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Purpose: Ovarian cancer (OC) is a common gynecological malignancy with
poor prognosis and substantial tumor heterogeneity. Due to the complex tumor
immune microenvironment (TIME) among ovarian cancer, only a few patients
have an immune response to immunotherapy. To investigate the differences
in immune function and identify potential biomarkers in OC, we established a
prognostic risk scoring model (PRSM) with differential expression of immune-
related genes (IRGs) to identify critical prognostic IRG signatures.

Methods: Single-sample gene set enrichment analysis (ssGSEA) was used to
investigate the infiltration of various immune cells in 372 OC patients. Then,
COX regression analysis and Lasso regression analysis were used to screen IRGs
and construct PRSM. Next, the immunotherapy sensitivity of different risk groups
regarding the immune checkpoint expression and tumor mutation burden was
evaluated. Finally, a nomogram was created to guide the clinical evaluation of
the patient prognosis.

Results: In this study, 320 immune-related genes (IRGs) were identified,
13 of which were selectively incorporated into a Prognostic Risk Scoring
Model (PRSM). This model revealed that the patients in the high-risk group
were characterized as having poorer prognosis, lower expression of immune
checkpoints, and decreased tumor mutation load levels compared with those
in the low-risk group. The nomogram based on the risk score can distinguish
the risk subtypes and individual prognosis of patients with OC. Additionally, M1
macrophages may be the critical target for immunotherapy in OC patients.

Conclusion: With the in-depth analysis of the immune microenvironment
of OC, the PRSM was constructed to predict the OC patient

Frontiers in Molecular Biosciences 01 frontiersin.org

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences
https://doi.org/10.3389/fmolb.2024.1426274
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2024.1426274&domain=pdf&date_stamp=2024-07-30
mailto:littleb@21cn.com
mailto:littleb@21cn.com
mailto:liuyueyang@gdph.org.cn
mailto:liuyueyang@gdph.org.cn
https://doi.org/10.3389/fmolb.2024.1426274
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1426274/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1426274/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1426274/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1426274/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1426274/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences


Gong et al. 10.3389/fmolb.2024.1426274

prognosis and identify the subgroup of the patients benefiting from
immunotherapy.

KEYWORDS

ovarian cancer, tumor immunemicroenvironment, immunotherapy, prognosis, immune
checkpoint

Introduction

Ovarian cancer (OC) is one of the malignant tumors of female
reproductive system,with enormous tumor heterogeneity (Vázquez-
García et al., 2022; Olbromski et al., 2023). According to statistics
from the American Cancer Society, there will be 19,710 new
cases of OC among women and an estimated death of 13,270 in
the United States in 2023, ranking fifth after lung cancer, breast
cancer, colon cancer, and pancreatic cancer, seriously affecting
women’s health (Siegel et al., 2023). OC has the most histological
types of solid tumors, which can be divided into four subtypes,
namely epithelial tumors, germ cell tumors, sex cord-stromal
tumors, and metastatic tumors. The above-mentioned subtypes
have different risk factors, cellular origin, molecular composition,
clinical characteristics, and treatment (Matulonis et al., 2016). At
present, the most commonly used treatment for OC is cytoreductive
surgery combined with platinum-based standard chemotherapy.
Nevertheless, a significant proportion of OC patients relapse shortly
after the standard treatment regimen, and additionally, some even
relapse during the ongoing course of chemotherapy. As recurrence
is the leading cause of death in OC patients, the effectiveness of
the current immunotherapy is not satisfactory (Armstrong et al.,
2022). The clinical trials for immunotherapy in ovarian cancer
have been marred by several predominant factors, including the
inherent diversity of the immune microenvironment (Luo et al.,
2024), the suppressive influence of regulatory T cells which can
stifle therapeutic responses, the emergence of drug resistance
that hampers long-term efficacy, the complexity introduced by
tumor heterogeneity affecting patient responses variably (An
and Yang, 2021), and the yet-to-be-fully-realized potential of
combination therapies that aim to synergize for improved patient
outcomes (Hoogstad-van Evert et al., 2020). For example, in the
JAVELIN Ovarian 200 Phase III clinical trial (Zamarin et al.,
2020), researchers enrolled a total of 566 patients with recurrent
platinum-resistant or platinum-refractory ovarian, fallopian tube,
or peritoneal cancer. These patients were randomly assigned to
receive treatment with Avelumab and/or liposomal doxorubicin.
The study results showed that the combination of Avelumab and
liposomal doxorubicin did not extend the median progression-
free survival (PFS), with median PFS being 3.5 months and
3.7 months, respectively. Additionally, this treatment approach did
not improve themedian overall survival (OS), withmedianOS being
13.1 months and 15.7 months, and the hazard ratio (HR) was 0.89
with a 95% confidence interval of 0.74–1.24. These data suggest
that for patients with recurrent platinum-resistant or platinum-
refractory ovarian cancer, the combination of chemotherapy with
the anti-programmed death-ligand 1 (PD-L1) antibody (Avelumab)
does not yield better clinical benefits. Therefore, an in-depth
exploration ofOC’s genetic differences andmolecular functionsmay
lead to new diagnostic, prognostic, and therapeutic biomarkers.

Tumor immune microenvironment (TIME) is a complex
ecosystem composed of tumor cells, immune cells, cytokines, and
other components.These elements have both tumor-promoting and
anti-tumor effects, and their interactions determine the ultimate
direction of tumor immune-related functions (Li et al., 2021;
Harbin et al., 2023). The unrestricted proliferation of tumor cells
will change TIME and evade immune surveillance by destroying
the antigen presentation mechanism, strengthening the negative
immune regulation pathway, recruiting tumor-promoting immune
cells, and so on (Xu et al., 2022). Immunotherapy is mainly
used to reshape TIME and restore the tumor-killing ability of
anti-tumor immune cells. Given the exciting clinical benefits of
immunotherapy in malignant tumors such as melanoma, clinical
trials of immunotherapy in OC have emerged in the past few
years. In a phase II randomized clinical trial called NRG, 100
patients with ovarian cancer were randomly divided into the
Nivolumab group (49 cases, including 31 cases of platinum
resistance), the Nivolumab and Ipimab group (51 cases, including
31 cases of platinum resistance). Within 6 months, the response
rate of the combination group of Nivolumab and Epizumab was
significantly higher (31.4% vs. 12.2%), and the median PFS was
significantly longer (3.9 months vs. 2.0 months) than that of the
single Navuliumab group (Zamarin et al., 2020). However, most
of the immunotherapy clinical trials in OC had not achieved
satisfactory results (Binnewies et al., 2018; Zhang et al., 2023).
Moreover, OC has always been regarded as an immune-excluded
tumor, which is characterized by insufficient T cell infiltration,
low tumor mutation burden (TMB), poor antigen expression, and
insensitive to the inherent killing of T cells (Hornburg et al., 2021).
Hence, exploring the changes in TIME of OC and searching for
immune biomarkers has been an issue thatOC researchers have been
trying to solve.

In this study, we explore potential immune biomarkers from the
TIME perspective. Firstly, the single-sample gene set enrichment
analysis (ssGSEA) was used to assess every OC sample from The
Cancer Genome Atlas (TCGA). This method can effectively avoid
the tumor heterogeneity ofOC. Secondly, we aim to identify relevant
gene enrichment pathways and obtain immune-related genes (IRGs)
by comparing the gene expression differences between high-
and low-immune groups. Then, the least absolute shrinkage and
selection operator (Lasso) is used to select the most representative
signatures from IRGs to build a prognostic risk scoring model
(PRSM). And conduct external verification using a dataset in Gene
Expression Omnibus data base (GEO). Finally, we try to find the
reasons for poor prognosis in high-risk OC patients based on
TMB levels, immune checkpoint expression levels, and immune
cell correlation. In summary, 13 IRG signatures were generated
to predict the risk subtypes, survival time, and immunotherapy
response in OC patients. These findings offer valuable insights into
the identification of immune biomarkers.
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Materials and methods

Gene expression data source

First, The public transcriptome data and clinical data of
OC were downloaded from TCGA database (https://portal.gdc.
cancer.gov/). Here, 372 OC samples were embodied in total.
Second, the GEO database (https://www.ncbi.nlm.nih.gov/geo/)
provided GSE26712 dataset (n = 185 samples). Finally, TCGA
data was utilized to filter IRGs and construct PRSM, while GEO
data was employed as external data to verify the predictive
accuracy of PRSM.

ssGSEA

ssGSEA is a common method for immune cell infiltration
analysis. ssGSEA estimates the relative abundance of different
immune cell types in each sample by comparing the gene expression
data of each sample with immune cell markers. Subsequently,
according to the ssGSEA score, 372 OC patients were divided into a
high immune group (n = 329) and a low immune group (n = 43).

Difference of TME between high- and
low-immunity groups

Tumor microenvironment (TME) refers to the Internal
environment where tumor cells are generated and live, which is
heterogeneous and consists of multiple cell types. According to
the method published by Yoshihara et al. (2013) the ESTIMATE
algorithm is used to estimate tumor purity. Generally speaking,
the results of the ESTIMATE algorithm are divided into stromal
score and immune score, representing the presence of stromal
cells and immune cells, respectively. Adding two fractions
together yields the estimated score, which represents the purity
of the tumor.

Difference of TIME between high- and
low-immunity groups

CIBERSORT is a widely used computational method in
tumor immunology research. With the help of R-packets, it can
quantitatively analyze the proportion of different immune cell
subsets in ovarian cancer tissue using gene expression data.

Screening for IRGs

First of all, differential gene expression analysis was
performed on high- and low-immune groups using the “limma”
package in the R language to obtain differentially expressed
genes (DEGs), with| FDR |> 1, P < 0.05 as the screening
criteria. Next, immunity genes (IGs) were downloaded from
the immport database (https://www.immport.org/shared/home).
Finally, the intersection of DEGs and IGs is taken to
obtain the IRGs.

Gene enrichment analysis

With the help of R-package, kyoto encyclopedia of genes and
genomes (KEGG) and gene set enrichment analysis (GSEA) were
used to analyze the related signaling pathways of DEGs in high- and
low-immune groups.

Constructing protein-protein interaction
networks

To start with, export IRGs separately as a dataset, and then
import this dataset into the STRING database (https://cn.string-
db.org/) for visual analysis to obtain protein-protein interaction
networks (PPI networks). In PPI networks, different nodes or colour
represent different protein interactions.

Established a prognostic risk-scoring
model

Firstly, Lasso regression analysis was used to identify key IRGs.
Secondly, the risk score for each OC patient was calculated based
on the correlation coefficients of key IRGs and key IRGs expression
levels using the risk score calculation formula. Then, based on the
median risk score as the optimal cutoff value, 372 OC samples were
divided into high-risk and low-risk groups. Next, the Kaplan-Meier
survival curve was used to compare the overall survival (OS) time
differences between high- and low-risk groups. Finally, Receiver
operating characteristic and calibration (ROC) curve and calibration
curve were used to test the accuracy of PRSM. And the risk-scoring
formula is as follows:

RiskScore =∑n
i
coef (i) ×Exp (i)

In the formula of PRSM, coef represents the correlation
coefficient of IRGs, Exp represents the expression of key IRGs, i
represents the IRGs, and n represents the number of key IRGs.

Verification of prognostic risk scoring
model

Due to the high accuracy of PRSM in predicting OS in OC
patients, we used the GSE26712 dataset from the GEO database as
external data to verify the accuracy of PRSM’s OS prediction and
construct a Kaplan Meier survival curve.

Analysis of differences in immune
checkpoints and tumor mutation burden

With the help of R package, we analyzed the expression
differences of immune detection points such as PD1, PDL1,
CTLA4 between high- and low-risk groups. Next, we analyzed the
differences in TMB levels between high and low risk groups, and
divided 372 OC patients in the TCGA database into high TMB and
low TMB groups using the median TMB as the cutoff value. Then,

Frontiers in Molecular Biosciences 03 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1426274
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/shared/home
https://cn.string-db.org/
https://cn.string-db.org/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences


Gong et al. 10.3389/fmolb.2024.1426274

FIGURE 1
Study flowchart; TCGA, The Cancer Genome Atlas database; ssGSEA, Single-sample gene set enrichment analysis; TME, Tumor microenvironment;
TIME, Tumor immune microenvironment; GSEA, Gene set enrichment analysis.

survival curve analysis was performed on OC patients in the high
and low TMB groups. Finally, prognostic analysis was conducted on
372 OC patients in the TCGA database by incorporating both risk
scores and TMB levels.

Establishment and evaluation of a
nomogram

Firstly, univariate COX regression analysis was used to test
whether the risk score is a risk factor for the prognosis of OC
patients. Next, multivariate COX regression analysis was employed
to test whether the risk score can serve as an independent prognostic
risk factor for OC patients. Then, a nomogram was constructed
based on patient’s age, tumor FIGO stage, histological grade, and
PRSM risk score. And the nomogram was conducted to evaluate the
total score, which predicting 1-year, 3-year, and 5-year survival rates.
Finally, the calibration curve was utilized to verify the consistency of
the nomogram outcome with real-world events.

Statistical analysis

The main software and versions required for data analysis in
this study are as follows: R language (4.1.3), Rstudio (2021.09.1
+ 372), Strawberry perl (5.30.1), limma package (3.50.3), ggplot2
package (3.4.2), survival package (3.2.13), dplyr package (1.1.2),
ggallivian package (0.12.5), caret package (6.0.94). Unless otherwise
specified in the text, P < 0.05 is considered to have a statistical
difference.

Results

Identification of two subtypes of immune
infiltration in OC patients

In this study, in order to effectively avoid OC tumor
heterogeneity, we chose the ssGSEA method to conduct
bioinformatics analysis on 372 OC transcriptome data in the
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FIGURE 2
Identification of two subtypes of immune infiltration in OC patients. (A) tSNE describes the grouping between different immune subgroups. (B) Heat
map of immune cell infiltration analysis between different immune subgroups. (C) Differences in the content of stromal cells and immune cells
between immune subgroups.

TCGA database. In this way, we explored the differences
in immune-related functions among different OC patients
and constructed a prognosis model based on IRG signatures
(Figure 1). Based on the representative makers of 29 types of
immune cells, we used the ssGSEA tool to perform immune
infiltration analysis. Then, we successfully divided 372 OC
patients into two subtypes, namely, the high-immune group
(n = 329) and the low-immune group (n = 43). For such
a large number of OC patients being assigned to the high-
immune group, we believed there are certain doubts about
the limited effectiveness of immunotherapy in clinical practice.
At the same time, this result also aroused our extreme
enthusiasm for further research. Consequently, we reduced
the dimension of the distribution of the two groups of OC
patients with the help of tSNE. And the results of tSNE
showed that the high- and the low-immune groups of OC

patients were really different in terms of immune cell infiltration
(Figure 2A).

Differences in TME between high- and
low- immune groups

TME is mainly composed of stromal cells and immune cells.
Firstly, we visualized the infiltration of 29 types of immune
cells in two subgroups. We found that immune cells with
anti-tumor effects, such as CD8+ T cells, Th1 cells and NK
cells, showed significant infiltration in the high- immune group.
However, cells such as Th2 cells and Treg cells that have tumor
promoting and immunosuppressive effects were also highly invasive
(Figure 2B). This reveals the complexity of TIME. Next, we used
the ESTIMATE algorithm to score the high- and low- immune
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FIGURE 3
Differences in immune cell content and related signaling pathways between immune subgroups. (A) Boxplot of immune cell content in high and low
risk groups. (B) Boxplot of HLA related gene expression. (C) KEGG analysis signal bubble chart. (D) KEGG analysis signal bar chart.

groups to evaluate the content of stromal cells and immune cells
in OC. We found that the high- immune group had higher
stromal cell scores and immune cell scores (Figure 2C). This meant
that OC in the high-immune group have more stromal cells
and immune cells.

Differences in TIME and related signaling
pathways between high- and low-immune
groups

In order to further determine which type of cells are dominant
in the high- and low-immune groups, we conducted an analysis of
their immune cell content. The results showed that compared to the
low- immune group, the high- immune group had a lower content
of M0macrophages in TIME, while the content of M1macrophages
with anti-tumor and immunomodulatory effects was significantly
higher (Figure 3A, P < 0.05). In addition, human leukocyte
antigens (HLAs) gene expression analysis indicated that the high-
immune group has significant HLAs expression level (Figure 3B,
P < 0.001). Next, we compared the differences in signaling
pathways between high- and low- immune groups. We found
significant enrichment in signaling pathways such as JAK/STAT
signaling pathway, natural killer cell mediated cytotoxicity signaling
pathway, and chemokine signaling pathway (Figures 3C, D). Among

them, JAK/STAT signaling pathway was involved in regulating the
polarization process of M1 macrophages.

Active immune related signaling pathways
in the high-immune group

The GSEA package in the R language was used to explore
the enriched signaling pathways in high-immune groups. The
results showed that many immune related signaling pathways
were significantly enriched in the high- immune group. These
signal pathways include JAK/STAT signaling pathway (Figure 4A),
chemokine signaling pathway (Figure 4B), cytokine-cytokine
receptor interaction signaling pathway (Figure 4C), PPAR
signaling pathway (Figure 4D), natural killer cell mediated
cytotoxicity signaling pathway (Figure 4E), toll like receptor
signaling pathway (Figure 4F).

Construction of IRG signatures

With | FDR |> 1, P < 0.05 as the screening criteria, 2013 DEGs
were identified by using the limma package in the R language to
handle data of high- and low-immune groups (Figure 5A). Then,
the DEGs were intersected with IGs obtained from the immport
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FIGURE 4
GSEA results of high immune group. (A) JAK/STAT signaling pathway. (B) Chemokine signaling pathway. (C) Cytokine-cytokine receptor interaction
signaling pathway. (D) PPAR signaling pathway. (E) Natural killer cell mediated cytotoxicity signaling pathway. (F) Toll like receptor signaling pathway.
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FIGURE 5
Construction of IRG signatures. (A) Volcano plot of DEGs. (B) Venn diagram of DEGs and IGs. (C) Differential expression heatmap of IRGs in high and
low immune groups. (D) Forest map of prognosis related IRGs. (E) Sankey diagram of prognosis related IRGs and TF. (F) PPI network diagram of
prognosis related IRGs.
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database, resulting in the identification of 320 IRGs and draw gene
expression heatmaps (Figures 5B, C). Next, COX regression analysis
was conducted to compare 320 IRGs with the total survival time
and survival outcome of OC patients, and 29 IRGs related to OC
prognosis were selected (Figure 5D). Finally, we conducted co-
expression analysis of these prognosis related IRGs and transcription
factors in an attempt to identify potential downstream key genes and
construct a Sankey diagram (Figure 5E). Additionally, we conducted
protein interaction analysis on prognosis related IRGs and obtained
a PPI network diagram (Figure 5F).

The evaluation and validation of PRSM

Lasso regression analysis andCOX regression analysis were used
to screen 13 IRG signatures for building PRSM (Figures 6A, B).
According to the risk score calculation formula mentioned earlier,
PRSM performed a risk score on each sample and obtained high-
and low-risk groups. Then, ROC curve showed that PRSM had
excellent performance in predicting the prognosis of OC patients,
especially the 5-year survival rate (Figure 6C, AUC = 0.704).
Moreover, calibration curve indicated that the PRSM prediction
results were consistent with the clinical outcomes of patients in
the real world (Figure 6D). Kaplan Meier survival curve analysis
revealed that the high-risk group had a shorter overall survival
time compared to the low-risk group (Figure 6E, P < 0.001). Taking
into account the low 5-year survival rate of OC patients and
the accuracy of PRSM’s 5-year prediction, we conducted external
validation using the GSE26712 dataset. The GSE26712 dataset
contains 185 primary ovarian tumors data and 10 normal ovarian
surface epithelium data. In order to verify the accuracy of the 5-year
survival prediction of PRSM, 119 samples were ultimately involved
in constructing the survival curve. External data has shown that
PRSM has excellent performance in predicting the prognosis of OC
patients (Figure 6F). We further explored whether the significantly
dysregulated immune genes in ovarian cancer patients at different
stages also affect treatment response or other prognostic outcomes.
We found that in patients with advanced ovarian cancer, those
with a high immune risk score had a worse prognosis, whereas no
difference was observed in the early-stage ovarian cancer patient
population (Supplementary Figures S1, S2).

Reasons for poor prognosis in high-risk OC
patients

Generally speaking, the more immune checkpoints were
expressed and the higher the TMB level, the better the tumor
patient’s response to immunotherapy. In order to investigate the
reasons for poor prognosis in high-riskOCpatients, we explored the
expression levels of immune checkpoints and TMB levels. For one
thing, compared to the high-risk group, the results showed lower
expression of PD1 (programmed cell death protein 1, also known
as CD274), CTLA4 (cytotoxic T-lymphocyte-associated protein 4)
and PDL1 (programmed cell death-ligand 1, also known as PDCD1)
in OC patients in the high-risk group (Figure 7A–C; P < 0.001).
Moreover, the expression levels of these immune checkpoints are
negatively correlated with the PRSM risk score (Figures 7D–F, PD1:

R = −0.39, P = 1.3e-14; CTLA4: R = −0.38, P = 3.9e-14; PDL1:
R = −0.38, p = 1.6e-14). The pearson correlation analysis between
immune cells and IRG signatures showed thatM2macrophageswere
mainly associated with C5AR1, CX3CR1, and FPR1 (Figure 7G, P <
0.001). For another, TMB analysis showed that the high-risk group
of OC patients had lower levels of TMB (Figure 7H, P = 0.001).
Next, we divided the OC patients in TCGA into high- and low-
TMB groups based on their TMB levels. Survival analysis suggested
that patients with low TMB have a worse prognosis (Figure 7I, P <
0.001). Finally, we conducted survival analysis on OC patients in
TCGAby combining PRSMrisk score andTMB level, and the results
showed that patients with low TMB level and high risk score had the
worst prognosis (Figure 7J, P < 0.001). Therefore, it can be said that
the reasons for the poor prognosis of high-risk OC patients are low
expression of immune checkpoints and low TMB levels.

Building a nomogram based on PRSM
scores

Firstly, univariate COX regression analysis revealed that risk
score is a risk factor for the prognosis of OC patients (Figure 8A,
HR: 4.725, 95%CI: 2.983–7.484, P < 0.001).Then, multivariate COX
regression analysis confirmed that risk score is an independent risk
factor for the prognosis of OC (Figure 8B, HR: 4.4.686, 95% CI:
2.940–7.468, P < 0.001). Next, based on patient age, tumor FIGO
stage, histological grade, and PRSM risk score, we constructed a
nomogram using the rsm package in the R language to predict the
survival rate of OC patients (Figure 8C). ROC curve indicates that
the area under the curve (AUC) predicted by nomogram for 1-year,
3-year and 5-year survival rates of OC patients is 0.680, 0.671, 0.675,
respectively (Figure 8D). Predicted results of the nomogram are very
close to the final clinical outcome ofOC patients (Figure 8E). Hence,
the nomogram has excellent predictive ability and can be used to
guide clinical practice.

Discussion

In this study, we identified two distinct immune infiltration
subtypes in ovarian cancer (OC) patients using the ssGSEAmethod
on TCGA transcriptome data, leading to the development of a
prognostic risk scoring model (PRSM) based on immune-related
gene (IRG) signatures. The high-immune subtype, comprising the
majority of patients, presented a complex TME with both anti-
tumor and immunosuppressive cells, challenging the therapeutic
expectations for immunotherapy. In particular, the high-immune
group exhibited lower levels of M0 macrophages and higher levels
of M1 macrophages compared to the low-immune group. Our
PRSM, validated on an external dataset, demonstrated robust
predictive accuracy for patient prognosis, particularly for the 5-
year survival rate. Furthermore, the poor prognosis in high-
risk patients was associated with lower expression of immune
checkpoints and reduced TMB levels, highlighting potential barriers
to immunotherapy effectiveness.

TIME is one of the characteristics of tumors, moreover, the
TIME of OC is even more complex (Hanahan, 2022). In ovarian
cancer, tumor cells employ several strategies to evade immune

Frontiers in Molecular Biosciences 09 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1426274
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences


Gong et al. 10.3389/fmolb.2024.1426274

FIGURE 6
The evaluation and validation of PRSM. (A) Lasso regression coefficient plot. (B) Lasso regression parameter plot. (C) ROC curve of PRSM predicting
prognosis. (D) Calibration curve of PRSM. (E) Kaplan–Meier analysis displays the high and low risk group OS of OC patients in TCGA. (F) GEO data
validation of PRSM’s OS prediction ability.
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FIGURE 7
Reasons for poor prognosis in high-risk OC patients. (A–C) The expression level of immune checkpoint in high and low risk groups. (D–F) Correlation
analysis between immune checkpoint expression and PRSM risk score. (G) Correlation analysis between IRG signatures and immune cells. (H) Analysis
of TMB levels in high and low risk groups. (I) TMB level evaluation of OC prognosis in TCGA. (J) The PRSM risk score and TMB level jointly evaluate the
prognosis of OC in TCGA.
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FIGURE 8
Building a nomogram based on PRSM scores. (A) Univariate Cox regression analyses. (B) Multivariate Cox regression analyses. (C) 1-, 3-, and 5-year OS
prediction of patients with OC in TCGA through nomogram. (D) ROC curve of nomogram predicting prognosis. (E) Calibration curve of nomogram.

surveillance. These include the downregulation of tumor antigens
to reduce detection by T-cells, the secretion of immunosuppressive
molecules such as TGF-β and IL-10 that create a hostile environment
for immune cells, and the manipulation of immune checkpoints to
inhibit T-cell activation. The immune landscape in OC is complex,

with various immune cells being activated or deactivated. Tumor-
associatedmacrophages (TAMs) often exhibit anM2-like phenotype
that is associated with immune suppression and promotion of tumor
growth. Regulatory T-cells (Tregs) can also be induced, further
dampening the immune response. Conversely, CD8+ T-cells and
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natural killer (NK) cells are typically activated in an attempt to
eliminate cancer cells, but their function may be impaired by the
immunosuppressive tumor microenvironment. This is consistent
with our analysis of immune cell infiltration in OC (Tian et al.,
2022). On the one hand, the majority of OC patients have a large
number of immune cells with anti-tumor effects in TIME, such as
CD8+ T cells, Th1 cells, and NK cells (Matulonis et al., 2019). On
the other hand, TIME of OC is rich in many immune cells with
tumor-promoting or immunosuppressive effects, particularly Th2
cells and Treg cells (Savage et al., 2020). These make it challenging
for immunotherapy to make breakthrough progress in OC.

Further analysis of the infiltration content of various immune
cells showed that the high immune group had lower levels of
M0 macrophages and higher levels of M1 macrophages than the
low immune group. In the early stage of tumor formation, M1
macrophages in TIME can initiate inflammation and anti-tumor
responses. However, M2 macrophages play an anti-inflammatory
role and promote tumor formation. Regardless of the phenotype,
macrophages are subject to complex TIME regulation (Xia et al.,
2020). At present, a lot of studies have shown that promoting
the polarization of tumor-associated macrophages (TAM) to M1
macrophages is conducive to improving the prognosis of colorectal
cancer (Han et al., 2022), breast cancer (Asanprakit et al., 2022),
and non-small cell lung cancer (Zhao B. et al., 2021). For instance,
TMP195 is a selective class IIa HDAC inhibitor. TMP195 increased
the proportion ofM1macrophages by promoting TAMpolarization.
The increase in M1 macrophages leads to an increase in the release
of inflammatory cytokines, thereby enhancing the effectiveness
of PD-1 blockade. In ovarian cancer, it has been shown that
overexpression of lncRNAXist regulates KLF6 through competition
with miR-101 expression mediates TAM polarization towards M1
macrophages, thereby inhibiting the proliferation and migration
ability of OC cells (Zhao Y. et al., 2021). On the contrary, an
increase in the proportion of M2 macrophages will enhance OC
chemotherapy resistance, leading to poor prognosis in OC patients
(An and Yang, 2020). Furthermore, in vitro experiments have
confirmed that paclitaxel reprogrammesM2 polarizedmacrophages
into M1-like phenotypes in a TLR4-dependent manner, promoting
the effectiveness of anti-tumor immunotherapy (Wanderley et al.,
2018). Additionally, KEGG analysis and GSEA analysis showed
that JAK/STAT signaling pathway was significantly enriched in OC
patients, which was proved to be the critical pathways regulating
M1Macrophage polarization.Therefore, the extensive infiltration of
M1 macrophages in TIME may be the key to reshaping OC’s TIME
and improving immunotherapy’s efficacy. And its related regulatory
pathways may be potential therapeutic targets.

In our study, the PRSM constructed based on 13 IRGs was
found to has excellent prognostic prediction ability. The attenuated
response to immunotherapy in the high-risk group of ovarian
cancer (OC) patients might be correlated with the low expression
of immune checkpoints and the decreased tumor mutation burden
(TMB) observed in these patients. Conversely, patients in the low-
risk group may exhibit a higher propensity to achieve clinical
benefits in immunotherapy. Our results provides a new perspective
for personalized treatment of OC patients in clinical practice.

Our study presents innovative findings but also has limitations
that require further investigation. The role of M1 macrophages in
the TIME of OC requires further in vitro experimental validation

and mechanistic elucidation to confirm their influence on disease
progression and therapeutic response. And this study did not
elucidate how the differential crosstalk between tumor and non-
tumor components within the tumor microenvironment might
regulate the initiation and progression of the disease. Relying
on TCGA and GEO databases may not fully represent the
clinical diversity, suggesting a need for broader data inclusion to
enhance the model’s applicability. A multicenter prospective cohort
study is necessary to thoroughly assess the prognostic prediction
characteristics and to validate the model’s performance across
diverse patient populations. The PRSM’s predictive ability and
practical utility in a clinical setting need further empirical validation
to ensure it can effectively guide personalized treatment strategies.
Despite these shortcomings, our research can still provide a new
insight into the diagnosis and treatment of ovarian cancer patients,
especially in the field of immunotherapy.

In summary, M1 macrophages and their related regulatory
pathways may be potential targets for reshaping TIME and
improving OC immunotherapy. Meanwhile, an effective 13-IRG
marker was constructed to predict the prognosis of OC, providing
new insights for immunological biomarkers.
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