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Prognosis prediction of head and
neck squamous cell carcinoma
through the basement
membrane-related lncRNA risk
model

Wenchao Bu, Mingguo Cao*, Xinru Wu and Qiancheng Gao

School of Medicine, Lishui University, Lishui, Zhejiang, China

Background: Head and neck squamous cell carcinoma (HNSCC) ranks among
the most widespread and significantly heterogeneous malignant tumors
globally. Increasing evidence suggests that the basement membrane (BM) and
associated long non-coding RNAs (lncRNA) are correlated with the onset of
HNSCC and its prognosis. Our study aims to construct a basement membrane-
associated lncRNAs (BMlncRNAs) marker to accurately predict the prognosis of
HNSCC patients and find novel immunotherapy targets.

Methods: The Cancer Genome Atlas (TCGA) database was accessed to
acquire the transcriptome expression matrices, somatic mutation data, and
clinical follow-up data of HNSCC patients. Utilizing co-expression analysis,
the BMlncRNAs were identified and the differentially expressed lncRNAs
(DEBMlncRNA) were then filtered, The filtering thresholds are FDR<0.05 and
|log2FC|≥1. Furthermore, univariate analysis, least absolute shrinkage and
selection operator (LASSO), and multivariable Cox regression were utilized
to develop the risk model. The model then underwent thorough evaluation
across diverse perspectives, encompassing tumor immune infiltration,
tumor mutation burden (TMB), functional enrichment, and chemotherapy
sensitivity.

Results: The risk assessmentmodel consists of 14 BMlncRNA pairs. The acquired
data is indicative of the reliability of the risk score in its capacity as a prognostic
factor. Individuals at high risk exhibited a poorer prognosis, and a statistically
significant variance was noted in TMB and tumor immune infiltration compared
to the low-risk group. Additionally, heightened sensitivity to paclitaxel and
docetaxel was evident in the patients at high risk.

Conclusion: We have established a BMLncRNA-based prognostic model
that can provide clinical guidance for future laboratory and clinical
studies of HNSCC.
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1 Introduction

The characteristics of head and neck squamous cell carcinoma
(HNSCC) include the presence of a multi-source malignant
tumor group. HNSCC primarily originates from the squamous
epithelial cells of the pharynx, oral cavity, and larynx. Globally,
head and neck tumors are the sixth most common malignant
tumors, with HNSCC being the most prevalent, accounting for
90% of head and neck tumors (Bray et al., 2018; Mody et al.,
2021). The major causes of HNSCC in most patients are high-
risk human papillomavirus (HPV) infection, genetic factors,
excessive consumption of alcohol and tobacco use (Marur and
Forastiere, 2016). Treatment approaches to HNSCC over the
last few decades have typically included surgery, chemotherapy,
radiotherapy, targeted therapy, emerging immunotherapy, and
combination therapies. Although recent advancements have resulted
in substantial improvement in the outcomes of individuals with
HNSCC, the 5-year survival rate stands at a relatively low level of
50% (A et al., 2018; Canning et al., 2019). Therefore, it is imperative
to delve into the processes governing the initiation and progression
of HNSCC in depth. Equally as crucial is developing novel
prognostic risk models that are both effective and reliable in
the management of such cancers, discovering new biomarkers
facilitating the prognosis prediction of HNSCC patients, and
identifying promising therapeutic targets for HNSCC.

The basement membrane (BM) is predominantly present as
a thin membrane formed between the basal surface of epithelial
cells and the connective tissue. The BM is primarily composed of
laminin and type IV collagen, along with various other molecules
such as proteoglycans, growth factors, and others. The BM is
involved in cell signaling, guiding cell migration and adhesion,
maintaining structural integrity, and serving as a barrier for cells
and large molecules. In epithelial cancer and carcinoma, cancer
cell metastasis and invasion must pass through the structure of
the BM, which physically prevents the invasion of cancer cells
into the surrounding connective tissues. During the process of
metastasis, the BM at the basal surface of lymphatic endothelial
cells and vascular endothelial cells prevents the invasion and
outflow of cancer cells. About 90% of tumor-related deaths are
associated with this phenomenon (Fidler et al., 2017). The invasion
of malignant cells into the BM is influenced by three major factors:
matrix stiffening, contraction forces of epithelial cell scaffolding,
and growth factor/cytokine signaling. Both matrix stiffening and
epithelial contraction forces contribute to growth factor and
cytokine signaling pathways, which are associated with promoting
BM invasion (Chang et al., 2017). Additionally, the BM is involved
in tumor angiogenesis. Key genes that encode BM proteins and
cell surface interactors (CSI) are recognized as closely related to
cancer progression (Jayadev et al., 2022). Any disruption in the
expression of the components critical for the structural integrity
of the BM has been linked with various diseases, particularly
the invasion and metastasis of tumors (Wiradjaja et al., 2010).
Specifically, in gastric cancer, dysregulation of the BM promotes
tumor migration and invasion (Peng et al., 2010). Investigating
the structure and processes of BM, as well as understanding
how cancer cells invade it, holds the potential to drive the
development of advanced technologies aimed at inhibiting cancer
growth and metastasis.

Long non-coding RNAs (lncRNA) contain approximately
200 to 100,000 nucleotides and lack protein-coding capabilities.
LncRNAs, along with circRNAs, can competitively bind to miRNA,
inhibiting the binding of miRNA to mRNA, thereby regulating
mRNA expression. Additionally, lncRNA can regulate chromatin
function, modulate nucleosomes, and alter mRNA stability and
translation, ultimately affecting gene expression in various signaling
pathways (Hu and Messadi, 2023). Through the regulation of
gene expression, lncRNAs are pivotal in biological processes. The
abnormal expression of lncRNAs is implicated in the initiation,
progression, and metastasis of tumors (Kong et al., 2018). Research
has shown that lncRNAs are dysregulated in different types of
tumors, promoting or inhibiting tumor progression by regulating
gene expression. For instance, lncRNA BCAR4 targets the wnt
signaling pathway via miR-370–3p to promote bladder cancer
proliferation, survival, and metastasis (Zhang et al., 2020). Research
indicates that overexpression of CYP4A22-AS1 in human LUAD cell
lines promotes the proliferation and migration of LUAD cells.These
overexpressed CYP4A22-AS1 can then downregulate miR-205–5p
and miR-34c-5p, activating relevant signaling pathways, ultimately
leading to LUAD proliferation and metastasis (Dong et al., 2023).
LncRNAs hold promise as potential therapeutic targets and
biomarkers for cancer (Chen et al., 2022). Additionally, aberrant
lncRNA expression can function as a prognostic indicator for
various cancers (Sun et al., 2022; Xiang et al., 2023; Xu et al., 2023).

However, limited research exists regarding the relationship
between BM-related lncRNAs (BMlncRNA) and targets in HNSCC.
To our knowledge, the prognostic relevance of BMlncRNAs and
their association with the immune landscape of HNSCC remains
incompletely understood. We aim to fill this gap by establishing a
novel set of BMlncRNA features, which would aid in assessing the
prognosis of afflicted individuals and understanding the immune
landscape of HNSCC.

In order to develop a robust prognostic model and determine
the relevance of BM-related genes in HNSCC, lncRNAs exhibiting
differential expressions in the BM were identified. Subsequently,
14 types of BMlncRNAs were then utilized in constructing the
risk feature. The established model holds promise in improving
the reliability of prognostic risk stratification and aids in the
formulation of treatmentmeasures.This research utilized functional
enrichment analysis to delve into the mechanisms through
which BMlncRNAs influence the occurrence of HNSCC and its
progression. Furthermore, the association of the risk score with
various parameters was assessed for a more comprehensive analysis.
These included the clinical pathological features, chemotherapy
sensitivity, tumor mutation burden (TMB), and infiltration levels
of immune cells. By delving deeper into the predictive relevance
of lncRNAs, this research not only aids in the identification of
novel therapeutic targets but also contributes to the development of
effective drugs for individuals with HNSCC.

2 Materials and methods

2.1 Data acquisition

Transcriptomic profiles and clinical features of individuals
with HNSCC were accessed at The Cancer Genome Atlas (TCGA,
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FIGURE 1
BM and basement membrane-associated BMlncRNAs in HNSCC (A) Sankey of BM and BM basement membrane genes and basement
membrane-associated lncRNAs. Rectangles of different colors represent different BMs. (B) Heatmap showing differential expression of BMLncRNAs.
Red represents high expression, and blue indicates low expression. (C) Volcano map showing BMLncRNA. The red dots represent the up regulated
DEBMLncRNAs, the green dots represent the down-regulated DEBMLncRNAs, and the black dots represent the BMLncRNAs that are not significantly
differentially expressed.

https://portal.gdc.cancer.gov/) database. In this study, 563 samples,
comprising 44 non-tumor and 519 HNSCC tumor samples were
analyzed. Clinical pathological data retrieved for individuals
with HNSCC encompassed gender, age, stage, grade, TMN
classification, survival status, and survival time. Strawberry Perl
(v 5.30.0.1–64bit, https://strawberryperl.com/) was employed for
the isolation of relevant data, including Fragments Per Kilobase
Million (FPKM) and comprehensive pathological details, from
every clinical sample. Subsequently, the programming language
Perl was applied to differentiate lncRNA and mRNA within
the HNSCC expression matrix. Additionally, single nucleotide
variant (SNV) data and somatic mutation data were accessed
at the TCGA database for computing the mutation burden
of HNSCC. Ultimately, a set of 224 genes related to the BM
was compiled from pertinent literature, referencing specific
sources (Jayadev et al., 2022; Li et al., 2023) for the identification
of BM-related genes.

2.2 Identification of BMlncRNA

Based on differentially expressed BM-related genes,
relevant lncRNAs were identified from lncRNA expression
data using Pearson’s correlation analysis (|R2|>0.4, p < 0.001)
(Kuemmerlen et al., 2020). Subsequently, the interaction network
between lncRNA and genes was visualized using R software.
DEBMlncRNAs were obtained via the R “limma”, with FDR<0.05
and |log2FC|≥1 (Robinson et al., 2010) acting as the screening
conditions.

2.3 Development of prognostic features of
BMlncRNAs

To obtain BMlncRNAs linked with survival, the lncRNAs
acquired in the preceding step underwent univariate Cox regression
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TABLE 1 Clinical information for all HNSCC patients.

Characteristics Type Total Test Train p-value

Age
≤65 341 (65.7%) 173 (66.8%) 168 (64.62%)

0.6667
>65 178 (34.3%) 86 (33.2%) 92 (35.38%)

Gender
FEMALE 136 (26.2%) 70 (27.03%) 66 (25.38%)

0.7447
MALE 383 (73.8%) 189 (72.97%) 194 (74.62%)

Grade

G1 62 (11.95%) 28 (10.81%) 34 (13.08%)

0.0936

G2 303 (58.38%) 140 (54.05%) 163 (62.69%)

G3 125 (24.08%) 72 (27.8%) 53 (20.38%)

G4 7 (1.35%) 5 (1.93%) 2 (0.77%)

unknow 22 (4.24%) 14 (5.41%) 8 (3.08%)

Stage

Stage I 27 (5.2%) 15 (5.79%) 12 (4.62%)

0.7982

Stage II 70 (13.49%) 32 (12.36%) 38 (14.62%)

Stage III 81 (15.61%) 37 (14.29%) 44 (16.92%)

Stage IV 266 (51.25%) 130 (50.19%) 136 (52.31%)

unknow 75 (14.45%) 45 (17.37%) 30 (11.54%)

T

T0 1 (0.19%) 1 (0.39%) 0 (0%)

0.6847

T1 48 (9.25%) 25 (9.65%) 23 (8.85%)

T2 135 (26.01%) 70 (27.03%) 65 (25%)

T3 99 (19.08%) 45 (17.37%) 54 (20.77%)

T4 174 (33.53%) 83 (32.05%) 91 (35%)

unknow 62 (11.95%) 35 (13.51%) 27 (10.38%)

M

M0 185 (35.65%) 94 (36.29%) 91 (35%)

0.9914M1 1 (0.19%) 0 (0%) 1 (0.38%)

unknow 333 (64.16%) 165 (63.71%) 168 (64.62%)

N

N0 175 (33.72%) 80 (30.89%) 95 (36.54%)

0.5019

N1 67 (12.91%) 38 (14.67%) 29 (11.15%)

N2 169 (32.56%) 83 (32.05%) 86 (33.08%)

N3 8 (1.54%) 4 (1.54%) 4 (1.54%)

unknow 100 (19.27%) 54 (20.85%) 46 (17.69%)

analysis. To mitigate the overfitting of prognostic features, our
selection was further refined through the Least Absolute Shrinkage
and Selection Operator (LASSO) regression analysis. Ultimately,
a prognosis model associated with ERS was developed through
the multivariable Cox analysis. Multiple R packages, encompassing
“survival,” “caret,” “glmnet,” “survminer,” and “timeROC” were
utilized for executing these analyses and visualizing the results. The

risk score was computed asmentioned: risk score = ∑ [Exp (lncRNA)
× coef (lncRNA)], where lncRNA coef signifies the coefficient
of survival-related lncRNA, exp (lncRNA) indicates the level of
expression of lncRNA, and coef (lncRNA) signifies the regression
coefficient. Utilizing the median risk score, the cases under study
underwent stratification into high-risk and low-risk groups for
further investigation.

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1421335
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Bu et al. 10.3389/fmolb.2024.1421335

FIGURE 2
LncRNAs associated with BM prognosis. (A) Forest plot showing 102 lncRNAs linked with cuproptosis, where red signifies high-risk lncRNAs and green
signifies low-risk lncRNAs (B, C) Lasso-Cox regression analysis was performed on DGBLncRNA to construct a prognostic prediction model.
Each plot in Figure 2C represents the trajectory of change for each coefficient of the independent variable (in this study, representing the LncRNA). The
ordinate is the value of the coefficient, the lower abscissa is the logarisa (λ), and the upper abscissa represents the number of non-zero coefficients in
the model at this point.

2.4 Association of the risk score with
clinical features

Kruskal–Wallis and Wilcoxon assessments were employed to
examine the relationship of risk scores with clinical features, like age,
gender, AJCC staging, as well as T, N, and M staging.

2.5 Survival analysis of risk score

In order to examine the prognostic relevance of BMlncRNA
prognosis, Kaplan-Meier (KM) methods and log-rank tests were
utilized to examine the variance in survival across the risk groups.

2.6 Development and evaluation of
nomogram

The R “rms” was utilized to develop a nomogram, which
incorporated clinical features employed for predicting the
survival of individuals with HNSCC. Calibration curves were
employed to determine the prognostic prediction accuracy of
the nomogram and calculate the Concordance Index (C-index)
for the nomogram model. The R “timeROC” (Blanche et al.,
2013) was employed to study the nomogram model, analyzing
the Receiver Operating Characteristic (ROC) curve and the
Area Under the Curve (AUC) values. Statistical analysis in this
research was carried out via the R programming language. In
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FIGURE 3
Relationship between various subgroups of the clinical features and risk scores. (A) Heat map of risk model and clinical features. (B–H) Differences in risk
scores among patients in different subgroups under various clinical pathological features. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001, ns, No significance.

order to aid in clinical decision-making, the risk scores and
other clinical and pathological factors were combined to build the
nomogram, which serves as a quantitative tool for assessing clinical
outcomes. Calibration curves were used to examine the prognostic
performance.

2.7 Principal component analysis and
pathway enrichment analysis

The visualization of the expression patterns of lncRNAs related
to BM in HNSCC samples was executed through the Principal
Component Analysis (PCA) via “scatterplot3d”. When selecting
differentially expressed genes (DEGs) between the two risk groups,
specific criteria were considered (criteria: FDR q < 0.05; |log2FC|

> 1). Results were acquired using “limma”. This was followed by
enrichment analyses through Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG). The assessment was
executed through the packages “clusterProfiler” (Wu et al., 2021)
and “ggplot2”. The DEGs that were identified were utilized to
assess the risk model and investigate the functional pathways linked
with HNSCC.

2.8 Evaluation of the association between
Tumor-Infiltrating Immune Cells and risk
score

The CIBERSORT (Newman et al., 2015) was utilized for
assessing the Tumor-Infiltrating Immune Cells (TIICs) in
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FIGURE 4
Risk model prognosis in different sets (A–C) Risk scores in the training, test, and complete sets for high- and low-risk groups. (D–F) Survival status in
the three sets for the risk groups (G–I) Gene expression in the three sets for the risk groups. (J–L) Kaplan-Meier curves for assessing overall survival in
the three sets for the risk groups.

HNSCC individuals in the TCGA cohort and computing their
abundance. This was done with the aim of investigating the
association of the risk scores with TIIC features. Furthermore,
the Wilcoxon test was employed to examine the variation in
immune cell abundance across the high-risk and low-risk groups,
with results presented using box plots. The risk groups were
comparatively assessed by computing the tumor microenvironment
(TME) score, encompassing immune, stromal, and
estimate scores.

2.9 Analysis of potential drug sensitivity
and tumor mutation burden assessment

Tumor Mutation Burden (TMB) data was retrieved from
TCGA (https://portal.gdc.cancer.gov/, accessed on 25 September
2023). Additionally, TMB differential analysis and TMB survival
analysis were utilized to understand whether TMB affects the
accuracy of the prognosis model. The Tumor Immune Dysfunction

and Exclusion (TIDE) method was employed for predicting
the immune response. Furthermore, in order to assess the
effectiveness of the potential drugs, R (oncoPredict) was utilized
to determine their IC50 values in the HNSCC risk groups
(Maeser et al., 2021).

2.10 Statistical analysis

R software for data analysis and visualization (version
4.20). Co-expression analysis was performed using the “limma”
package to obtain BMlncRNAs. The Wilcoxon test was used to
compare the data between the 2 groups. Identification of lncRNAs
in prognostic models using univariate and multivariate Cox
analysis. The chi-square test is used to compare categorical data
between groups. Correlation analysis was performed using the
Pearson method. A p-value of <0.05 was considered statistically
significant (∗p < 0.05, ∗∗ p < 0.01, and ∗∗∗ p < 0.001, ns,
No significance.).
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FIGURE 5
Assessment of the predictive risk model for BMlncRNAs and clinical attributes in the TCGA cohort. (A) Clinical attributes and risk scores in OS univariate
analysis. (B) Clinical attributes and risk scores in OS univariate analysis. (C) Consistency index of risk scores and clinical attributes (D) ROC curves for
assessing OS across 1-, 3-, and 5-years. (E) ROC curves for clinical attributes and risk scores.

3 Results

3.1 Identification of BM-related lncRNA

The Pearson test aimed to establish the correlation among
BMlncRNAs. A total of 1983 lncRNAs associated with the
BM were identified in HNSCC (Figure 1A), Their ligation to
BMLncRNAs was visualized using a Sankey plot (Figure 1A),
where different colors represent different BMs and curves linked
BMLncRNAs. Utilizing a |correlation coefficient| > 0.4 and p <
0.001. Subsequently, 1,340 DEBMlncRNAs were identified, and
the ones ranked in the top 20 upregulated and downregulated
lncRNAs were displayed in relation to BM genes (Figure 1B). The
volcano plot displayed differential lncRNAs associated with BM
genes (Figure 1C).

3.2 Development of risk model

The identification of the lncRNAs linked with prognosis was
facilitated by integrating the survival data of individuals with
HNSCC with the expression data of 1983 lncRNAs. Among the
519 HNSCC samples, 259 underwent random assignment to a
test set and 260 to a training set. There was no statistically
significant variance observed in terms of clinical features across
the two groups of patients (p > 0.05) (Table 1). Univariate Cox

analysis revealed 102 prognosis-related lncRNAs (Figure 2A). For
further refining the gene set employed for developing the model,
LASSO analysis was carried out (Figures 2B,C). Subsequently,
multivariable Cox analysis was conducted, leading to the selection
of 14 lncRNAs, ultimately utilized in constructing the risk model.
The risk score for the patients was computed utilizing the formula
mentioned earlier.

The risk score was computed as:

riskscore = AC022031.2× (0.253004391422484) +AC022239.1

× (−1.15783343530458) +AL512274.1

× (0.280993884220756) + LINP1

× (0.338767951743789) +AL021937.4

× (1.25253156167544) +AC010973.1

× (0.823007676653033) + LINC01748

× (0.658875649899949) +NADK2−AS1

× (−0.763734240714477) +AL158166.2

× (0.464795341619062) +AC018445.5

× (−1.63436971235253) +AP005432.2

× (−0.497209980285157) + LINC02084

× (−0.524796620471794) +AC034199.1

× (0.818261361586273) +AL355385.1

× (−0.679732127938887)
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FIGURE 6
Nomogram and calibration curve of the model (A) Nomograms predicting 1-year, 3-year, and 5-year overall survival in patients with HNSCC (B)
Calibration curves used to evaluate the accuracy of the nomogram model. The gray diagonal dashed line represents an ideal nomogram,The x-axis is
the survival rate predicted by the nomogram, and the y-axis is the actual survival rate. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001, ns, No significance.

FIGURE 7
Kaplan-Meier survival curves in the high- and low-risk groups with different clinical features. (A) Kaplan-Meier survival curves in ≤65-year-old patients
in different risk groups. (B) Kaplan-Meier survival curves in patients aged 65> years in different risk groups. (C) Kaplan-Meier survival curves in FEMALE
patients in different risk groups. (D) Kaplan-Meier survival curves in MALE patients with different risk groups. (E) Kaplan-Meier survival curves in patients
with STAGE I-II in different risk groups. (F) Kaplan-Meier survival curves in patients with STAGE III-IV in different risk groups. (G) Kaplan-Meier survival
curves in patients with GRADE I-II in different risk groups. (H) Kaplan-Meier survival curves in patients with GRADE III-IV in different risk groups. ∗p <
0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001, ns, No significance.

3.3 Association of risk score with clinical
attributes

The link of risk score with clinical features was explored through
limma and ggpubr. Bar plots and histograms reveal that the risk
score is notably linked with clinical features (staging, N staging)

(Figures 3A–H). With increasing risk scores, the distribution
of various subtypes for every clinical feature in the samples
(Figure 3A). The risk score of patients with G2 and G3 stages was
higher than that of patients with G1 and G4 stages (p < 0.05)
(Figure 3D), and the risk score of N2 stage was higher than that of
patients with N0 (p < 0.05) (Figure 3G).
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FIGURE 8
3D-PCA considered the different gene spectra of HNSCC patients. (A) Comparative gene modules, (B) gene modules related to BM, (C) BMlncRNA
modules, (D) BMlncRNA prognostic modules can more clearly divide HNSCC cases into high-risk and low-risk groups. PCA = principal component
analysis; The red and blue dots represent high-risk and low-risk gene.

3.4 Survival analysis based on the risk
model

HNSCC cases in TCGA were categorized into groups of high-
risk and low-risk, with the intermediate risk score serving as
the cutoff point for the training, test, and complete sets. The
risk scores, gene expression, and survival status in these three
sets are displayed in Figures 4A–I. As anticipated, significantly
adverse overall survival (OS) was observed in high-risk HNSCC
cases within the training (p < 0.001), the test (p = 0.01), and
the complete sets (p < 0.001) (Figures 4J–L). The acquired data
indicated an inverse relation between survival rate and risk,
with high-risk HNSCC patients exhibiting a markedly lower
rate of survival in contrast to their low-risk counterparts. This
difference was evident in the distribution of risk score rankings

and scatter plots, highlighting the correlation of patient survival
status with risk scores, indicative of the heightened mortality rates
with higher risk scores. The acquired data is indicative of the
superior prognostic predictive capability of the newly developed
risk model.

3.5 Validation of prognostic risk model
accuracy for BMLncRNAs

To explore the independent nature of the risk score as a
survival risk factor for individuals afflicted with HNSCC, Cox
models (univariate and multivariate) were established to examine
the relation between these two elements.TheunivariateCox findings
showed that Age (p < 0.001, HR = 1.024)、Stage (p < 0.001, HR =
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FIGURE 9
Functional enrichment of BMlncRNA features. (A) Heatmap: High-expression genes are depicted in red; low-expression genes are depicted in green.
(B) Volcano plot: Each point represents a protein: downregulated (green), upregulated (red), and non-significant (black). (C) GO enrichment of genes
with differential expression in cellular components (CC), biological processes (BP), and molecular functions (MF) (D) Enrichment analysis of differential
genes between the two groups obtained after KEGG analysis.

1.397) and riskScore (p < 0.001, HR = 1.082) were correlated with
the HNSCC prognosis (Figure 6A). Moreover, Age (p < 0.001, HR =
1.027)、Stage (p < 0.001, HR = 1.418) and riskScore (p < 0.001, HR
= 1.082) were identified as independent variables in the multivariate
Cox analysis that affected HNSCCprognosis (Figure 6B). Over
time, the consistency index of the risk score consistently exceeded
that of any other clinical component, suggesting that the risk
level holds greater accuracy concerning the outcome prediction
of HNSCC (Figure 5C). Furthermore, ROC curve evaluation of
the predictive performance of the risk score yielded respective
AUCs of 0.650, 0.688, and 0.647 across 1 year, 3 years, and 5
years (Figure 5D), with a maximum AUC value of 0.688. The
acquired data is indicative of its good sensitivity and specificity.
These results indicate promising predictive capabilities of the

risk model for the OS of individuals with HNSCC. The risk
model yielded an AUC value of 0.688, surpassing age (0.565),
gender (0.456), staging (0.512), and grading (0.577) (Figure 5E),
demonstrating that the risk score outperforms other clinical
pathological variables.

3.6 Joint risk score and clinical feature
prediction of the survival rate and
prognosis accuracy of HNSCC patients in
the entire cohort using a column chart

When constructing the column chart to facilitate the prediction
of the survival rate of individuals with HNSCC, both risk scores
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FIGURE 10
TMB analysis of prognosis features. (A) Box plot showing the TMB difference across high- and low-risk groups. (B) Correlation curve between TMB and
risk score. (C) Waterfall plot of tumor mutation rates based on prognosis features in the high-risk group. (D) Waterfall plot of tumor mutation rates
based on prognosis features in the high-risk group. (E) Kaplan-Meier (KM) curves of individuals with HNSCC across H-TMB and L-TMB groups. (F) KM
curves of HNSCC patients in H-TMB + low-risk, H-TMB + high-risk, L-TMB + low-risk, and L-TMB + high-risk.

and clinical parameters (like gender, age, N stage, T stage) were
considered, This nomogram provides an accurate prediction of
OS in patients with HNSCC at 1, 3, and 5 years (Figure 6A).
Calibration plot analysis shows that the curve predicted by
the analysis closely follows the 45-degree line (ideal curve), C
index 0.692, and 95% confidential interval (CI): 0.630–0.755,The
calibration curves show good agreement between the nomogram
and the predictions for 1-, 3-, and 5-year OS (Figure 5B).
This indicates that the nomogram agrees well with
the ideal model.

3.7 Prognostic analysis of risk score and
clinical attributes

Stratified analysis was employed for the purpose of delving
deeper into the prognostic relevance of risk scores within distinct
clinical conditions. The outcomes indicate the presence of a
statistically significant variance across the high-risk group and the
low-risk group in terms of clinical feature subgroups (p < 0.05),
with the lower-risk individuals exhibiting a favorable prognosis in
contrast to their higher-risk counterparts (Figure 7). The results
revealed that the risk model was applicable to patients with different
clinical characteristics.

3.8 Functional enrichment of principal
component analysis and BMlncRNA
markers

In order to determine whether the prognosis features of
BMlncRNA can divide HNSCC cases into high-risk and low-risk
groups, PCA analysis was conducted. This investigation took into
account the different gene spectra of HNSCC patients (Figure 8).
The prognosticmodule utilizing the lncRNA related to the BMgenes
exhibits a greater functionality in clearly dividing HNSCC cases
into high- and low-risk groups. To study the biological functions
and pathways possibly associated with these risk groups, functional
enrichment analysis was conducted on the DEGs. The acquired
data indicated the existence of 405 DEGs across the two groups.
The heatmap and volcano plots were utilized to visually represent
the top 50 DEGs (Figures 9A, B). Additionally, the distribution
of DEGs was determined in terms of functional enrichment
levels using GO analysis method (focusing on biological processes
[BP], cellular components [CC], and molecular functions [MF])
(Figure 9C). Multiple immune-linked biological processes exhibited
enrichment, like immunoglobulin production, immunoglobulin-
mediated immune response, and B cell-mediated immunity (p <
0.05). Results from KEGG analysis suggest significant enrichment
of these DEGs in immune-related pathways (p < 0.05) (Figure 9D).
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FIGURE 11
Two sets of immune features and cancer immunotherapy response. (A) Bar graph displaying the proportion of 22 immune cell types in terms of CC in
patients of TCGA-HNSCC, with each column representing a sample ID. (B) Variation in the proportions of 22 immune cell types across the high- and
low-risk individuals. (C) High- and low-risk immune checkpoints. (D) TME scores of the two groups. (E) Differential TIDE prediction between the two
groups. ∗p < 0.05, ∗ ∗p < 0.01, and ∗ ∗ ∗p < 0.001, ns, No significance.

FIGURE 12
Prediction of sensitivity to chemotherapy drugs based on IC50 values. (A) Difference in IC50 in Dasatinib. (B) Difference in IC50 in SB505124.

3.9 Correlation between risk scoring
models and somatic variants

To comprehensively evaluate the 519 HNSCC samples in terms
of the gene mutation spectrum, the R “maftools”, incorporating
risk scores was employed for the analysis. The analysis revealed
that the individuals at higher risk exhibited a heightened TMB
in contrast to their lower-risk counterparts. The acquired data

indicated the presence of a notably positive correlation of TMB
with the risk score (Figures 10A, B). Waterfall plots were generated,
taking into account the mutation frequency, for both risk groups.
The acquired data implied that the higher-risk individuals displayed
heightened mutation frequency in 15 genes in contrast to their
lower-risk counterparts (Figures 10C, D). Among themutated genes
determined in the high-risk individuals, the first five were TP53
(73%), TTN (37%), FAT1 (22%), CDKN2A (17%), and MUC16
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(16%). In comparison, the first five genes noted in the low-risk
group were TP53 (57%), TTN (37%), FAT1 (20%), CDKN2A
(19%), and MUC16 (19%). Furthermore, in comparison with the
low-risk group, the expression of TP53 and FAT1 increased in
the high-risk group. Furthermore, to investigate the potential of
the risk score for predicting tumor burden survival, the recorded
TMB values for individuals with HNSCC were examined. This
was followed by the categorization of these individuals into high
TMB (H-TMB) and low TMB (L-TMB) groups, per the median
TMB. The analysis of the KM curves indicated that individuals
in the L-TMB group were linked with a heightened likelihood of
experiencing longer survival in contrast to the H-TMB group (log-
rank, p = 0.006, Figure 10E). Furthermore, the survival analysis
data of various subgroups indicate significant variance in survival
outcomes among the H-TMB + low-risk, H-TMB + high-risk,
L-TMB + low-risk, and L-TMB + high-risk groups (log-rank,
p < 0.001, Figure 10F).

3.10 Estimation of tumor immune
microenvironment, immune cell infiltration
and immune-related functions, and drug
sensitivity

To further explore the association between BM-related features
in HNSCC patients and anti-tumor immunity, CIBERSORT was
utilized to examine the immune cell invasion in individuals with
HNSCCacquired fromTCGA.Theproportion of all typical immune
cells is depicted in Figure 11A. Moreover, the proportions of
various immune cells were comparatively assessed between the
risk groups and statistically significant differences were found in
macrophages M0, Mast cells activated, T cells CD8, T cells CD4
memory activated, T cells follicular helper, T cells regulatory
(Tregs),and Mast cells resting across the two groups (p < 0.05)
(Figure 11B). To discern variations in immune cell invasion across
the risk groups, immune score (immune cell infiltration in tumor
tissue), the stromal score (stromal cells in tumor tissue), and
estimate score (sum of individual case stromal and immune
scores) were comparatively assessed. Moreover, this analysis showed
notably elevated stromal scores in the low-risk group (p < 0.001)
(Figure 11C). In the low-risk group, there were more immune cells
and better immune function scores. In the low-risk group, most
immune checkpoints were more active (Figure 11D). Furthermore,
immune therapeutic biomarkers were studied and it was concluded
that the individuals at higher risk exhibited a stronger response
to immunotherapy (p < 0.05) (Figure 11E). The IC50 values of
two immune therapeutic drugs, including Dasatinib and SB505124,
were noted to be diminished in the individuals at higher risk
(p < 0.05) (Figure 12). The data acquired may contribute to
clinical applications.

4 Discussion

Treatment measures for individuals with HNSCC involve
chemotherapy, radiotherapy, targeted therapy, and a variety of
other immunotherapies (Bishop et al., 2021). Despite significant
advancement in HNSCC treatment, the prognosis for these

individuals is relatively poor clinically. These adverse outcomes are
attributable to the heightened rate of malignancy and metastasis,
as well as increased heterogeneity observed in individuals with
HNSCC. The 5-year OS rate in this study was observed to be lower
and this diminished rate can be attributed to the absence of effective
early diagnosis and resistance strategies (Johnson et al., 2020).
Recognizing these challenges, constructing a predictive model
specifically focused on the BM could provide vital information
for effectively guiding the prognosis and treatment of individuals
afflicted with HNSCC.

Therefore, tumors lacking BMlncRNA prognostic features.
In this research, we attempted to establish a novel lncRNA
feature to facilitate the prediction of the prognosis and immune
microenvironment of HNSCC. To our knowledge, researchers have
found BMlncRNAs across diverse cancers, and recently, attention
has been drawn toward specifically exploring the relationship
between BMlncRNAs and various cancers. There have been studies
that have been successful in constructing different BM-related gene
features to facilitate the prognosis prediction of bladder cancer, clear
cell renal cell carcinoma, and hepatocellular carcinoma (Feng et al.,
2022; Li et al., 2023; Jin et al., 2023).

LncRNAs represent promising biomarkers with therapeutic
implications across diverse diseases, particularly in the context
of tumors. Herein, 48 dysregulated cuproptosis-related lncRNAs
were determined in the context of HNSCC. Additional screening
aided in further refining the selection, resulting in the isolation of
14 BMLncRNAs (AC022031.2, AC022239.1, AL512274.1, LINP1,
AL021937.4, AC010973.1, LINC01748, NADK2-AS1, AL158166.2,
AC018445.5, AP005432.2, LINC02084, AC034199.1, AL355385.1).
Qiu et al. (2022) constructed an 8-lncRNA prognostic model
including AL512274.1, which is of significant value in prognosis
prediction and immune assessment. LINP1 offers a crucial role
in enhancing the proliferation and spread of pancreatic cancer
cells by modulating miR-491–3p (Chen et al., 2020). AC010973.1 is
highly correlated with poor prognosis in hepatocellular carcinoma.
Furthermore, the observed upregulation of CDK5 expression by
AC010973.1 has been identified as a factor contributing to the
heightened proliferative, invasive, and migratory capacities of HCC
cells (Li et al., 2020). LINC01748 heightens the invasiveness of
NSCLC cells by competitively binding with miR-520a-5p, leading
to HMGA1 overexpression (Tan et al., 2022). Sun et al. (2020)
constructed five immune-related lncRNA features, among them
LINC02084, demonstrating the potential to predict the prognosis
of individuals with KIRC. Zhang et al. (2023) built an esophageal
cancer prognostic model consisting of six lncRNAs, including
AC034199.1, which has a better diagnostic value in comparison
with other clinical features. Hou et al. (2022) developed a 15-
lncRNA prognostic model including AP005432.2, which shows
good efficacy in predicting the prognosis, immune response, and
chemotherapy response in bladder cancer. The remaining seven
BMlncRNAs (AC022031.2, AC022239.1, AL021937.4, NADK2-
AS1, AL158166.2, AC018445.5, AL355385.1) have not been
related to cancer based on existing reports. Therefore, additional
investigation is necessary to unravel the prognostic mechanisms
associated with these BMlncRNAs in HNSCC. In this study, we
constructed BMlncRNAs signatures based on 14 BMlncRNAs
through integrated bioinformatics analysis, which confirmed
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prognostic value and served as an independent prognostic factor
and potential therapeutic target for patients with HNSCC.

The data required for the analyses were acquired via the
TCGA database. Subsequently, the individuals under study were
categorized into two risk groups per the median risk scores.
PCA analysis demonstrated superior performance of BMlncRNA
features in distinguishing the patients in contrast to whole-
genome expression, BM-related genes, and BMlncRNAs. The
KM curve demonstrated that individuals at higher risk exhibited
shorter OS values relative to the individuals in the low-risk
group. Additionally, Cox regression analysis (both univariate and
multivariate) affirmed the independent predictive significance
of risk scores for HNSCC patients. Moreover, a column chart
was constructed by integrating the risk score and clinical
pathological factors to examine the predictive accuracy and
practical applicability. The risk model exhibited higher AUC and
C-index values in contrast to those derived from clinical factors
(gender, age, clinical stage, and grade). The data acquired suggests
accurate prognosis prediction for individuals with HNSCC. It was
observed that the developed features outperform traditional clinical
markers in providing precise prognostic insights. Our studies
thus provide a new scoring system for prognosis prediction in
HNSCC patients.

Enrichment analyses, GO and KEGG, were utilized to explore
the processes relevant to the riskmodel.The resulting data revealed a
notable enrichment of DEGs, primarily associated with the immune
response and pathways related to tumors. Further exploration of
the correlation between the level of immune cell infiltration and
the risk score was conducted. Using CIBERSORT, the immune
cell infiltration status of all HNSCC patients acquired from the
TCGA database was examined. Additionally, the study conducted
a comparison of the proportions of various immune cells between
the high-risk and low-risk groups, revealing statistically significant
variance in macrophages M0,Mast cells activated, T cells CD8,
T cells CD4 memory activated, T cells follicular helper, T cells
regulatory (Tregs),and Mast cells resting. The research results
indicate that the immune scores of low-risk individuals aremarkedly
elevated than those of high-risk individuals.This phenotype suggests
a potential inverse correlation between the risk score and the
immune status.

Prior research indicates that TMB may function as a reliable
biomarker (Topalian et al., 2016). TMB scores were computed
as per TCGA somatic mutation data, and the high-risk group
demonstrated elevated TMB scores. A strong association exists
between the classifier index based on the BM and the TMB.
Higher TMB scores are associated with poorer prognosis.
Furthermore, both high and low TMB scores in the low-risk
group are linked to better prognosis. Moreover, this research
revealed the relevance of the lncRNA model associated with
cuproptosis. The immune therapeutic biomarkers were investigated
as well and it was concluded that the high-risk group exhibits
a strong response to immunotherapy. Variations in IC50
values for various drugs among distinct HNSCC subgroups
revealed two relevant drugs, Dasatinib and SB505124. Our
study showed that the high-risk group had a higher sensitivity
to dasatinib and SB505124 than the low-risk group. However,
the accuracy and suitability of these personalized drugs need
further research.

However, this study has some limitations. Enhanced reliability
can be achieved through the utilization of additional validation sets
to confirm prognostic values. Moreover, to acquire a more thorough
insight into itsmechanism of action, in vitro and in vivo experiments
should be carried out.Therefore, we plan to conduct further research
into these aspects and address these limitations.
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