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Introduction: Individuals with diabetes mellitus (DM) are at an increased risk
of Mycobacterium tuberculosis (Mtb) infection and progressing from latent
tuberculosis (TB) infection to active tuberculosis disease. TB in the DM
population is more likely to go undiagnosed due to smear-negative results.

Methods: Exhaled breath samples were collected and analyzed using high-
pressure photon ionization time-of-flight mass spectrometry. An eXtreme
Gradient Boosting (XGBoost) model was utilized for breathomics analysis and
TB detection.

Results: XGBoost model achieved a sensitivity of 88.5%, specificity of 100%,
accuracy of 90.2%, and an area under the curve (AUC) of 98.8%. The most
significant feature across the entire set was m106, which demonstrated a
sensitivity of 93%, specificity of 100%, and an AUC of 99.7%.

Discussion: The breathomics-based TB detection method utilizing m106
exhibited high sensitivity and specificity potentially beneficial for clinical TB
screening and diagnosis in individuals with diabetes.

KEYWORDS

breathomics, tuberculosis, diabetes mellitus, volatile organic compounds, XGBoost
model

Introduction

Diabetes mellitus (DM), a rapidly increasing chronic illness on a global scale, comes
with a multitude of complications and high mortality rates (Cole and Florez, 2020).
Tuberculosis (TB) is the world’s second leading cause of death from a single infectious
agent, after coronavirus disease (COVID-19) (WHO, 2022). Notably, 8 out of the top
10 countries burdened with high diabetes prevalence are also high-burden countries for
tuberculosis. The prevalence of tuberculosis among diabetes patients can range from
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0.38% to 14% (Al-Rifai et al., 2017). Poor control of blood
sugar and diabetes significantly heightens the risk of contracting
tuberculosis, with individuals having diabetes being up to four
times more likely to develop active tuberculosis, negatively
impacting tuberculosis treatment outcomes (Cáceres et al., 2022;
Vaishya et al., 2024). The increasing prevalence of diabetes is
anticipated to escalate the incidence of tuberculosis, posing a
substantial threat to global public health when the two conditions
coexist (Rehman et al., 2023; Zhao et al., 2023).

Presently, clinical diagnosis methods for TB revolve around
sputum samples, including sputum smear microscopy, sputum
culture, and GeneXpert testing, alongside non-sputum samples
like bronchoalveolar lavage fluid examination and percutaneous
tissue biopsy (Kontsevaya et al., 2023; Sodsri et al., 2023). Sputum
smear microscopy testing often encounters a high rate of false
negatives, while sputum culture, the primarymethod for diagnosing
pulmonary tuberculosis, is hindered by low sensitivity and lengthy
incubation periods (Broger et al., 2023). GeneXpert MTB/RIF
(Xpert) achieved good performances in TB detection and drug
resistance testing in the clinic and has been recommended by the
WHO. However, it still requires good infrastructure and sputum
samples (Chen et al., 2023). Moreover, bronchoalveolar lavage fluid
examination and percutaneous tissue biopsy, as non-sputum sample
detectionmethods, enhance the diagnostic accuracy but are intricate
and invasive (Luo et al., 2023). Diabetes combined with tuberculosis
(DM-TB) patients are more likely to experience delayed sputum
culture conversion, treatment failure, and higher rates of relapse,
which present a greater challenge to accurate diagnosis. TBdiagnosis
in individuals with diabetes is more prone to failure due to
smear-negative results. Given the existing constraints in diagnosing
tuberculosis among diabetes patients, there is a pressing need
for innovative diagnostic technology to bolster current diagnostic
capacities (Xiao et al., 2021).

Breath analysis, reflecting the body metabolism through
volatile organic compounds (VOCs), presents over 3,500 known
compounds, including acetone, isoprene, ethanol, ethane, and
formaldehyde, closely tied to various diseases (Badola et al., 2023;
Moura et al., 2023; Sun et al., 2023). VOCs in exhaled breath
serve as disease biomarkers, and the detection process of VOCs
is non-invasive and rapid, among other features. This method
holds promise for early disease detection, treatment monitoring,
and metabolic status evaluation, supported by numerous studies
showcasing its potential. For example, the concentration of acetone
in the breath of diabetes patients escalates with disease severity,
while isoprene levels exhibit variations in diabetes, end-stage
renal disease, lung cancer, and advanced liver fibrosis patients.
Researchers have successfully identified VOC characteristics of
lung cancer, colorectal cancer, breast cancer, and other diseases
via exhaled breath analysis. Exhaled breath analysis has shown
encouraging outcomes in diagnosing tuberculosis, respiratory
inflammation, and COVID-19 (Fu et al., 2023; Paez et al., 2023;
Savito et al., 2023; Hussain et al., 2024).

In this research, we utilized high-pressure photon ionization
time-of-flight mass spectrometry (HPPI-TOFMS) to analyze
the breath VOCs of diabetes and diabetes with tuberculosis
patients to establish a diagnostic model based on breathomics for
diabetes combined with tuberculosis, subsequently validating it on
clinical datasets.

Materials and methods

Study design and participants

This cross-sectional study was conducted at the Third People’s
Hospital of Shenzhen from August 2022 to September 2023. The
study was approved by the Ethics Committee of the Third People’s
Hospital of Shenzhen (number: 2022-012). By the end of the study
period, we recruited a total of 190 participants, i.e., 93 diabetes
patients and 97 diabetes combined with tuberculosis patients. The
participant enrollment flow is illustrated in Figure 1. All participants
provided informed consent.

Inclusion criteria for DM were as follows: participants aged
18–70 years; following the WHO 1999 diagnostic criteria for
diabetes and the 2011 WHO recommendation to use HbA1c for
diabetes diagnosis in countries and regions with the necessary
conditions, with a diagnostic threshold of HbA1c ≥ 6.5%.

Inclusion criteria for patients with DM-TB: patients with diabetes
aged 18–70 years; clinical and radiological evidence of pulmonary
tuberculosis, with positive microbiological evidence (positive sputum
culture forMycobacterium tuberculosis or positive GeneXpert result);
and anti-TB treatment not initiated or started less than 2 weeks.

The clinical diagnosis and collection of breath samples were
overseen by physicians, ensuring expertise in both areas. Separate
researchers,whowere blinded to clinical data andother test outcomes,
handled the detection of VOCs and machine learning modeling.
Furthermore, the physicians were intentionally kept unaware of
the breath test results to maintain objectivity. Demographic and
clinical information for all participants was meticulously collected
and organized, with a comprehensive summary provided in Table 1.

Exhaled breath collection

All breath samples were collected following a predefined protocol
and analyzed within a 24-h timeframe. The sampling setup consisted
of a single-use gas nozzle and a sampling bag crafted from
polyether–ether–ketone (PEEK) material. To ensure standardized
procedures and reduce the impact of daily dietary variations, strict
sampling requirements and protocols were implemented in this study.
Initially, for inpatient participants, sampling was conducted during a
subsequent visit, with individuals advised to prepare beforehand by
refraining from smoking, alcohol consumption, or eating within an
hour leadingup to the sampling session. Subsequently, theparticipants
were instructed to rinse theirmouthswith purifiedwater immediately
before sampling to mitigate the influence of dietary factors and
smoking.Lastly, all sampleswere collected inaconsistent environment
to minimize the impact of external variables. The participants were
instructed to takeadeepnasalbreathandfullyexhale into thesampling
bag, which had a volume exceeding 1.2 L.

Breath sample detection

The HPPI-TOFMS system utilized in this study comprises a
vacuum ultraviolet (VUV) lamp-based HPPI ion source and an
orthogonal acceleration time-of-flight (TOF) mass analyzer for the
detection and analysis of breath samples. VOCs with an ionization
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FIGURE 1
Flowchart of participant recruitment.

TABLE 1 Demographic characteristics of participants.

Training set Test set

DM + TB (N = 65) DM (N = 68) p-value DM + TB (N = 28) DM (N = 29) p-value

Age

 Median 54 (27–70) 48 (23–70) < 0.001 51 (25–70) 46 (21–70) < 0.001

 <35 (%) 2 (3.1) 13 (19.1) 0.68 1 (3.6) 6 (20.7) 0.47

 ≥35 (%) 63 (96.9) 58 (80.9) 0.019 27 (96.4) 23 (79.3) 0.023

Sex

 Male (%) 54 (83.1) 43 (63.2) 0.012 23 (82.2) 18 (62.0) 0.141

 Female (%) 11 (16.9) 25 (36.8) - 5 (17.8) 11 (38.0) -

potential lower than 10.6 eV were directly ionized in the ionization
region. The gas-phase breath samples were directly introduced into
the ionization region through a 250-μm inner diameter, 0.60-m-long
capillary from the sampling bag.The TOF ion spectra were recorded
using a time-to-digital converter, with mass spectra accumulated
over 60 s. Mass spectrum peaks with m/z < 350 were detected using
the HPPI-TOFMS system for each exhaled breath sample.

XGBoost model construction

We selected the eXtreme Gradient Boosting (XGBoost)
classification model with a gbtree kernel to distinguish DM
and DM-TB. XGBoost is a machine learning algorithm that

uses decision tree ensembles to build predictive models. It
calculates the importance of features to eliminate unnecessary
features and improve model performance and interpretability.
All participants were randomly divided into two groups:
70% for constructing the model and the remaining 30% for
blinded model testing. Hence, 93 DM patients and 97 DM-
TB patients were randomly chosen as the discovery dataset.
Through 100 iterations of 7:3 randomization, the discovery
dataset was split into a training subset and an internal
validation subset. Sensitivity, specificity, accuracy, positive
predictive value, and negative predictive value were calculated.
Receiver operating characteristic curves were generated, and
the area under the curve (AUC) was calculated to evaluate the
diagnostic model.
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FIGURE 2
VOC detection spectrum of the participants.

Performance evaluation and statistical
analysis

Orthogonal partial least-squares (OPLS)-DA analysis was
conducted to assess the overall differences between the two groups.
Then, differential VOCs were selected based on the variable
importance in projection (VIP) values in OPLS-DA analysis, fold
change, and p-value in univariate analysis. A volcano plot was
generated to visualize the differential VOCs. For parametric data,
Student’s t-test was used for pairwise comparisons between the two
groups. Analyses of data were conducted using GraphPad Prism
9 software (San Diego, CA). A p-value ≤ 0.05 was considered
statistically significant.

Result

HPPI-TOF-MS detection

For each participant, the detection range is from a molecular
weight of 0–345, avoiding the molecular weight of the ion source,
including the molecular weights where 95% of the concentration
values can be detected. Eventually, the molecular weight range
included is from 39 to 150, with a molecular weight interval
of 1. To reduce model complexity, the number of input features
was decreased while retaining more feature information; all
concentration values detected within the molecular weight interval
of 1 were stacked to maximize the preservation of the original
data features and the number of features. A total of 111 features
were obtained, and the calculated stable wave form average value
was calculated and considered the concentration of the VOCs. The
spectrum of detection is shown in Figure 2. Endogenous VOCs
that had stable and low-noise waveforms were used for the model
construction.

Evaluation of the XGBoost model and
feature importance

The XGBoost model attained a sensitivity of 100%, a specificity
of 100%, an accuracy of 1, and an AUC of 1.0 (95% confidence
interval [CI]: 1.0 to 1.0) in the training dataset. The test dataset
achieved a sensitivity of 88.5%, a specificity of 100%, an accuracy
of 0.902, and an AUC of 98.8% (95% CI: 0.960 to 1.0). These
indicators demonstrated the performance of the model. The
AUC reflected the robustness of the models. The evaluation of
the models is shown in Figures 3A, B. Various popular machine
learning (ML) models such as random forest (RF), support vector
machine (SVM), logistic regression (LR), XGB, and decision tree
(DT) were utilized as classifiers to differentiate between DM-TB
and DM (Table 2).

Feature importance refers to the contribution of each VOC
and radiology report to the prediction score. The SHapley
Additive exPlanations (SHAP) method was used to evaluate
the XGBoost model. It indicates the classification capability of
each feature. The most important features for the whole set
were m106 (represents m/z = 106.0), as shown in Figure 3C.
The data achieved a sensitivity of 93%, a specificity of 100%,
and an AUC of 99.7% (95% CI: 0.993 to 1.0) based on m106
only (Figure 3D).

VOC m106 was a potential biomarker for
detecting DM-TB

To further validate the significant feature of VOC m106
to differentiate DM-TB patients from DM patients, an OPLS-
DA model was used to avoid overfitting and evaluate the
statistical significance of the model. The OPLS-DA score
plot showed clear separation between the DM group and
the DM-TB group based on the concentration of all VOCs
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FIGURE 3
Evaluation of the XGBoost models and feature importance. (A,B) Sensitivity, specificity, and accuracy of the model in the training and test datasets. (C)
Feature importance of the model in the dataset by SHAP. (D) Receiver operating characteristic curve analysis based on VOC m106; m106 represents
m/z = 106.0.

TABLE 2 Performance of different ML models for TB detection in the test dataset.

Dataset Model Sensitivity Specificity PPV NPV Accuracy AUC

Test (n = 57)

MARS 0.885 0.967 0.958 0.906 0.929 0.981

RF 1.000 1.000 0.966 0.970 0.968 1.000

SVM 0.717 0.783 0.800 0.793 0.796 0.795

KNN 0.962 0.964 0.962 0.964 0.963 0.963

(Figure 4A). According to the heatmap and the volcano plot,
the content of m106 significantly decreases in the DM-TB
group (Figures 4B, C). A blinded test set including DM (n =
20) and DM-TB patients (n = 20) was established to validate
m106 concentration using HPPI-TOF-MS in these two groups.
The data show that the content of m106 indeed significantly
decreases in the DM-TB group and achieved distinguished
efficacy (Figures 4D, E).

Discussion

Screening for tuberculosis in diabetes patients can help
identify tuberculosis symptoms early, leading to prompt diagnosis
and treatment and reducing the transmission of tuberculosis in
healthcare facilities and communities (Zhou et al., 2023). However,
compared to isolated pulmonary TB, clinical symptoms of DM-TB
are typically atypical. Patients may present with milder symptoms
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FIGURE 4
VOC m106 was a potential biomarker for detecting DM-TB. (A) OPLS-DA model for the DM and DM-TB groups. (B) Volcanic map of differential VOCs
for the DM and DM-TB groups. (C) Clustering on differential VOCs for the DM and DM-TB groups. (D) VOC m106 concentration between the DM and
DM-TB groups in the blinded test set. (E) Receiver operating characteristic curve analysis based on VOC m106 in the blinded test set. The differences
among groups were compared using an unpaired t-test. ∗ ∗ ∗ ∗p ≤ 0.001.

but more pronounced radiological findings. Currently, there
are several limitations in sputum-based tuberculosis diagnostic
technologies such as inaccuracy, high costs, and complexity of
operation (Xu et al., 2023).

Research on breathomics mainly focused on respiratory system
diseases. With the emergence of various detection technologies,
the application scope has gradually expanded to include diabetes,
cancer, kidney disease, liver disease, cognitive impairments, and
other conditions (Ibrahim et al., 2021; Freddi and Sangaletti,
2022; Khoubnasabjafari et al., 2022). In our previous research, we
explored the diagnostic significance of utilizing HPPI-TOF-MS
for breathomics data analysis in the context of PTB within a
sizable study group; exhaled breath samples were collected from
518 PTB patients and 887 controls and tested. Machine learning
algorithms based on different VOCs were used for breathomics
analysis and PTB detection. The differences between the two
groups did not include the substance with m/z = 106. This
may indicate its specificity in detecting TB-DM from another
perspective (Fu et al., 2023). This method is non-invasive and does
not require sputum samples. From breath sampling to obtaining
test results, it takes only approximately 5 min, greatly improving
the diagnostic efficiency (Meng et al., 2021). Our findings indicate
that the breathomics approach we proposed shows promise as an
effective diagnostic tool for screening TB for clinical applications.

Diabetes and tuberculosis are both common clinical diseases
that can coexist; yet, there is currently no research on exhaled VOCs
related to diabetes combined with tuberculosis. In this study, we
explore the diagnostic value of breathomics data detection for DM-
TB. The results demonstrated that the XGBoost model performs
well in distinguishing DM-TB individuals and DM patients with
high sensitivity and specificity of 88.5% and 100%. During the
feature importance analysis, VOC m106 displayed the highest
feature value with a score of 3.018. However, the complexity of
breath gas composition and limitations toHPPI-TOFMS technology
make it difficult to confirm the specific substance for m/z = 106.
Furthermore, the substance with m/z = 106 may also have multiple
forms, which makes it difficult to identify using standard reference
materials. We can only use m/z = 106 as a biomarker to distinguish
betweenDM and TB-DM.This is the current research challenge and
limitation. Receiver operating characteristic curve analysis achieved
a sensitivity of 93%, a specificity of 100%, and an AUC of 99.7%
based on VOCm106. In the blinded test set, the data also show that
the content of VOCm106 indeed significantly decreases in the DM-
TB group and achieved well-distinguished efficacy. VOC m106 was
a potential biomarker for detecting DM-TB.

However, there are still some limitations to this study. HPPI-
TOF-MSprimarily quantitatively analyzesVOCs,withm/z and peak
intensity serving as surrogate indicators of concentration. Chemical
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composition analysis is still required for confirmation. Further
studies are needed to confirm specific breath biomarkers for DM-TB
and clarify their metabolic pathways.
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