structure

During the virtual screening process, the identification of
compounds with the closest and most stable interactions with the
target is crucial to selecting potential drug candidates. Molecular
dynamics simulations of the target’s lowest energy conformation offer
valuable insights into compounds with favorable binding affinities,
providing crucial guidance for subsequent experimental screenings. To
achieve this, a 500 ns molecular dynamics simulation was performed to
explore FGFR3’s lowest energy conformation after releasing the

Pyrimidine Derivative 37b, ensuring comprehensive sampling and
equilibrium attainment for subsequent pocket-based virtual screenings.

To assess the convergence of the simulation, RMSD, Rg, and
SASA of FGFR3 were calculated. As shown in Figure 1A, during the
500 ns simulation, both the RMSD and Rg of FGFR3 exhibited
minimal fluctuations, indicating an early attainment of stability.
Regarding Figure 1A, the high RMSD observed likely results from
significant conformational changes in the FGFR3 protein following
the removal of the ligand from its binding site.While SASA showed
some dynamic changes, it oscillated around the average value after
100 ns, suggesting a continuous periodic thermal motion of
FGFR3 rather than a lack of equilibrium. Based on these
parameters, the system was considered to reach equilibrium and
achieve thorough sampling of FGFR3 after releasing the Pyrimidine
Derivative 37b.

Subsequently, Gibbs free energy was statistically analyzed during
the simulation, and a free energy landscape was constructed using
the first and second eigenvectors, as shown in the Figure 1B. Three
energy basins were identified, with the highest energy basin
corresponding to the state when FGFR3 was bound to the
Pyrimidine Derivative 37b, and the lowest energy points

FIGURE 1
Dynamic Behavior and Free Energy Landscape of FGFR3. (A) The graph displays the time-dependent dynamics of FGFR3, including RMSD and Rg
shown on the left y-axis, and SASA shown on the right y-axis. The dashed line represents the average SASA value after a sharp decrease. (B) The 3D free
energy landscape of FGFR3 is depicted, with the energy minima indicated by the red dot. A 2D projection of the landscape provides an overview of the
conformational space explored by FGFR3. (C) Resting state of FGFR3.
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distributed in the remaining two smaller-volume basins. The
transition state connecting these two states was determined.
Notably, the lowest energy point emerged at 175 ns and
remained stable until 500 ns, smoothly connecting the initial and
final states. Based on this, we concluded that the 500 ns simulation
successfully sampled FGFR3 after releasing the Pyrimidine
Derivative 37b and the lowest energy point in the free energy
landscape represented the resting state of FGFR3, as shown in
Figure 1C. Building upon this information, subsequent pocket-
based virtual screenings will be conducted.

3.2 Virtual compound screening and activity
forecasting through active learning

Machine learning and deep learning have revolutionized drug
discovery by powering applications such as structure-based virtual
screening, efficiently sifting through compound libraries to identify
potential hits, and activity prediction models leveraging molecular
features to accurately estimate compound bioactivity.

As the iterations progressed, the models consistently exhibited
improved performance, as shown in Figures 2A–C. In the initial
iteration, the coefficient of determination (R2) value was 0.55,
accompanied by root mean square error (RMSE) and mean

absolute error (MAE) values of 1.02 and 0.7, respectively.
Notably, the second iteration displayed an enhanced R2 of 0.64,
alongside reduced RMSE (0.96) and MAE (0.7) values, indicating
improved model accuracy. The third iteration showed the most
significant advancement, achieving an R2 value of 0.68. Additionally,
the RMSE decreased to 0.93, and the MAE reached 0.68, suggesting
an increasingly precise parameter prediction.

Through meticulous analysis, incorporating a comprehensive
evaluation of Docking Score, State Penalty, Ligand Strain Energy,
and MMGBSA ΔG Bind, three compounds—PD173074 (Lamont
et al., 2011), Isoquercitrin (Valentova et al., 2014), and
Rhapontin—emerged as promising candidates. A detailed list of
scores is presented in Table 1. PD173074 demonstrated
exceptional binding affinity with a Docking Score of −10.3, and
exhibited optimal receptor conformation with a State Penalty of 0,
alongside a favorable Ligand Strain Energy of 2.1 kcal/mol and a
MMGBSA ΔG Bind of −56.5 kcal/mol. Isoquercitrin also presented a
strong case, with a Docking Score of −11.1, State Penalty of 0, Ligand
Strain Energy of 9.1 kcal/mol, and aMMGBSAΔGBind of−94.4 kcal/
mol. Rhapontin, while displaying a slightly higher Docking Score
of −10.2, maintained a State Penalty of 0, a Ligand Strain Energy of
5.0 kcal/mol, and a MMGBSA ΔG Bind of −68.6 kcal/mol, ensuring
its position as a candidate of interest. These stringent criteria ensured
the selection of compounds not just with strong binding affinities, but

FIGURE 2
Active Learning-Assisted Virtual Screening and Activity Anticipation. (A–C) Three rounds of pre-training iterations for active learning docking. (D)
Distribution of screened compounds on the surface of FGFR3. (E–G) 2D interaction plots of Rhapontin, Isoquercitrin, PD173074. (H) Evaluation of
predictive performance of the QSAR model.
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also with optimal receptor conformations and stability, providing a
solid foundation for the subsequent stages of our analysis and future
experimental validation.

Then, we explored interactions between Isoquercitrin, PD173074,
and Rhapontin with FGFR3 residues, as shown in Figures 2D–G.
Crucial binding residues, such as Lys-508 (ATP-binding site) and
Asp-617 (active site), were identified. Isoquercitrin engaged
FGFR3 residues Ala-558, Ala-559, Lys-508, and Asp-635, indicating
potential modulation of the ATP-binding pocket and its vicinity.
PD173074s interactions encompassed Arg-621, Asn-562, Asp-635,
Glu-525, and Ala-558, pointing to involvement with the active site
and neighboring domains. Rhapontin’s interactions spanned Glu-525,
Asp-635, Asn-622, Arg-621, Asn-562, and Ala-558, showcasing its
adaptable binding capacity across critical regions.

Our Quantitative Structure-Activity Relationship (QSAR)
modeling efforts yielded compelling results, as shown in Figure 2H.
The training set exhibited a Q2 of 0.2402 and an R2 of 0.8980,
confirming the model’s ability to capture intricate activity
relationships within the dataset. During external validation, the
testing set demonstrated an RMSE of 0.2171 and a Q2 of 0.9069,
attesting to the model’s robustness. Furthermore, the model

demonstrated predictive prowess by estimating IC50 values for
Isoquercitrin, Rhapontin, and PD173074. The calculated
values—18.45 nM, 17.46 nM, and 11.67 nM—underscore the model’s
potential to anticipate compound activities across different chemical
entities. The notably close alignment between the predicted IC50 for PD
Compound and experimental IC50 in the RT112 cell line targeting
FGFR3 (Lamont et al., 2011) bolsters the model’s theoretical reliability.

3.3 Investigating binding mode and stability
based on md simulation analysis for
potential binding candidates

The results obtained from virtual screening required validation
through molecular dynamics simulations to assess their dynamic
behavior and interaction stability within the biological system,
providing crucial theoretical guidance for further confirmation of
potential drug candidates’ efficacy and safety in drug development.

To efficiently assess the stability of ligands in solution, we
employed binding pose metadynamics (BPMD) as an enhanced
sampling technique. By applying bias in the metadynamics

FIGURE 3
Virtual screening results rescreening based on molecular dynamics simulation. (A) Time-dependent CV RMSD Analysis of FGFR3 Complexes with
Various Compounds. (B) Time-dependent RMSD of Ligand Fit on Protein Analysis of FGFR3 Complexes with Various Compounds. (C) Time-dependent
MMGBSA of FGFR3 Complexes with Various Compounds.The solid lines of different colors represent the MMGBSA scores of different compounds
interacting with FGFR3 at each time point. The dashed lines of different colors represent the average MMGBSA scores of different compounds over
the 500 ns simulation.
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simulation, ligand poses that exhibited instability were likely to be
rarely occupied in the energy landscape, thereby exerting minimal
influence on the overall binding affinity. We performed ten sets of
BPMD simulations for the five compounds, with Pyrimidine
Derivative 37b as a reference. The results, as shown in Figure 3A,
indicated that the CV RMSD values remained below 2.5 Å for all five
compounds, whereas only Pyrimidine Derivative 37b′s PoseScore
exceeded 2 Å, suggesting that the remaining five compounds
possessed stronger and more stable interactions with FGFR3
(Allegra et al., 2021). For a detailed list of scores, refer to Table 2.

Despite conducting ten sets of simulations, the BPMD
simulation time remained relatively short. Subsequently, we
performed classical molecular dynamics simulations for the five
compounds for an extended period of 500 ns, employing Ligand Fit
on Protein RMSD and MMGBSA as reference values to evaluate the
complex from both conformational and energetic perspectives.
Ligand Fit on Protein RMSD represents the RMSD of a ligand
when the protein-ligand complex is first aligned on the protein
backbone of the reference, and then the RMSD of the ligand heavy
atoms is measured. If the observed values are significantly larger
than the RMSD of the protein, it suggests that the ligand may have
diffused away from its initial binding site.

First, we evaluated the conformational changes, as shown in
Figure 3B, which indicated that the five compounds exhibited a
similar trend of achieving preliminary stability within the first
100 ns of the simulation. However, after 400 ns,

Homoplantaginin showed a noticeable increase in RMSD,
implying a potential time-dependence in its binding to FGFR3,
and a possibility of off-target effects. Subsequently, we assessed the
energetic aspects, focusing on the four remaining compounds since
Homoplantaginin displayed potential off-target behavior. The
MMGBSA results, as shown in Figure 3C, displayed significant
fluctuations. To facilitate result analysis, we plotted the trendlines
of four groups of MMGBSA values over time. The results revealed a
clear upward trend for Gossypin, indicating a continuous decrease
in binding energy between Gossypin and the receptor. This
suggested that as the conformational adjustments continued, the
binding energy between Gossypin and FGFR3 may decrease further,
possibly leading to Gossypin dissociation from the binding pocket,
implying the possibility of off-target effects. In summary,
Isoquercitrin, Rhaponiticin, and PD173074 demonstrated a high
potential to act as FGFR3 inhibitors, both from the conformational
and energetic perspectives. Consequently, these three compounds
were chosen for further interaction analysis.

3.4 Physicochemical parameters, medicinal
chemistry parameters, and
selectivity analysis

The physicochemical parameters and medicinal chemistry
parameters of the compounds provided essential initial

TABLE 1 Binding characteristics of tested compounds.

Name Docking score Glide ligand efficiency MMGBSA dG bind Lig strain energy

Forsythoside A −16.884 −0.384 −49.03 47.778

Apigenin 7-O-(2G-rhamnosyl)gentiobioside −15.204 −0.292 −75.5 18.267

Vitexin -4″-O-glucoside −15.169 −0.361 −59.14 13.998

Kuromanin chloride −14.644 −0.458 −56.76 22.869

Xylopentaose −14.321 −0.311 −54.68 18.536

Neoeriocitrin −14.184 −0.338 −69.72 21.13

Pectolinarin −14.158 −0.322 −62.19 28.427

Isoquercitrin −13.789 −0.418 −60.55 9.111

Gossypin −13.72 −0.404 −72.69 6.723

Plantainoside D −13.697 −0.304 −72.94 19.812

Neohesperidin −13.535 −0.315 −79.03 15.221

Neodiosmin −13.367 −0.311 −75.18 14.731

YKL-05–099 −13.297 −0.309 −80.06 11.416

Desmopressin −13.228 −0.179 −64.58 32.245

Rhaponiticin −13.204 −0.44 −69.41 4.781

Luteolin-7-glucuronide −13.175 −0.399 −37.65 11.544

Homoplantaginin −13.049 −0.395 −52.66 7.762

PD173074 −12.992 −0.342 −96.31 4.589

Didymin −12.788 −0.304 −44.01 28.096

Pyrimidine derivative −14.134 −0.267 −108.12 9.293
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evaluations for drug development, aiding in the screening of
potentially drug-like compounds. The selectivity analysis also
contributed to identifying potential advantageous targets and
guiding subsequent drug optimization and development, thereby
increasing the likelihood of successful drug development.

The radar plot in Figures 4A–C illustrates the analysis of
physicochemical parameters, such as MW, TPSA, and LogP, for
the investigated compounds. Rhapontin was the only compound
that fell within the specified threshold range. The medicinal
chemistry studies presented in Table 3 showed that Rhapontin
exhibited a higher QED (Quantitative Estimate of Drug-likeness)
(Kosugi and Ohue, 2021) value, indicating its potential as a drug-like
molecule, adhering to general drug development guidelines.
Additionally, its low PAINS Alter value suggested a lower risk of
being a promiscuous compound, making it more suitable for drug
development. Moreover, the higher SA Score of Rhapontin indicated
relatively facile synthesis, which facilitated further research.

Furthermore, the higher proportion of sp3-hybridized carbon
atoms (Wei et al., 2020) in Rhapontin suggested its potential for
enhanced drug activity. Notably, the receptor selectivity analyses,
including docking scoring, ligand efficiency, and ligand strain
energy, demonstrated that Rhapontin exhibited exceptional
selectivity against FGFR3, as depicted in Figures 4E,F.

In contrast, PD173074, while displaying some drug-like
characteristics, exhibited a relatively lower QED value (Lipinski,
2004). Although it met the criteria of the Pfizer Rule, its performance
might not be as effective as Rhapontin in certain aspects. The smaller
Molar Refractivity (MCE-18) (Ivanenkov et al., 2019) value of
PD173074 suggested a smaller molecular volume, potentially
affecting interactions within the biological system. Despite having
a PAINS Alter value of 0, indicating a lower probability of being a
promiscuous compound, further investigation was still warranted.

Regarding Isoquercetin, its lower QED value indicated the
necessity for further optimization. While satisfying the Pfizer
Rule, its PAINS Alter value of 1 implied potential promiscuity,
demanding additional evaluation. Isoquercetin’s higher SA Score
indicated relatively facile synthesis, but its larger MCE-18 value
suggested it might occupy a larger volume during interactions.

3.5 Exploring ligand binding effects on
FGFR3 flexibility and interactions based om
RMSF and interaction analysis

Through molecular dynamics simulations, studying the
interactions between receptors and ligands provides in-depth
insights into the binding modes and dynamic processes of drugs
with their target receptors. This valuable information supports

FIGURE 4
Physicochemical property and selectivity of 3 compounds.(A) Radar of Isoquercitrin physicochemical property.(B) Radar of
PD173074 physicochemical property.(C) Radar of Rhaponiticin physicochemical property.(D) Docking scoring heatmap of three compounds with four
FGFRs.(E) Ligand efficiency heatmap of three compounds with four FGFRs.(F) Ligand strain energy heatmap of three compounds with four FGFRs.

TABLE 2 Dynamic interaction scores for tested compounds.

Compound
name

PersScore PoseScore CompScore

Isoquercitrin 0.577 1.172 −3.828

PD173074 0.641 1.626 −3.374

Gossypin 0.348 0.938 −4.062

Rhaponiticin 0.43 1.447 −3.553

Homoplantaginin 0.265 1.962 −3.038

Pyrimidine derivative 0.752 2.121 −1.639
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subsequent drug development, aiding in the optimization and
improvement of drug molecules to enhance their affinity and
selectivity towards target receptors, thus improving drug efficacy and
safety, and providing scientific foundations for drug development.

With this purpose in mind, we first used the RMSF of FGFR3 in
its apo state as a baseline to observe the similarities and differences in
the effects of Pyrimidine Derivative 37b and Rhapontin on FGFR3, as
shown in Figures 5A,B. Comparatively, the main differences between
the two ligands were observed in two peptide segments. Firstly, in the
region of 491–500, both Pyrimidine Derivative 37b and Rhapontin
increased the flexibility to varying degrees, with Rhapontin causing a
significantly greater effect. Secondly, in the region of 600–640,
Pyrimidine Derivative 37b did not exhibit any significant influence,
while Rhapontin slightly increased the flexibility in this area. Apart
from these differences, both ligands showed minimal distinctions in
their overall impact on FGFR3 residues and their contact frequency
with FGFR3 residues.

Regarding the contact situation with residues, as shown in
Figures 5C,D, the overall pattern was quite similar, but the
average contact frequency in the simulation was higher for
Rhapontin than for Pyrimidine Derivative 37b. For a detailed

comparison of the binding conformations of Rhapontin before
and after simulation, please refer to Supplementary Figure S1.
However, this did not appear to be due to unreasonable
conformations of the compounds inside the binding pocket
but rather an increased contact frequency with certain
residues, such as Glu-565 and Asp-635, which showed higher
interaction frequencies than Rhapontin. The upregulation of
RMSF in the region of 491–500 might not be directly related
to changes in contact frequency with Rhapontin, as neither
Pyrimidine Derivative 37b nor Rhapontin directly contacts
these residues. A plausible explanation could be that
Rhapontin does not contact residues 482 and 483, indirectly
relieving the restrictions on this peptide segment.

Subsequently, after classifying and statistically analyzing the
interactions between compounds and individual residues, we
selected residues with interaction frequencies exceeding 30%
and depicted the interaction details between these residues
and the compounds, as shown in Figures 6A–D. The
interaction statistics showed consistency with the differences
mentioned earlier, where the number of interacting residues
with Rhapontin was fewer than with Pyrimidine Derivative

TABLE 3 Medicinal chemistry of 3 compounds.

Compound name Rhapontin PD173074 Isoquercetin

QED 0.366 0.347 0.229

SA Score 3.763 3.634 4.008

FSP3 0.333 0.5 0.286

MCE-18 67.143 22 91

PAINS Alter 0 0 1

Lipinski Rule Accepted Accepted Rejected

Pfizer Rule Accepted Accepted Accepted

FIGURE 5
RMSF and Interaction Analysis. (A) RMSF changes of FGFR3 before and after binding with Pyrimidine Derivative 37b. (B) RMSF changes of
FGFR3 before and after binding with Rhapontin. (C)Dynamic changes of Pyrimidine Derivative 37b′s contacts with FGFR3 residues over time. (D)Dynamic
changes of Rhapontin’s contacts with FGFR3 residues over time.
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37b, but the interaction frequencies were slightly higher.
Furthermore, in the interaction detail plots, it was observed
that three key residues in the FGFR3 pharmacophore
relationship, Lys-508, Ala-558, and Asp-635, were reproduced
in the interaction details with Rhapontin. To further validate the

importance of these three sites in Rhapontin binding, we
conducted dynamic simulations with the three sites mutated
to Gly and assessed their impact on the binding between the
two, as shown in Figure 6E. It was evident that all three mutations
significantly affected the binding between Rhapontin and FGFR3,

FIGURE 6
Protein-Ligand Interactions and Contact Analysis of 2 Compounds. (A,B) Columnar Statistical Analysis of Interaction between Pyrimidine Derivative
37b and Rhapontin (C) ligand-protein interactions of Pyrimidine Derivative 37b (D) ligand-protein interactions of Rhapontin (E) The binding stability of the
receptor and ligand changes after Rhapontin binds to different FGFR3 mutants.

FIGURE 7
Verification of Rhapontin’s anti-tumor activity and its sensitization effect on Ceritinib. (A) The effects of different concentrations of Rhapontin on the
proliferation of A549 and BEAS-2B cells. (B) The effects of different concentrations of Ceritinib on the proliferation of A549 and BEAS-2B cells. (C) lThe
effects of different concentrations of Ceritinib on A549 proliferation before and after combined use with Rhapontin.
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demonstrating the importance of these residues in
Rhapontin binding.

3.6 Biological evaluation of rhapontin
through CCK-8 assay

In consideration of the limitations of our previous theoretical
analyses, we conducted further experimental validations on
Rhapontin. Initially, we subjected both BEAS-2B and A549 cell lines
to varying concentrations of Rhapontin and Ceritinib (0–100 μM), as
depicted in Figures 7A,B. As concentrations escalated, Rhapontin
demonstrated a concentration-dependent proliferation inhibitory
effect on A549 cells, with an IC50 of 62 μM. Despite its IC50 being
significantly higher than that of Ceritinib, Rhapontin exhibitedminimal
impact on the proliferation of BEAS-2B cells. Conversely, Ceritinib
exhibited a notable proliferation inhibitory effect on normal cells,
including instances of substantial cytotoxicity.

Considering the potential of FGFR3 inhibitors to sensitize Ceritinib,
we subsequently employed a reduced concentration (50 μM) of
Rhapontin in combination with varying doses of Ceritinib (0–10 μM,
adjusted from previous concentrations). The outcomes, as illustrated in
Figure 7C, indeed displayed an enhanced tumor inhibitory effect to a
certain extent when distinct concentrations of Ceritinib were co-
administered with 50 μM Rhapontin. This co-administration led to a
heightened sensitization of A549 cells to Ceritinib.

4 Discussion

The present study presents a systematic exploration aimed at
augmenting the efficacy of Ceritinib, a prominent
FGFR3 inhibitor, via the integration of natural compound-
derived alternatives. Our investigation embraces a
multidimensional approach, employing active learning derived
virtual screen (Ma et al., 2009), deep learning derived QSAR
modeling (Matsuzaka and Uesawa, 2023), molecular dynamics
simulations (Duay et al., 2023), and biological assays to dissect the
mechanisms underlying the potential synergy between Ceritinib
and the identified natural compounds.

The selection of natural compounds as potential drug
candidates draws attention to their inherent structural diversity
and recognized pharmacological safety (Zhang et al., 2023).
Natural products have, over the years, emerged as a wellspring
of bioactive molecules, often possessing unique chemical scaffolds
and physiological properties (Safranko et al., 2023). Notably, the
prospect of leveraging certain natural compounds as nutraceutical
agents underscores their compatibility with biological systems and
augments the overall therapeutic potential (Wang and
Wang, 2021).

Rhapontin, one of the highlighted natural compounds, presents
intriguing prospects despite its moderate inhibitory activity in
comparison to Pyrimidine Derivative 37b. This finding resonates
with the broader paradigm of molecular design, urging for
meticulous structural optimization to fine-tune both binding
interactions and inhibitory potency (Azimian and Dastmalchi,
2023). The journey toward harnessing Rhapontin’s full potential
entails a systematic exploration of its structural landscape, with a

focus on judicious modifications to enhance its binding
interactions.

The combined application of Rhapontin and Ceritinib, while
not achieving the zenith of efficacy exhibited by certain established
combination therapies, merits profound scrutiny (Krol et al.,
2023). The nuanced response could stem from intricate
intracellular interactions, wherein Rhapontin’s engagement with
alternative molecular targets competes with its interaction with
FGFR3 (Ho et al., 2014; Cascetta et al., 2022). This observation
augments the need for a rigorous dissection of these competitive
binding events, necessitating an iterative process of targeted
compound engineering (Ho et al., 2014)

5 Conclusion

This study underscores the potential of natural compound-
derived FGFR3 inhibitors to anti-cancer and sensitize Ceritinib.
The utilization of natural compounds not only diversifies the drug
discovery landscape but also accentuates their potential as
bioactive agents with intrinsic safety profiles. Rhapontin’s
modest inhibitory activity, coupled with its structural attributes,
calls for a deeper exploration to unlock its latent potential. The
observed synergy between Ceritinib and Rhapontin, albeit
nuanced, underscores the intricate cellular dynamics that
govern combination therapies. As we continue to unravel the
complexities of molecular interactions, strategic compound
engineering offers a promising avenue to enhance therapeutic
outcomes and guide the evolution of precision
medicine paradigms.
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