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Navigating directed evolution
efficiently: optimizing selection
conditions and selection output
analysis

Paola Handal-Marquez, Hoai Nguyen and Vitor B. Pinheiro*

Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research,
KU Leuven, Leuven, Belgium

Directed evolution is a powerful tool that can bypass gaps in our understanding
of the sequence-function relationship of proteins and still isolate variants
with desired activities, properties, and substrate specificities. The rise of
directed evolution platforms for polymerase engineering has accelerated the
isolation of xenobiotic nucleic acid (XNA) synthetases and reverse transcriptases
capable of processing a wide array of unnatural XNAs which have numerous
therapeutic and biotechnological applications. Still, the current generation of
XNA polymerases functions with significantly lower efficiency than the natural
counterparts and retains a significant level of DNA polymerase activity which
limits their in vivo applications. Although directed evolution approaches are
continuously being developed and implemented to improve XNA polymerase
engineering, the field lacks an in-depth analysis of the effect of selection
parameters, library construction biases and sampling biases. Focusing on the
directed evolution pipeline for DNA and XNA polymerase engineering, this work
sets out a method for understanding the impact of selection conditions on
selection success and efficiency. We also explore the influence of selection
conditions on fidelity at the population and individual mutant level. Additionally,
we explore the sequencing coverage requirements in directed evolution
experiments, which differ from genome assembly and other -omics approaches.
This analysis allowed us to identify the sequencing coverage threshold for the
accurate and precise identification of significantly enriched mutants. Overall,
this study introduces a robust methodology for optimizing selection protocols,
which effectively streamlines selection processes by employing small libraries
and cost-effective NGS sequencing. It provides valuable insights into critical
considerations, thereby enhancing the overall effectiveness and efficiency
of directed evolution strategies applicable to enzymes other than the ones
considered here.
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1 Introduction

Protein evolution can be represented as an adaptive walk on a sequence-
functional landscape, a concept pioneered by Sewall Wright in 1932 and commonly
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referred to as the “fitness landscape.” Here, sequences (genotypes)
are mapped to a quantitative measure of fitness such as enzymatic
activity, thermostability or other physicochemical properties (Eigen,
1985; Kauffman and Levin, 1987; Kauffman, 1992) (phenotypes). In
this framework, closely related sequences are proximal in the fitness
map and sequences can occupy peaks (high fitness) or valleys (low
fitness) on the landscape (Kauffman and Levin, 1987; Kondrashov
andKondrashov, 2015;Macken and Perelson, 1989;Wittmund et al.,
2022). In natural evolution, the term “adaptive walk” describes the
evolutionary changes in the sequences on the fitness landscape taken
to reach the global (maximum) fitness peak within a particular
environment.

This natural process can be mimicked in vitro through directed
evolution, which encompasses two complementary approaches. On
one hand, a stepwise process of mutation-screening-learning that
reaches functional maximum through the sequential accumulation
of beneficial mutations. On the other hand, an approach where
strong genotype-phenotype linkages allow ultra-high-throughput
strategies that sample the genotype space more widely in searching
for the functional maximum (Tizei et al., 2016). The latter approach
proves especially valuable in situations where understanding of the
structure-sequence-function relationships of the target protein is
limited, yet it still facilitates the isolation of variants with desired
activities, properties, and substrate specificities.

Despite partial understanding of the factors governing
polymerase specificity and selectivity, the rise of directed evolution
in vitro selection platforms has enabled the engineering of
variants with novel and improved properties. Emulsion-based
selection platforms have successfully isolated variants with
improved thermostability (Ghadessy et al., 2001; Povilaitis et al.,
2016), variants capable of incorporating nucleotide analogues
(Larsen et al., 2016; Loakes et al., 2009; Pinheiro et al., 2012;
Ramsay et al., 2010), DNA polymerase variants capable of
reverse transcription (RTs) (Ellefson et al., 2016; Houlihan et al.,
2020; Pinheiro et al., 2012) and RNA polymerase variants
with altered promoter recognition (Abil et al., 2017). Selection
platforms based on phage display have also been implemented
to expand the substrate spectrum of thermophilic DNA
polymerases (Chen et al., 2016).

These selection platforms establish a strong phenotype-genotype
link through the emulsification of individual cells expressing
a unique variant, substrates, and products. This minimizes
cross-reactivity and cross-catalysis allowing the partitioning of
libraries based on enzyme function (substrate recognition, product
formation, and/or synthesis rate) of individual variants. Recovered
selection outputs can be subcloned for subsequent rounds of
selection, screened, or deep sequenced to recover the genotype
of enriched variants for further characterization.

As the engineering challenge increases towards more distant
substrates, the likelihood of failure increases but nothing can be
learned from those - it is not clear whether this is a limitation
of the methodology, selection conditions, library, or the target
substrate. Therefore, tools that can give us better insight into the
selection process itself are essential to better address selection
challenges, such as the recovery of false positives. False positives
are variants that are recovered due to random and non-specific
processes (background) or due to viable alternative but non-desired
phenotypes (parasites) (Tizei et al., 2016). For instance, a selection

parasite in CSR would be a variant able to use the low cellular
concentrations of dNTPs present in the emulsion instead of the
analogues provided.

Selection parameters such as cofactor concentration, play a
crucial role in shaping the activity of polymerases in directed
evolution, potentially influencing the cooperative interplay between
polymerase and exonuclease activities, or leading to increased
parasite recovery. However, determining the optimal selection
parameters for biasing evolution towards the desired variants on
a polymerase library of unknown function, as often the case
when engineering new-to-nature substrate specificities, is a non-
trivial task.

Here, we propose a pipeline that incorporates Design of
Experiments (DoE) for screening and benchmarking selection
parameters using a small protein library. This approach enables
the parameters and concentration ranges of selection criteria to
be optimized, thereby enhancing the efficacy of the selection
process and achieving optimal results with larger and more complex
libraries.

To validate this strategy, we used a small, focused
library targeting a B-family polymerase metal-coordinating
residue (D404) (Kropp et al., 2017) and neighboring residues
in Thermococcus kodakarensis DNA polymerase (KOD DNAP),
to explore the influence of CSR selection parameters on the
outputs of selection. Selection parameters (factors) investigated
included nucleotide concentration, nucleotide chemistry (2′-
deoxyribonucleoside-5′- triphosphates, dNTPs, and 2′-deoxy-2′-
α-fluoro nucleoside triphosphate, 2′F-rNTP), selection time, Mg2+

and/or Mn2+ concentration, as well as other commonly used PCR
additives. Selection outputs (responses) analyzed included recovery
yield, variant enrichment, and variant fidelity.

The result was the rapid optimization of selection parameters,
maximizing the efficiency of selection. In addition, further analysis
on the balance of synthesis efficiency and fidelity (a window into the
polymerase/exonuclease equilibrium) can be used to gain biological
insight into polymerase mechanisms. Our data also confirmed that
cost-effective, precise, and accurate identification of active variants
is possible even at low coverages.

Together, the method described here establishes a more
systematic pipeline for the engineering of XNApolymerases and that
can also be applied for other enzymes. It shows how much selection
impacts the library in a single round of selection andhow robustCSR
(and presumably other emulsion-based strategies) is as a directed
evolution platform.

2 Materials and methods

2.1 Library design and construction

The 2-point saturation mutagenesis library targeting the
catalytic D404 and its vicinal L403 residue was generated
using mutagenic primers KOD_Sat_403–404_F1 and KOD_Sat_
403–404_R1 (Supplementary Table S1). The 5-point saturation
mutagenesis library targeting L403, D404, F405, L408 and Y409
was generated using primers KOD_5ptSat_408–409_F1 and KOD_
5ptSat_403–405_R1. Both libraries were assembled through inverse
PCR (iPCR) on the pET23-KOD-Exo- (Supplementary Table S2)
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plasmid in Q5 High-Fidelity DNA Polymerase (NEB) reactions
of 28 cycles following the manufacturer’s standard protocol.
Amplified products were digested with DpnI (NEB) and purified
with the Monarch® PCR & DNA Cleanup Kit (NEB). An aliquot
(1 µg) of each library was blunt-end ligated in 100 µL reactions
containing 1x T4 DNA ligase buffer, T4 DNA ligase (4 units/μL,
final concentration) and T4 Polynucleotide Kinase (0.1 units/μL,
final concentration) overnight at room temperature. Ligations were
purified through phenol:chloroform:isoamyl alcohol extraction
and ethanol precipitation. 1 μg of each purified ligated library was
transformed in 10-beta competent Escherichia coli cells (NEB). The
cells were freshly prepared to maximise transformation efficiency.
Briefly, 50 mL of fresh LB media per library was inoculated
with an overnight culture of 10-beta cells and washed 3 times
with 30 mL of 1 mM HEPES buffer ((4-(2- hydroxyethyl)-1-
piperazineethanesulfonic acid) pH 7.0, Sigma-Aldrich) once it
reached OD600 of 0.4. Cells were pelleted and resuspended in
400 µL of HEPES buffer, mixed with the ligation mixtures and
transferred to chilled 2 mm electroporation cuvettes (BioRad). Cells
were transformed using a Gene Pulser II electoporator (BioRad)
at 12.5 kV/cm, 200 Ω and 25 µF. The cells were resuspended
in 5 mL of fresh LB media, incubated at 37°C for 1 h, pelleted
through centrifugation at 4,000 rpm (3,250 g), resuspended in
1 mL of LB and finally plated in 24.5 cm × 24.5 cm LB plates
with 100 μg/μL of Ampicillin. After overnight incubation at
37°C, libraries were scraped and resuspended in 5 mL of LB
supplemented with 50 μg/mL ampicillin and 25% filter-sterilized
glycerol. Resuspended cells were then split into 5 cryovial tubes
and stored at −80°C. Libraries were aliquoted in 10 mL (OD600 ∼
0.2) and re-grown for 2–3 h to extract plasmids using the GeneJET
Plasmid Miniprep Kit (Thermo Fisher Scientific) for sequencing
and for subcloning into the expression strain, BL21 (DE3) (NEB)
following the same transformation procedure described. The non-
functional KODDNAPvariant (KODΔ) lacking amino acid residues
A316 to R406 was generated using primers PH_Delta_KOD_
F1/R1 (Supplementary Table S1) through iPCR and cloned into
the final BL21 (DE3) (NEB) strain following the same procedure as
the library construction.

2.2 Design of experiments (DoE)
implementation

An initial design (D1) was performed to test the main effects of
several parameters including nucleotide, magnesium, manganese,
BSA, betaine, PEG1000 and formamide concentrations as well
as extension time and nucleotide type (2′-deoxyribonucleoside-
5′- triphosphates, dNTPs, and 2′-deoxy-2′-α-fluoroadenosine
triphosphate, 2′F-rATP) on selection efficiency andmutant behavior
(see Table 1). Chemical structures of nucleotide analogues can be
found in Supplementary Figure S1. A summary of the selection
parameters be found in Table 1. A linear model with D optimality
was used to design 12 unique selection parameter combinations
for testing using the skpr package (version 1.7.1) in RStudio
(version 4.3.1). All designs were run in blocks of 12 randomized
experiments. Design 2 (D2) explored only nucleotide type (2′F-
rNTPs), manganese, betaine and formamide concentrations (see
Table 1). A central composite design in JMP Pro 16 with 36 unique

selection parameter combinations that testedmain effects and 2-way
interactions was generated. We additionally included 12 negative
control selections with no nucleotides and random concentrations
of the other factors (scattered across the experimental design
blocks), which were used for noise correction during quantification.
Since all 12 negative controls from D2 showed negligible signal,
in subsequent designs, we included only one negative control per
block with no nucleotides nor other additives. Design 3 (D3) and
Design 4 (D4) explored nucleotide, magnesium,manganese, betaine
and PEG1000 concentrations (see Table 1). A custom design with
D optimality in JMP Pro 16 with 24 unique selection parameter
combinations that explored main effects, 2-factor interactions, and
quadratic effects was generated. Detailed experimental conditions
from each design can be found in Supplementary Material S3.

2.3 Compartmentalized self-replication
(CSR)

Libraries or KODΔ were aliquoted from glycerol stocks in
5 mL of LB supplemented with 100 μg/mL ampicillin (OD600
∼ 0.2), grown to OD600 0.7 and induced with 1 mM IPTG for
4 h at 30°C. A total of 2 × 108 cells were isolated and pelleted
through centrifugation at 4,000 rpm (3,250 g) for 5 min. For design
1 (D1), selections were spiked with 10% KODΔ, resulting in a
mixture were 90% of the total cell density corresponded to the
2-point library and the remaining 10% to KODΔ. D2, D3, and
D4, were not spiked with KODΔ to facilitate sample handling and
downstream quantification of the reactions, but negative controls
without nucleotides were included. Pellets were resuspended in
selectionmixtures (100 µL) containing the proposed concentrations
of each component by the models as well as 1x Thermopol
buffer, 0.005 mg/mL RNAse A and 1 µM of each selection primer
(CSR_Sel_SHORT_F3/R3, Supplementary Table S1). Following
recommendations for emulsion composition previously published
(Pinheiro et al., 2014), the resuspended cells were aliquoted in a
2 mL round bottomedmicrocentrifuge tube containing a 5-mmsteel
bead and were then overlaid with 500 µL of an oil mix composed of
73% TEGOSOFT DEC (Evonik), 20% mineral oil (Sigma-Aldrich)
and 7% ABIL WE09 (Evonik). The microcentrifuge tubes were
transferred to a TissueLyser II (Qiagen) for emulsification at 15 Hz
for 10 s followed by 17 Hz for 7 s. Emulsions were transferred to
PCR strips and into a thermocycler with the following parameters:
5 min at 94°C followed by 20 cycles of 1 min at 94°C, 1 min at 61°C
and 0–80 s at 68°C. Emulsions were collected in 2 mL tubes and
100 µL of 1X TBS buffer (10 mM Tris•Cl pH 7.4, 20 mM NaCl,
0.02% (v/v) Tween20) and 1 mL of water saturated 1-Hexanol
were added. Emulsions were vortexed and centrifuged at 13,000 g
for 10 min. The oil-hexanol phase was discarded and 700 µL
of water saturated 1-hexanol was added, samples vortexed and
centrifuged. The bottom aqueous phase was then recovered and
purified through phenol:chloroform:isoamyl alcohol extraction
and ethanol precipitation. Pellets were resuspended in 16 µL of
Monarch® DNA Elution Buffer and mixed with 1x Cutsmart
buffer, 1 µL DpnI, 1 µL ExoI (NEB) and incubated for 1 h at
37°C followed by heat inactivation of 20 min at 80°C. Selections
were then purified using the Monarch® PCR & DNA Cleanup Kit
(NEB), eluting in 10 µL of the Monarch® DNA Elution Buffer.
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TABLE 1 Summary of CSR factors and levels tested in each design. 1F-A: 2′F-rATP, dTTP, dGTP, dCTP; 2F-T: 2′F-rUTP, dATP, dGTP, dCTP; 3F-AT: 2′F-rATP,
2′F-rUTP, dGTP, dCTP; 4F-AC: 2′F-rATP, 2′F-rCTP, dTTP, dGTP; 5F-TGC: 2′F-rUTP, 2′F-rGTP, ′F-rCTP, dATP. Chemical structures of nucleotides and
analogues can be found in Supplementary Figure S1. Detailed description of each design can be found in Supplementary Material S3.

Selection parameter (Factor) Levels

D1 D2 D3 D4

BSA (mg/mL) 0–0.5 0.1 0.05 0.05

Betaine (M) 0–2 0–1 0–2 0–2

MgCl2 (mM) 0–2 0.5 0–2 0–2

MnCl2 (mM) 0–0.5 0–0.5 0–1 0–1

PEG 1000 (%) 0–10 0 0–5 0–5

Formamide (%) 0–2 0–1 1 1

NTP conc. (mM) 0–0.5 0.25 0–0.5 0–0.5

NTP chemistry dNTPs, F-A1 dNTPs, F-A1, F-T2, F-AT3, F-AC4 F-TGC5 F-A1

Time (sec) 0–80 80 80 80

Library 2-point 2-point 5-point 5-point

Selection generally yields products below the limit of detection
with common DNA quantification methods; thus, the products
undergo a recovery PCR using primers that hybridize to overhangs
introduced by selection primers, ensuring that only selection
products are amplified (Figure 1B). Taq DNAP is typically used for
recovery because of its ability to amplify even single-copy templates.
Recovery PCR products can then be further amplified in innest
PCR reactions to introduce overhangs for cloning or to prepare
amplicons for NGS using ultra high fidelity DNAPs such as KOD
Xtreme (EMD Millipore). Recovery PCR reactions were carried
out with 1 µL of the selection product in Taq DNA polymerase
(NEB) reactions with recovery primers (CSR_Rec_SHORT_F1/R1,
Supplementary Table S1) and 20–28 cycles. 1 μL of ExoI and 1 µL
rSAP (NEB) were added to the recovery products and incubated
for 15 min at 37°C followed by heat inactivation of 20 min at 80°C.
Recovery products were then purified with the Monarch® PCR &
DNA Cleanup Kit (NEB) and eluted in 10 µL of the Monarch®
DNA Elution Buffer. In-nest PCR reactions of 28 cycles were then
carried out using either the spCSR_Innest_MUT_F3/R3 primers
(Supplementary Table S1) or the NGS amplicon generation primers
(Supplementary Table S1) directly, and 2 µL of the purified recovery
products in 50 µL KOD XTREME (Sigma-Aldrich) following the
manufacturer’s recommended protocol. Reactions carried out with
the spCSR_Innest_MUT primers were subcloned into the pET23-
KOD-Exo- (Supplementary Table S2) through Type IIS cloning
and transformed into electrocompetent E. coli cells as previously
described. Libraries were grown in 10 mL LB for 2–3 h and plasmids
extracted using the GeneJET Plasmid Miniprep Kit (Thermo Fisher
Scientific). From each library, 10 ng were then amplified using the
NGS amplicon generation primers (Supplementary Table S1) as
follows: D1 2-pt library pre-selection was amplified with primers
WP2_D1_Seq_F1_R0 and WP2_D1_Seq_R1; D1 2-pt selections

2, 5, 7, 8, and 11 were amplified with forward primers WP2_
D1_Seq_F1_lib2, WP2_D1_Seq_F1_lib5, WP2_D1_Seq_F1_lib7,
WP2_D1_Seq_F1_lib8, and WP2_D1_Seq_F1_lib11 respectively
together with reverse primer WP2_D1_Seq_R1; D4 5-pt library
pre-selection as well as selections 4, 8, and 20, were amplified with
primers WP2_D4_Seq_F1 and WP2_D4_Seq_R1. NGS amplicon
reactions were carried out in 50 µL KODXTREME (Sigma-Aldrich)
following the manufacturer’s recommended protocol. All reactions
were then digested with 1 µL ExoI and purified using the Monarch
DNA Gel Extraction Kit (NEB), eluting in 10 µL of Monarch
® DNA Elution Buffer. D1 selections were pooled together for
sequencing.

2.4 Selection output quantification, factor
analysis with Boruta and Lasso regression

Recovery and innest PCR products from each selection were
quantified through densitometric measurement of band intensity
from agarose gel electrophoresis using ImageJ. Gels were pre-
processed using ImageJ’s Rolling Ball background subtraction
(20 pixels) method. PCR products were also quantified with by
absorbance at 260 nm using the SpectroStar Nano (BMG Labtech,
United Kingdom) and/or through dye-based Qubit fluorometric
(Thermo Fisher Scientific) using the 1X dsDNA HS Assay Kit
(Thermo Fisher Scientific). Background noise was removed by
dividing gel quantifications by the average yield of negative control
reactions. Spectrophotometric quantifications were noise-adjusted
by subtracting the average yield of negative control reactions.
Quantifications were normalized to the smallest yield (0%) and
largest yield (100%) identified in each quantification method. Input
data for factor analysis, containing the corresponding factors, levels
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FIGURE 1
Compartmentalized self-replication (CSR) optimization pipeline and recovery. (A) An expressed polymerase library is emulsified with different
substrates and reaction additives (factors). Cells are lysed within the emulsion and polymerase variants access the provided substrates to amplify their
own encoding genes. The proportion of highly active variant genes within the provided selection conditions (e.g., green) should increase whereas that
of variants with lower activity (e.g., orange) should decrease. Amplified products are recovered and quantified, cloned and/or sequenced. These
measurements (responses) are used to determine the efficiency of selection and determine the influence of factors on selection. (B) Pipeline for
recovering selection products, including recovery PCR using primers that hybridize to overhangs introduced by selection primers and subsequent
innest PCR reactions to introduce overhangs for cloning or to prepare amplicons for NGS. PCR parameters were empirically optimized to minimize the
number of cycles needed for visualization, while maintaining significant differences to background (control reactions). (C) Agarose gel electrophoresis
of selection products from DoE Design 1 (D1) post-recovery PCR and innest PCR with different cycling parameters. The x28 innest PCR reactions
amplified from recovery PCR of x20 cycles were selected for cloning and NGS as these parameters lead to maximum yields with minimum background.
Red arrows indicate the expected molecular weight of the PCR product (664 bp), and red rectangles denote correctly sized products (664 bp).
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and selection output quantification, can be found in S1_DOE_
Analysis.xlsx Supplementary Material S1. Both, Boruta and Lasso
regression analysis were carried out using the S2_DOE_Factor_
Analysis.R Supplementary Material S2 (RStudio version 4.3.1). In
short, for the Boruta implementation, the Boruta package (version
8.0.0) was used and the datasets were split into predictors (factors)
and responses (selection output quantifications). The Boruta
algorithm was executed with 100 runs (“maxRuns”). The Lasso
regression was carried out using the glmnet package (version 4.1.7)
on the predictors and responses. Cross-validation was implemented
to find the optimal value of the regularization parameter (λ) and
find the best performing model. The model was iterated 100 times
to obtain stable coefficient scores. The absolute and relative average
coefficient scores were used as a measure of feature importance.
Performancemetrics (R-squared,Mean Squared Error (MSE),Mean
Absolute Error (MAE), Bayesian Information Criterion (BIC),
and Akaike Information Criterion (AIC)) were also calculated.
Coefficient scores and performance metrics can be found in DOE_
Analysis.xlsx file (Supplementary Material S3).

2.4.1 Next-generation sequencing (NGS) data
pre-processing

NGS-based amplicon sequencing was carried out for all libraries
by Azenta Life Sciences. The 2-point saturation mutagenesis library
(theoretical library size of 400 protein variants excluding stop-codon
variants) was sequenced using the Illumina-based Amplicon-EZ
service, expecting 400 k reads pre-quality filtering. The 5 selections
from Design 1 were pooled together and sequenced using the
Illumina-based Amplicon-EZ service, expecting ∼80 k sequences
for each selection pre-quality filtering. The 5-point saturation
mutagenesis library (theoretical library size of 3.2 million protein
variants excluding stop-codon variants) and the 3 selections from
design 3 were independently sequenced using the Illumina-based
Custom Short-Read Amplicon service, expecting 4 million reads
for the input library and 2 million reads for each selection.
Sequencing data, which can be found in the NCBI SRA database
(BioProject: PRJNA1096033), was pre-processed using the Galaxy
public server (usegalaxy.org) (Afgan et al., 2022). The total number
of reads and the impact of the pre-processing workflow can
be found on Supplementary Tables S3, S4.

2.5 Calculation of enrichment and fidelity
scores

Sequencing reads were trimmed at the mutation site and
mutant frequencies before and after selection were calculated
using the DOE_NGS_Analysis.ipynb Julia notebook (Julia 1.7.2)
(Supplementary Material S4). Enrichment scores and the E-test for
comparing two Poisson means (Krishnamoorthy and Thomson,
2004) were calculated using the same script by implementing the
following equation:

Em = ln (
Frequencym,r1
Frequencym,r0

)

where m corresponds to unique mutants and r0 and r1 pre- and
post-selection respectively. Calculation of overall and mutant-
specific insertions, deletions and substitutions were performed

using the DOE_NGS_Analysis.ipynb Julia notebook (Julia 1.7.2)
(Supplementary Material S4). In short, the code aligns each
read, compares it to the reference sequence and tallies the
number of errors by type. The total error number is then
divided by the number of bases analyzed. For mutant-specific
fidelity, the same approach is implemented on mutant-specific
sequence subsets. All the calculated scores can be found in the
DOE_Analysis.xlsx file (Supplementary Material S4). Correlation
and statistical analysis were carried out in GraphPad Prism
(version 10.1.1).

2.6 Expression of polymerase variants for
PCR with 2′F-rATP

The mutants: m1 (L403F), m2 (L403V), m3 (D404S), m4
(L403V;D404S),m5 (Y409S), were constructed on the pET23-KOD-
Exo- (Supplementary Material S1 and Supplementary Table S2).
Mutants m1-m4 were generated using the forward mutagenic
primers: KOD_L403F_fw, KOD_L403V_fw, KOD_D404S_fw,
KOD_L403V-D404S_fw respectively, together with reverse
primer KOD_mut_rv1 (Supplementary Material S1 and
Supplementary Table S1). Mutant m5 was generated with forward
mutagenic primer KOD_Y409S_H5 and reverse primer KOD_
mut_rv3 (Supplementary Material S1 and Supplementary Table S1).
Mutants were generated through inverse PCR (iPCR) on the
pET23-KOD-Exo- (Supplementary Table S2) plasmid in Q5 High-
Fidelity DNA Polymerase (NEB) reactions of 30 cycles following
the manufacturer’s standard protocol. Amplified products were
treated with 0.4 U/μL DpnI for 1 h at 37°C prior to their purification
with the GeneJET PCR Purification Kit (Thermo Scientific).
Blunt-end ligation was carried out with 100 ng of DNA ligated
in 20 µL reactions with 40 U/μL T4 DNA ligase, 1 U/μL T4 PNK
in 1x T4 DNA ligase buffer for 2 h at room temperature. From
the ligation products, 5 µL were transformed in NEB® 5-alpha
competent E. coli cells following the recommended High Efficiency
Transformation Protocol (C2987, New England Biolabs) described
by the commercial strain provider. Successful cloningwas confirmed
through Sanger Sequencing. Mutants were re-transformed into
BL21 (DE3) (NEB) cells, and an isolated transformant was then
grown overnight and later subcultured in 50 mL of fresh LB
media. The cells were induced at OD600 = 0.8 for 4 h at 30°C.
Cells were pelleted, frozen at −20°C and resuspended in 4 mL/gr
of pellet of B-PER Reagent (Thermo Fisher Scientific) with 2 µL
of lysozyme (50 mg/mL, Sigma-Aldrich) and 2 µL of DNase I
(2500 U/mL, NEB) for each mL of B-PER reagent used, and
1 mM of Pefabloc (Sigma-Aldrich). Cells were incubated for
15 min at room temperature. Lysed cells were centrifuged at 15,000 g
for 5 min and soluble fraction was isolated and resuspended in
50 mM of Tris•HCl (pH 7.9), 50 mM of KCl, 0.1 mM of EDTA,
1 mM of DTT, and 0.5 mM of PMSF. Resuspended cells were
incubated at 80°C for 30 min, pelleted, and cleared supernatant
isolated. Purified protein was concentrated using an Amicon
Ultra-4 Centrifugal 50 kDa Filter Units (Sigma Aldrich NV).
Protein was quantified against a standard curve made with Bovine
Serum Albumin (BSA). PCR reactions with standardized protein
concentrations were carried out using the CSR_Sel_SHORT_F3/R3
(Supplementary Material S1 and Supplementary Table S1) primers
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and corresponding reaction additives (Supplementary Material S3).
The thermocycling parameters usedwere: 35 cycles of 1 min at 94°C,
1 min at 61°C and 80 s at 68°C.

2.7 Sequencing coverage analysis

The sequencing coverage analysis was carried out
using the DOE_NGS_Analysis.ipynb Julia notebook
(Julia 1.7.2) (Supplementary Material S4). Here we define
coverage as:

C =
numbero f sequencingreads

theoretical librarysize (proteinvariants)

In short, random sets of sequences within a range of sequencing
coverages (0.1, 0.2, 0.5, 0.8, 1, 2, 5, 10, 20, 50, 60) for N trials
(typically 10, with replacement) are extracted from a pre- (R0)
and post- (R1) selection datasets. For each pair of random sets
of sequences, the enrichment analysis described earlier is carried
out. Then, we calculated the probability of isolating a mutant (m)
displaying significant enrichment, at a particular coverage (C) by
dividing the number of times a particular mutant overN trials using
the following equation:

P(Em,C) =
∑N

i=1
Dm,Ci

N

whereDm,Ci
represents the binary outcome of significant enrichment

detection of mutant m at the specific coverage size Ci in the i-th
trial (0 for not detected, 1 for detected) and N the total number
of trials. Average precision calculations were carried out using the
following formula:

Precision = TP
(TP+ FP)

whereTP, represents the average probability of true positives and FP
the average probability of false positives.

3 Results

CSR consists of a feedback loop where polymerase libraries
are expressed, and functional variants replicate their own
encoding gene (self-replication) within discrete, spatially separated
compartments that also contain their respective substrates. The
compartmentalization, a water-in-oil emulsion, establishes a strong
phenotype-genotype link, which results in better adapted mutants
being able to better amplify (i.e., generate more copies of) their
own genes. Next-Generation Sequencing (NGS) of the libraries
pre-selection and post-selection can then be used to calculate the
enrichment in frequency of individual mutants and to identify
beneficial (sequences that are more frequent post-selection) and
detrimental (sequences that are less frequent post-selection)
mutations.

To test the effect of multiple CSR parameters on the output
of selection, we chose to implement a Design of Experiments
(DoE) pipeline. DoE provides a systematic and efficient approach
to experimental work by optimizing the allocation of resources and

minimizing the number of experimental runs needed (Gilman et al.,
2021). Continuous and categorial parameters suspected to influence
an outcome or “response” are known as “factors.” Each factor
has assigned values, or “levels,” based on a priori knowledge
(Farooq et al., 2016). Figure 1A summarizes CSR as well as potential
experimental factors including library size, nucleotide chemistry, the
concentration of cofactors and additives, and the reaction time.

There are several responses with varying levels of complexity
that can be analyzed to determine whether a selection round
was successful and/or efficient in isolating the desired phenotype.
Since in CSR, active variants replicate their own encoding genes,
selection efficiency can be estimated from the recovered product
yield. While this quantification will not provide precise information
of which variants were isolated, it can provide an overall view of
the effect of a factor on polymerase activity at the population level.
When recovered products are sequenced, mutant identification and
abundance quantification pre- and post-selection can be used to
determine enrichment scores which can be used as a proxy for
polymerase replication efficiency.Mutant quantification, in turn, can
be used to determine if selection was successful in partitioning the
library, but one must know in advance which mutants are active or
inactive. Alternatively, inactive variants (e.g., mutants harboring a
deletion in their active site) can be introduced during selection and
their enrichment scores used as a cutoff. Other responses that can be
explored include individual mutant behavior such as fidelity.

To optimize and analyze CSR through DoE efficiently, it is
crucial to confirm whether the expected genotypes of functional
variants have been enriched (and non-functional variants depleted).
By incorporating prior knowledge of the expected enriching and
depleting genotypes, we can streamline the assessment of selection
outcomes and refine selection parameters accordingly. Optimization
of selection parameters for small, targeted libraries can be directly
ported to larger libraries, maximising the likelihood of a successful
selection.

To achieve this streamlined search, we constructed two
polymerase libraries of different sizes, a 2-point saturation
mutagenesis library of 400 protein variants (excluding stop-codon
variants) and a 5-point saturation mutagenesis library of 3.2 × 106

protein variants (excluding stop-codon variants), targeting the
catalytic site and neighboring residues. Both libraries are within
the sampling capacities of CSR, where, typically, 108 to 109 PCR-
competent compartments per milliliter are generated. The 2-point
and 5-point saturationmutagenesis libraries were constructed on an
exonuclease deficient KOD DNAP (D141A/E143A) background
(KOD exo-). D404 (catalytic aspartate) and neighboring L403
were targeted in both libraries. F405, L408, and Y409 (involved in
substrate discrimination (Cozens et al., 2012)) were additionally
targeted in the 5-point library. Since D404 is the only optimal
solution for polymerase functionality at that residue, recovery of
this genotype functions as a benchmark for selection efficiency.

3.1 Uncovering key factors: initial
screening and main effects analysis

A typical DoE pipeline, when no prior knowledge of a process
is available, starts with a screening phase, where multiple factors
are explored assuming a simple linear model to determine the
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main effects, if any, of each factor on the response being analyzed
(Antony, 2023). The factors can then be narrowed down for further
characterization where more models can be tested (e.g., factor
interactions and quadratic effects). A final optimization stage can
then be implemented to identifymore complex interactions between
factors that can further optimize the process (Antony, 2023).

An initial DoE-guided compartmentalized self-replication
campaign, hereinafter referred to as D1, was designed following
a D-optimal linear model with nine factors (nucleotide,
magnesium, manganese, BSA, betaine, PEG1000 and formamide
concentrations, extension time and nucleotide chemistry) of 2
levels (Table 1). With this model, we created a design comprised
of 12 distinct selection experiments to screen the main effects
of these factors. The full list of parameter combinations can
be found in Supplementary Material S3. The 12 unique reaction
mixtures were prepared and used to resuspend a mixture of
2 × 108 induced cells containing 90% of the 2-point library
and 10% of a non-functional 91 amino acid deletion variant of
KOD DNAP, KODΔ. Recovery of KODΔ (391 bp) can easily be
identified from real selection products (664 bp) through agarose
gel electrophoresis following PCR. KODΔ recovery can highlight
unsuccessful selections or excessive amplification steps leading to a
high accumulation of background. The 12 selections were carried
out and selection products were extracted and purified.

The selection and purification steps typically result in low
product yields and often at concentrations that cannot be accurately
determined. Thus, an initial recovery PCR step is carried out using
primers that hybridize to regions introduced by overhangs in the
selection primers (Figure 1B) using TaqDNAP (NEB) as it is capable
of amplifying from single copies of template. Since Taq DNAP has
lower fidelity than other commercially available polymerases we
limit the cycle number to 20–28 cycles. An in-nest PCR, using
KOD Xtreme (an ultra-high fidelity DNAP), is then carried out on
purified recovery products to further amplify the signal and generate
amplicons for cloning or for NGSwith primers that hybridize within
the gene. As shown in Figure 1C, 28-cycle recovery PCRs result in
the recovery of the KODΔ mutant as well as other low molecular
weight products. Thus, we proceeded with the products from 20-
cycle recovery PCRs and further amplified them with in-nest PCRs.
Again, we tested different cycling parameters and input template
concentrations and found that 28 cycles and 2 µL of input template
enabled the successful recovery of 5/12 selections.

Densitometric measurement from agarose gel electrophoresis
and spectrophotometric measurements of recovered DNA,
corresponding to relative amplicon quantity, were obtained for each
recovery PCR (Rec) or in-nest PCR (Innest) reactions with either
20 or 28 cycles. The relative recovery of each reaction with either
gel electrophoresis (G) or spectrophotometer (S) quantification is
shown in Figure 2A. Selections 2, 5, 7, 8, and 11 yielded products
across all quantifications. Products from selections 7 and 8 were
not detected with the Rec20G or Innest20G quantification. The
parameters of these positive selections are shown in Figure 2B.

By analyzing and interpreting the variations in DNA recovery,
we evaluated the relationship between selection parameters and
selection efficiency (the efficiency of isolating highly active variants).
High recovery yields indicate the successful isolation of a highly
active population, while low recovery suggests poor recovery of
active variants. The pattern and quantification of recovery across

multiple selection conditions is what guides the identification of
important factors in selection.

Initially, we applied the Boruta algorithm to identify relevant
factors for DNA recovery post-selection. Boruta is a well-
established wrapper method in machine learning, based on random
forest classification to identify and remove irrelevant features
in datasets (Kursa et al., 2010). The analysis, conducted on all
available samples, aimed to determine the recovery stage with the
highest predictive power and the earliest identification of factors in
the selection pipeline.

No significant factors were identified for Rec20 and Innest20
samples and we observed significant variability on the Boruta
feature selection for these samples. This suggests that the DNA
quantification methods were not sensitive enough for the 20-cycle
samples. For Rec28, Innest28G and Innest28S, only nucleotide
concentration was identified as significant. While the additional
number of PCR cycles and purification steps can reduce the
precision, these provided a more robust and stable signal, enabling
better Boruta algorithm performance.

To cross-validate Boruta findings, we employed Lasso
regression modeling, which automatically selects relevant features
while preventing overfitting and handling multicollinearity
(Muthukrishnan and Rohini, 2016). Figure 2C displays the
relative coefficient scores of each feature’s importance with
Innest28G and Innest28S responses. Absolute average scores,
which provide an overall measure of feature importance, can
be found in Supplementary Table S5.

Using the Innest28G response, nucleotide concentration
positively impacted recovery, while formamide had a slight negative
effect. In contrast, Innest28S showed a better fit, identifying BSA,
betaine, magnesium, manganese, and formamide concentrations, as
well as 2F-ATP presence, as negatively influencing selection yield.
Nucleotide concentration and time positively affected recovery,
while PEG1000 was not a significant predictor.

Overall, nucleotide concentration was consistently identified as
the only significant factor that contributed positively to selection
recovery efficiency. Because of the nucleotides naturally present
in cells, CSR selections can yield amplification even in the
absence of exogenous dNTPs. Variants that can make use of the
reduced dNTP concentrations are seen as “parasites” in XNA
synthesis; they are difficult to track and to remove from the
population. By introducing a “zero-concentration” of nucleotides,
we hoped to identify parameters that benefit parasites. Instead, these
extreme conditions may have overshadowed the effects of other
factors - oversimplifying the underlying problem. Nonetheless,
D1 was still useful in reducing the range of factors for further
optimization.

3.2 In-depth factor analysis and interaction
exploration

In the next design, D2, we decided to fix nucleotide
concentration at 0.25 mM as in the original CSR protocol
and reduce the number of factors to manganese, betaine, and
formamide concentrations and nucleotide chemistry (dNTP
mixtures with 2′F-rATP, 2′F-rUTP, 2′F-rATP/2′F-r UTP or
2′F-rATP/2′F-rCTP substitutions). D2, was generated using

Frontiers in Molecular Biosciences 08 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1439259
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Handal-Marquez et al. 10.3389/fmolb.2024.1439259

FIGURE 2
Quantification and analysis of DoE-CSR D1 selection products. (A) Selection products from recovery (Rec) and innest (Innest) PCRs with x20 (e.g.,
Rec20) or x28 (e.g., Rec28) cycles, were quantified through densiometric measurement of band intensity from agarose gels (G, e.g., Rec28G) and
through spectrophotometric measurements by absorbance at 260 nm (S, e.g., Rec28S). The product yields were normalized to the smallest yield (0%)
and largest yield (100%) identified in each quantification method. (B) Selection parameters and their corresponding binary level (0 = 0 concentration or
seconds, 1 maximum concentration or seconds) of positive selections from D1 (Selections 2, 5, 7, 8, 11). The complete list of factors and levels for all
selections and actual concentrations/times can be found on Supplementary Material S1. (C) Feature importance analysis was carried out using Lasso
regression model to determine the impact of selection factors on Innest28G and Innest28S responses. The coefficient values of each factor derived
from 100 runs of the model were averaged and their value plotted as a measure of factor importance. The average R2 and RMSE values for the models
with Innest28G as the response were 0.58 ± 1.77 × 10−2 and 0.62 ± 1.31 × 10−2 respectively and the average R2 and RMSE values for the models with
Innest28S as the response were 0.97 ± 8.82 × 10−2 and 0.14 ± 1.05 × 10−1 respectively. Only R2 values are shown in the plot, a complete list of model
coefficients and metrics can be found in Supplementary Material S3.

response surface methodology (RSM) with a central composite
design (CCD) (Table 1).

The 36 distinct selection experiments of D2 were chosen to
explore main effects and 2-way interactions of the 4 factors.
Instead of a KODΔ spike, for D2 we opted to use a “negative
control selection” - selection reactions prepared without exogenous
nucleotide triphosphates. As with the initial analysis, 28-cycle
recovery PCR (Rec28G) and in-nest PCR (Innest28S) were used for
quantification (Figure 3A; Supplementary Table S5).

To explore potential interactions across factors and understand
their impact on the response variable, we employed a Lasso
regression analysis. When examining the main effects of each
feature with the Rec28G response variable, several factors
appeared to have a positive influence on selection yield
(Figure 3B; Supplementary Table S5). Notably, the concentration
of betaine and the inclusion of fully natural nucleotides showed a
significant positive effect on the yield, as well as, to a lesser extent,
the presence of 2′F- rATP in the nucleotide mix. Conversely, the
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FIGURE 3
Quantification and analysis of DoE-CSR D2 selection products. (A) Products from the x28 cycle recovery (Rec) and innest (Innest) PCR reactions from
the D2 selections were quantified through densiometric measurement of band intensity from agarose gels (G) and through spectrophotometric
measurements by absorbance at 260 nm (S). Background noise was removed by dividing gel quantifications by the average yield of 12 negative control
reactions. Spectrophotometric quantifications were noise-adjusted by subtracting the average yield of the 12 negative control reactions.
Quantifications were normalized to the smallest yield (0%) and largest yield (100%) identified in each quantification method. (B) Feature importance
analysis was carried out using a Lasso regression model to determine the impact of selection factors on each response (Innest28G or Innest28S). The
coefficient values of each factor derived from 100 runs of the model were averaged and their value plotted. Absolute averages, serving as an overall
measure of factor importance, can be found in Supplementary Table S5. The average R2 and RMSE values for the models with Innest28G as the
response were 0.87 ± 0.0054, 0.35 ± 0.0074 respectively and the average R2 and RMSE values for the models with Innest28S as the response were 0.82
± 0.0022, 0.41 ± 0.0026 respectively. (C) Lasso regression modelling with interaction terms was carried out to identify factor interactions. The
corresponding importance metrics of quadratic effects and interactions across features are displayed in a 2D plot for clarity. The average R2 and RMSE
values for the models with Innest28G as the response were 0.87 ± 5.41 × 10−3, 0.35 ± 7.36 × 10−3 respectively and the average R2 and RMSE values for
the models with Innest28S as the response were 0.82 ± 2.20 × 10−3, 0.41 ± 2.59 × 10−3 respectively. Only R2 values are shown in the plot, a complete
list of model coefficients and metrics be found in Supplementary Material S3.

presence of manganese and the combination of 2′F- rATP/2′F-
rCTP in the nucleotide mix had a notable negative impact on
the yield. Analysis of Innest28S reactions identified some of
the same correlations. However, model homoscedasticity and

normality of residuals were suboptimal, suggesting a poorer fit
than Rec28G dataset.

In our pursuit of further model refinement, we sought to
enhance the understanding of quadratic effects and interaction
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terms. Interestingly, for the Rec28G response variable, we
additionally identified the positive effects of the interaction between
betaine and natural substrate incorporation, betaine and 2′F-rUTP
incorporation, manganese and 2′F-rUTP incorporation and a
positive quadratic effect of betaine on recovery yield, indicating
a non-linear relationship (Figure 3C; Supplementary Table S6).
Additionally, we discovered a negative effect of formamide as
well as its interaction with 2′F-rATP and the combination of 2′F-
rATP/2′F-rUTP and a negative quadratic effect ofmanganese as well
as its interaction with 2′F-rATP, 2′F-rATP/2′F-rCTP and dNTPs
incorporation.

Formamide is a widely used organic PCR additive that lowers
melting temperature by binding to the major and minor DNA
grooves but has a narrow effective range and can lead to reduced
amplification in high concentrations (Chakrabarti and Schutt,
2001). In D2 we tested 0, 0.5% and 1% concentrations, which are
below the recommended concentrations (1.25%–10%) (Sarkar et al.,
1990). Nonetheless, formamide interactions with the emulsions
used are not well characterized. For instance, if formamide
weakens compartment integrity, it would compromise selection by
allowing exchange of genetic information between compartments.
Interestingly, manganese also appeared to have a negative effect on
selection. Family B polymerases can use Mg2+ and Mn2+ to catalyze
nucleotidyl transfer and presence of Mn2+ has been shown to
promote the incorporation of non-natural nucleotides (Chen et al.,
2016; Dunn and Chaput, 2016; Kropp et al., 2017; Pinheiro et al.,
2012). In family B-RB69 DNAP-catalyzed reactions, Mn2+ enhances
ground-state binding of both correct and incorrect dNTPs and
promotes misincorporation by increasing the rate of incorporation
(kpol or Vmax), reducing substrate selectivity and fidelity (Vashishtha
andKonigsberg, 2016).Thus, while it was expected that the presence
of manganese ions would result in increased recovery yield, these
results indicate that its inclusion, at the tested concentrations, may
hinder selection efficiency.

Overall, the analysis captures some of our expected results:
higher levels of substitution interfere with enrichment and that
betaine works as a PCR enhancer in the selection conditions.

3.3 Mutant enrichment and fidelity analysis
of D1 positive selections

The balance between exonuclease and polymerase active sites
as well as the translocation process are dynamic processes that can
be altered through directed evolution (Kuroita et al., 2005; Pinheiro,
2019). Therefore, we sought to explore the influence of selection
parameters on mutant enrichment and mutant fidelity, offering
insights into the overall polymerase incorporation rate and
exonuclease activity, respectively.

In parallel with the detailed factor analysis, we deep sequenced
successful selections from D1 for analysis. All 400 variants out
of the 400 possible 2-point mutant variants were identified in
the library pre-selection. Post-selection, 229 unique variants were
isolated across all selections (Figure 4A). Of these, 218 variants
show a significant change in abundance with only 19 variants
showing significant enrichment across all selections (FD, MD, ID,
HD, YD, QD, VD, CD, KD, SD, LD, AD, ED, ND, DD, TD,
WD, PD,GD) (Figure 4B). As expected, catalyticD404 is an essential

residue for enrichment and residue 403 can tolerate variation. LE
showed significant enrichment in 2 selections, albeit to a notably
lesser extent than the top 19mutantswith the catalyticD404 reversal.
Notably, the wild-type sequence L403 does not consistently provide
the highest enrichment in the different selection conditions, with
L403F mutant consistently outperforming the wild-type in all tested
selection conditions.

To investigate the impact of selection parameters on mutant
fidelity we took advantage of the principle of CSR, where each
mutant amplifies their corresponding gene. Thus, we calculated the
error rate of each mutant by quantifying the number of errors on
their source read. The resulting error rates were normalized to those
of the R0 to account for sequencing errors.

As shown in Figure 4C and Table 2, the error rate of Sel 2 was
the highest (1.15 × 10−2 errors/base), followed by selection 8 (9.41
× 10−3). These two selections contained the 2′F-rATP substrate in
the nucleotide mix. Those error rates are significantly higher than
for the other 3 selections. Both mutant-independent analysis using
a Kruskal-Wallis’ test and a mutant-specific Friedman test, confirm
that the error rates of selection 5 (7.37 × 10−3), 7 (8.44 × 10−3)
and 11 (7.69 × 10−3), which only contained natural substrates, are
significantly different (p< 0.01) to selections 2 and 8.

To rule out that sequencing depth was not affecting the fidelity
estimates, we looked at a Spearman correlation between the bases
sequenced and the different errors observed (Figure 4D). Insertions
and deletions, being rarer, show a clear correlation with sequencing
depth. Comparing the number of bases sequenced with substitution
rates or the total error rates shows only a weak correlation (0.2).

The frequency of sequences that contained insertions and
deletions (InDels) resulting in frameshifts that were excluded from
the general InDel counts were also analyzed. A negative correlation
between sequencing coverage and insertion incorporation (−0.40)
as well as a strong positive correlation between sequencing coverage
and deletion incorporation (0.90) were identified. Nonetheless,
InDels correspond to a small proportion of the errors identified,
and thus the overall error rate does not appear to be significantly
correlated with the sequencing coverage.

Following the library-level analysis, we also focused our analysis
on the error profile of the top 20most-enriched variants (Figure 4B).
Enriched variants are well-sampled; thus, the focused analysis
should minimize the impact of selection background and
NGS errors.

The patterns observed at the library level were recapitulated in
the focused analysis (Figure 5A). Therefore, all subsequent analysis
focused on the 20 enriched variants.

Next, we focused further analysis on substitution rates as this
was the most abundant error type. As shown in Figure 5B, mutants
in Sel 2 had the highest error rates which were significantly different
to those in Sel 5 and Sel 11. Figure 5C shows the substitution
rates of each mutant across each selection. All mutants appear to
follow a general fidelity trend, and almost identical patterns in Sel
5 and Sel 11.

Transition and transversion rates were determined (Figure 5D),
identifying that C→T/G→A transitions were the most common
(Figure 6), regardless of selection condition. This transition is the
most common in E. coli (Beletskii and Bhagwat, 1996), presumably
due to unrepaired cytosine deamination. A→G/T→C transitions
were also found to be abundant, consistent with a study showing
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FIGURE 4
Mutant enrichment and population fidelity analysis of successful D1 selections. (A) The log average count and standard deviation of each mutant across
all 5 positive D1 selections was plotted. Significantly enriched mutants are colored in red, neutral, or significantly depleted mutants are colored in blue,
and the corresponding log count of each mutant pre-selection (R0) is shown in grey. (B)) The enrichment scores of significantly enriched mutants
across selections. (C) Overall fidelity scores (insertion, deletion, and substitution rates) by polymerase variants in each selection normalized to the
fidelity pre-selection (R0), 7.49 × 10−4. The fold numbers correspond to the fidelity relative to the R0. (D) Correlation plot of bases sequenced and error
rates by type.
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TABLE 2 Quantification of deletion, insertion, and substitution rates (errors/bp) of KOD DNAP mutants across each selection from D1. Individual and
total error rates do not consider PCR and NGS error rates. Corrected error rates are calculated by subtracting the total error rate pre-selection (R0) from
the total error rates of each selection. Frameshift frequency (freq.) is calculated as the number of sequences that insertions or deletions that lead to
frameshifts divided by the total number of sequences analyzed.

Error rates (error/bp)

Total bases Deletion Insertion Substitution Total Corrected total Frameshift freq.

R0 9.21 × 107 2.20 × 10−4 9.69 × 10−6 5.60 × 10−4 7.89 × 10−4 0 (1x) 5.42 × 10−3

Sel 2 2.21 × 107 5.78 × 10−4 1.41 × 10−4 1.15 × 10−2 1.23 × 10−2 1.15 × 10−2 (16x) 7.33 × 10−3

Sel 5 1.22 × 107 3.66 × 10−4 8.62 × 10−5 7.71 × 10−3 8.16 × 10−3 7.37 × 10−3 (10x) 6.61 × 10−3

Sel 7 1.15 × 107 3.45 × 10−4 9.95 × 10−5 8.79 × 10−3 9.23 × 10−3 8.44 × 10−3 (12x) 7.07 × 10−3

Sel 8 1.74 × 107 3.70 × 10−4 7.80 × 10−5 9.76 × 10−3 1.02 × 10−2 9.41 × 10−3 (13x) 7.85 × 10−3

Sel 11 2.66 × 107 4.27 × 10−4 7.65 × 10−5 7.98 × 10−3 8.48 × 10−3 7.69 × 10−3 (11x) 7.78 × 10−3

a bias for these transitions in WT KOD DNAP (McInerney et al.,
2014). In Sel 2 and Sel 8, the preferential incorporation of dC with
template thymine, could have been exacerbated due to the poor
recognition of 2′F-rATP and reduced stabilization of the closed
conformation (Johnson, 2008; Pinheiro, 2019), resulting in the
increased T→C/A→G transitions.

3.4 Factor screening in a large
sequence-functional space

Since library composition can affect the optimum selection
conditions, we decided to investigate the influence of selection
parameters on a library targeting 5 residues in the active site. AsY409
was targeted for mutagenesis in this 5-point library and given its
“steric gate” role (Gardner and Jack, 1999; Pinheiro et al., 2012),we
decided to pursue a more stringent selection: substituting three of
the natural triphosphates for their 2′F-analogues (i.e., 2′F-rUTP,
2′F-rGTP, 2′F-rCTP and dATP).

We chose not to rely on previously optimized conditions,
as optimized DNA synthesis does not necessarily translate to
optimal XNA synthesis. Therefore, we decided to re-explore the
selection space, incorporating factors that were significant in
previous designs. Specifically, we sought to assess themain effects, 2-
factor interactions and quadratic effects of nucleotide, magnesium,
manganese, betaine and PEG1000 in Design 3 (D3).

Despite PCR cycling optimization, selection conditions were too
stringent and recovery was not detectable above background. Thus,
we proceeded with Design 4 (D4) which was identical to D3 but
included only one modified nucleotide (2′F-ATP) in the nucleotide
mix, which had already been successfully incorporated by mutants
from the 2-point mutant library in D1 and D2. 24 selections in 2
blocks of 12 reactionswere carried out (Supplementary Material S3).
Products from recovery PCR reactions of 25 cycles did not yield
quantifiable amplification products but the subsequent in-nest PCR
amplification of 30 cycles (Innest30Q and Innest30G) resulted in
strong positive signals in 5/24 selections (Figure 7A).

We employed a Lasso regression analysis looking at the main
effects of the 5 factors. With the Innest30G response variable, we

observed a skew (S-shape) in the distribution of residuals and thus
a departure from the optimal normal distribution, indicating that
the Lasso model may not entirely accommodate potential non-
linear relationships or higher-order interactions present in the data.
We did not identify any relevant interactions between the factors
or substantial quadratic effects in relation to any of the response
variables that could improve the model. Similarly, no important
features were identified with the Innest30Q response variable with
a simple or more complex model. The weak relationship between
selection parameters and recovery could be due to several reasons.
Firstly, the larger library size may have introduced additional
complexity and variability during selection, making it challenging
for the feature selection analysis to discern meaningful patterns.
Additionally, while selection conditions resembled previous designs,
they may have failed to sufficiently enrich active mutants in the
larger library, potentially obscuring true recovery, and enrichment
patterns. Finally, given the data’s complexity, a more sophisticated
model might be necessary to capture underlying relationships and
enhance predictive accuracy.

3.4.1 Mutant enrichment and fidelity analysis of
D4 positive selections

We opted to sequence the successful 5-point mutant library
selections (Sel 4, Sel 8, and Sel 20). Sequence coverage for both
R0 (0.5x coverage) and R1 (0.2x coverage assuming no selection)
libraries was low. Nevertheless, many of the enriched variants were
frequently observed (>1,000 reads) in R1. Selection 20 (0.25 mM
NTPmix (2′F-rATP, dTTP, dGTP, dCTP), 0.5 mM MgCl2, 0.25 mM
MnCl2, no betaine and no PEG 1000) showed the highest post-
selection diversity and the weakest enrichment, indicating that
selection stringency was low.

Due to the low sequencing coverage, analysis of mutant
enrichment focused on significantly enriched mutants with >1,000
reads. As shown in Figure 7E and Table 3, there was limited mutant
overlap across selections, with the wild-type significantly enriched
across all 3 selections. We expect this limited overlap is the result
of the stringent frequency filter used in the analysis but PCR
biases introduced during amplification cannot be ruled out.Mutants
found in the 2-point residue library are found in both selections
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FIGURE 5
Fidelity analysis of significantly enriched mutants from successful D1 selections. (A) Correlation plot of bases sequenced error rates by type and
recovery yield (Innest28S). (B) Overall substitution error rates of significantly enriched mutants across selections. Significance comparisons (p < 0.01)
were determined by the Kruskal-Wallis test followed by Dunn’s multiple comparison test with Bonferroni correction. (C) Mutant-specific substitution
error rates across selections as well as pre-selection (R0). (D) The overall transition and transversion error rates of significantly enriched mutants across
significantly enriched mutants across selections and significance comparisons determined by the Friedman test followed by the multiple comparisons
Dunn’s test with Bonferroni correction.
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FIGURE 6
Mutant-specific fidelity analysis of top enriched mutants from successful D1 selections. Frequency of transition and transversion incorporation of
selection 2 (Sel 2) and selection 5 (Sel 5) mutants.

4 and 8 (L403F, L403T) with selection 4 conditions also isolating
several frequent double mutants: L403P + R406S, L403V + D404S,
and L403A + D404A. Selection 20 identified Y409S as well as a
large repertoire of other significantly enriched mutants, but due
to their lower observation frequency, they were not considered for
further analysis.

Looking at the fidelity of the overall library (Figure 7F; Table 4),
Sel 20 showed the lowest rates of misincorporation (Figure 8A).
Given Sel 20 least stringent selection conditions, the lower errormay
simply reflect the lack of amplification during selection.

Focusing on the fidelity of the most enriched variants (Table 3),
we see mutant-specific differences (Figure 8B), with WT, Y409S and
L403H showingmisincorporation rates above R0 but in line with the
previously determined in D1 (Figure 5C).

It is not possible to separate the impact of the low sequence
coverage, selection conditions and library composition. Repeated
isolation of variants in different conditions suggest that if higher
sequencing coverage could be obtained, a pattern similar to the
earlier experiments would be observed. Nonetheless, for this library,
selection conditions from selection 8 were closest to optimum:
there was clear enrichment (unlike the less stringent selection 20)
and enriched sequences did not include sequences expected to be
inactive (as in selection 4).

3.4.2 Incorporation 2′F-rATP by KOD DNAP
mutants in PCR

We selected a total of 5 variants for further characterization from
the significantly enriched variants identified in the D4 selections
(Figures 9A, B). M1 (L403F) was significantly enriched in both Sel 4
and Sel8 conditions, and one of the variants that enriched better than

wild-type in D1 conditions. M4 (L403V and D404S) was identified
from Sel4 but also tested as individual mutations: m2 (L403V) and
m3 (D404S). Finally, m5 (Y409S), enriched in Sel 20, was selected
since it is an already characterized residue known to be involved in
substrate discrimination (Cozens et al., 2012).

We opted for testing their activity in PCR with the amplification
of the same 664bp-fragment generated during selection and using
some of the parameters from successful selection conditions
(Figure 9C). As expected, mutations to D404 (as seen in m3
and m4) abolish DNA synthesis activity and account for the
lack of DNA amplification. PCR amplification biases coupled
to insufficient sequencing depth are sufficient to explain how
m4 could be identified in Sel 4. All other variants successfully
amplified DNA in conditions previously used for HNA synthetase
selection, V1 (Handal-Marquez et al., 2022), and used in D1
selections (V2). However, onlym5 (andWT to amuch lower extent)
could sustain PCR in the presence of 2′F-rATP.

V3, V4 and V5 reaction conditions correspond to those in
selections 4, 8, and 20 from Design 4, respectively. No mutant
efficiently incorporates 2′F-rATP, aside from m5 in V4 (Figure 9D).
M5 performed best in V4 (Sel 8), even though it was originally
isolated in Sel 20 conditions (V5). Like with D404S, biases and
under-sampling can account for the misclassification. In addition,
it is possible that the PCR conditions using purified enzymes,
differ significantly from the reaction conditions within the emulsion
during selection. Comparing all the conditions tested, it is clear that
betaine is an essential enhancer for the synthesis of DNA containing
2′F-rATP, recapitulating the results obtained in D2. These results
confirm the importance of betaine as a selection and PCR enhancer,
as previously observed. However, they also highlight that while these
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FIGURE 7
Quantification and analysis of DoE-CSR D4 selection products. (A) Products from the x30 innest PCR reactions from the D4 selections were quantified
through densiometric measurement of band intensity from agarose gels (Innest30G) and through dye-based Qubit fluorometric quantification
(Innest30Q). Product yields were normalized to the smallest yield (0%) and largest yield (100%). Top 400 mutant log counts from D4 positive selection
4 (B), selection 8 (C) and selection 20 (D) are shown. Significantly enriched mutants (red), neutral, or significantly depleted mutants (blue), and the
corresponding log count of each mutant pre-selection (grey) are highlighted. Mutants with lower counts post-selection may appear enriched if their
frequency relative to the total counts is higher. (E) The enrichment scores of significantly enriched mutants across selections with >1,000 counts
post-selection. (F) Overall fidelity scores (insertion, deletion, and substitution rates) by polymerase variants in each selection normalized to the fidelity
pre-selection (R0). The fold numbers correspond to the fidelity relative to the R0.
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TABLE 3 Mutants and their corresponding counts and enrichment scores (Enrich.) identified to have been significantly enriched in at least one of the
positive selections from D4. The counts of each mutant pre-selection (R0) are also shown. Highlighted in tan correspond to mutants that were not
identified as significantly enriched in the corresponding selection.

R0 Sel 4 Sel 8 Sel 20

Mutations Counts Counts Enrich Counts Enrich Counts Enrich

L-403-P; R-406-S 1 102,137 12.42 43 4.50 10 3.21

L-403-A; D-404-K 1 78,143 12.15 7 2.69 3 2.00

L-403-A; D-404-A 1 51,782 11.74 25 3.96 2 1.60

L-403-V; D-404-S 2 85,927 11.55 11 2.44 7 2.16

L-403-H 2 53,781 11.09 18 2.94 7 2.16

R-406-K 1 25,461 11.03 8 2.82 75 5.22

L-403-F 16 73,651 9.32 241,875 10.36 25 1.35

L-403-T 25 44,223 8.36 414,115 10.45 12 0.17

WT 2,584 51,615 3.88 2,391 0.66 510,249 6.19

Y-409-S 14 95 2.80 8 0.18 1,213 5.37

TABLE 4 Quantification of deletion, insertion, and substitution rates (errors/bp) of KOD DNAP mutants across each selection from D4. Individual and
total error rates do not consider PCR and NGS error rates. Corrected error rates are calculated by subtracting the total error rate pre-selection (R0) from
the total error rates of each selection. Frameshift frequency (freq.) is calculated as the number of sequences that insertions or deletions that lead to
frameshifts divided by the total number of sequences analyzed.

Error rates (error/bp)

Total bases Deletion Insertion Substitution Total Corrected total Frameshift freq.

R0 5.88 × 108 1.07 × 10−4 1.86 × 10−5 4.17 × 10−4 5.42 × 10−4 0 (1x) 1.83 × 10−1

Sel4 2.42 × 108 1.25 × 10−5 8.04 × 10−7 3.32 × 10−3 3.34 × 10−3 2.79 × 10−3 (6x) 6.84 × 10−4

Sel8 2.81 × 108 1.13 × 10−5 1.25 × 10−7 2.71 × 10−3 2.72 × 10−3 2.18 × 10−3 (5x) 3.78 × 10−4

Sel20 2.38 × 108 1.23 × 10−4 1.94E x10−6 1.90 × 10−3 2.02 × 10−3 1.48 × 10−3 (4x) 2.70 × 10−2

conditions may effectively isolate functional variants, fine-tuning
reaction parameters for optimal performance by purified variants
remains essential.

Lastly, we tested if m5 could incorporate other 2′F-modified
substrates in the V4 reaction conditions. As shown in Figure 9E,
m5 cannot carry out PCR with 2′F-rUTP, 2′F-rGTP or 2′F-rCTP
substitutions or in combination with 2′F-rATP. It is possible that m5
is only capable of 2′F-rATP incorporation and selection with the
other analogues may identify alternative mutations that are better
suited for their incorporation.

3.5 Sequencing coverage analysis in
directed evolution experiments

Sequencing requirements are well established for genomic and
transcriptomic analysis (Petrackova et al., 2019; Sims et al., 2014)
but remain unexplored in directed evolution. Here we define

sequencing coverage as the number of sequencing reads (at the
nucleotide level) divided by the theoretical library size (at the amino
acid level), as traditional definitions are not applicable.

For small libraries like a 2-point saturation mutagenesis library
(that has a theoretical size of 400 possible variants), achieving 60x
coverage is readily feasible. However, as the number of targeted
sites increases, the library size grows significantly, making deep
sequencing considerably more expensive. For instance, achieving
60x coverage with the 5-point saturation mutagenesis library would
require at least 192 million reads. Even 10x coverage becomes
prohibitively expensive when looking to investigate multiple
libraries and selection conditions.

Therefore, we decided to use data obtained from sequencing
the 2-point residue library (selection 7 from D1), that reached
coverages of 60x, to investigate the impact of coverage on the
identification of the expected top 20 enriched variants. Detection
of enriching sequences is expected to depend on their frequency
post-selection and on the depth of sampling of the population.
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FIGURE 8
Fidelity analysis of significantly enriched mutants from successful D4 selections. (A) The overall substitution error rates of significantly enriched mutants
across selections and significance comparisons determined by the Friedman test followed by the multiple comparisons Dunn’s test with Bonferroni
correction. (B) Mutant-specific substitution error rates across selections as well as pre-selection (R0).

To test that assumption and to determine which other factors are
relevant for the detection of enrichment, we investigated the impact
of sampling from the 60x-coverage data (seen as the “truth” set)
on the identification of enriched sequences. Sampling from the 60x
coverage data allows low coverage to be simulated and we looked
at the probability of an enriched sequence being a “true” enriched
variant, as well as the probability that enriched variants are detected.
For each condition, ten trials were used to obtain a measure of
reproducibility in the identification.

First, we tested the rate of mutant detection against mutant
abundance. As shown in Figure 10A (left), enriched sequences with
abundance above 2% post-selection could be accurately identified in
80% of the simulations. Some variation on the detection frequency
arises due to low abundance pre-selection, preventing its correct
classification despite high abundance post-selection and significant
enrichment. Figure 10A (right), shows the rate of identification
against mutant enrichment. As expected, high enrichment (>3)
scores enable the detection of significantly enrichedmutants at lower
sequencing coverages. Unexpectedly, high sequencing coverages can
also lead to the recovery of false positives, such as mutant FE
(labelled in red).

Overall, as shown in Figure 10B, the probability of significant
enrichment only differs between themaximum coverage tested, 60x,
and 0.1x, 0.2x, 0.5x, 0.8x, 1x, and 2x, suggesting that coverages
over 2x do not significantly change the probability of recovering
significantly enriched mutants.

As it would be expected, high balanced coverage identifies all
enriching mutants correctly (high precision) and robustly (high
accuracy). As coverage is reduced, the probability of identifying
all enriching mutants drops significantly when coverage falls below

5x (Figure 10C). Nonetheless, the enriched mutants detected in the
sparser data remain accurate - i.e., enriching variants picked out in
analysis are true but the list may be incomplete. In the 5-residue
library where coverage was low (<0.5%) but balanced (R0 coverage
≈ R1 coverage), the Y409Smutant is one such example. It was picked
up on only one of the selections but upon further testing (Figure 9)
it was confirmed to have enhanced activity.

When coverage is unbalanced, particularly when R0 coverage is
high and R1 coverage is low, the likelihood of identifying enriched
variants drops and the recovery of false positives increases. These
results further support that while selection can narrow down the list
of putative functionally relevant variants, they need to be ultimately
biochemically tested.

4 Discussion and conclusion

Protein evolution can be visualized as an adaptive walk on
a fitness landscape, where fitness values are distributed over the
sequence space (genotypes) (Wright, 1932). In this framework,
sequences can occupy peaks (high fitness) or valleys (low fitness)
on the landscape. Valley crossing can be the rate-limiting step for
protein engineering and may require the screening and sampling of
a large proportion of the vast sequence space.

In that context, there are different strategies on how to navigate
the sequence space, always involving cycles of diversification and
partition. Frances Arnold and Manfred Reetz have pioneered
iterative strategies focused on functionally screening small panels
(102∼104) of enzyme variants (Chen and Arnold, 1991; Reetz et al.,
2006). In their approach, themutations introduced are known for all
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FIGURE 9
Incorporation of 2′F-rATP in PCR by enriched KOD DNAP variants. (A) Venn diagram showing mutations isolated in successful D4 and D1 selections.
Mutants labelled in red were selected for further characterization. (B) Mutants selected and their corresponding ID in experiments (C–F). (C) PCR
conditions mimicking selection parameters from D1 Sel 7 and D4 Sel 4, 8 and 20, labelled from V2 – V5. V1 corresponds to selection parameters that
enabled the isolation of a mesophilic HNA synthetase (Handal-Marquez et al., 2022). (D) PCR products from each mutant in V1 and V2 reaction
conditions with dNTPs or 2′F-rATP substitution (rA∗ ). Red highlights indicate reactions with 2′F-rATP, red arrows indicate the expected molecular
weight of the PCR product (664 bp), and red rectangles denote correctly sized products (664 bp). (E) PCR products from reactions with V3, V4 and V5
conditions. (F) PCR products from reactions with V4 conditions and dNTPs, or substitutions with 2′-deoxy-2′-α-fluoro nucleoside triphosphates (rN∗ ).
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FIGURE 10
Sequencing coverage analysis in directed evolution. (A) Ten subsets of sequencing reads at varying coverages pre- (R0) and post- (R1) selection from
D1 Sel 7 were extracted, and the probability of isolating significantly enriched mutants across these subsets was calculated and plotted. Mutants are
color-coded by frequency (left) and enrichment scores (right). (B) Average probability of identifying expected significantly enriched mutants across
trials, with significance comparisons conducted against 60x coverage using Friedman test followed by Dunn’s test with Bonferroni correction. Only
significant differences were found between 60x and 2x or lower coverages. (C) 2D bubble plot illustrating the impact of sequencing coverages pre-
(R0) and post- (R1) selection on true positive (TP) probability and precision, where precision is calculated as TP divided by the sum of TP and false
positives (FP). Low probability scores indicate reduced likelihood of identifying all significantly enriched mutants, while precision measures the
accuracy of positive predictions.
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enzymes being tested and the functional assay carried out to identify
the best performing variant, which is used as the starting point for
the subsequent cycle–a “steady walk” approach.

The other common strategy is the approach pioneered by Greg
Winter (Clackson et al., 1991) with phage display and others in the
aptamer field (Ellington and Szostak, 1990; Tuerk and Gold, 1990)
who focus on generating large libraries (107∼1014 variants) followed
by selection, or functional assays that link phenotype to genotype,
to isolate populations enriched in the desired activity.The genotype-
phenotype linkage is crucial in this strategy as the identities of the
individual variants are not known during selection. Multiple rounds
of selection are carried out to isolate the best performers–a “see what
sticks” approach.

Increases in screening throughput and deep sequencing bring
those approaches closer to one another, and the work we present
here is an example of a hybrid approach: selection coupled to
NGS to identify best performing variants. NGS sampling limits
the maximum library size that can be explored, but the identity of
individual variants need not be known before the experiment.

Replicative DNA-dependent DNA polymerases are complex,
multifunctional enzymes displaying polymerase and exonuclease
activities with complex dynamics (Kropp et al., 2017; Pinheiro,
2019). These functions may vary depending on the identity of
their substrates and products and thus variant activity is context-
dependent, adding yet another layer of complexity to directed
evolution experiments. Additionally, selection is a multi-layered,
complex process and while recovery yield can inform if a selection
was successful, it does not inform on how well it performed.

We demonstrate here that a DoE-guided approach towards
selection optimization is possible and can be used to optimize
selection conditions. This approach facilitates selection parameter
analysis without requiring empirical characterization of all enriched
variants. If no mutants are known to display the target function to
any degree, an alternative approach that introduces a negative and
tractable control is available. For this, the library can be mixed with
10% of non-functional variants (e.g., catalytic site deletion mutants)
that can be easily detectable. This method enables the comparison
of observed enrichment against this negative control, facilitating the
monitoring of non-functional variant depletion during selection.
The reduction in non-functional variants serves as a reliable
indicator of selection success, validating the efficacy of the directed
evolution process. Methods such as digital PCR (dPCR) could be
incorporated into the pipeline to facilitate the quantification of
selection products directly from selection, without the additional
amplification steps thatmay introduce PCRbiases, and identify, with
greater accuracy, differences across experimental runs.

The implementation of the DoE-guided polymerase directed
evolution allowed us to determine important selection conditions
for optimal recovery as well as their impact on polymerase fidelity.
For instance, betaine was detected as an important factor for
DNA replication as well as 2′F-rATP and 2′F-rUTP incorporation
whereas formamide and manganese appeared to have a negative
effect on selection recovery. The variant Y409S, isolated from D4,
showed efficient incorporation of 2′F-rATP in PCR in the presence
of betaine and manganese. This indicates that the concentrations
of betaine and manganese can still be further optimized in
subsequent designs. Additionally, significant recovery was observed
only with 2′F-rATP and dNTP nucleotide mixes, suggesting that

isolating variants capable of incorporating the other 2′F-modified
analogues may require further optimization of the selection factor
concentrations explored in D2 or the inclusion of additional
factors such as those included in D1 and D4. Additionally, it
may be necessary to introduce greater diversity into the library.
For example, two mutations in a closely related KOD DNA
polymerase homologue (Y409G/E664K in Tgo from Thermococcus
gorgonarius) are necessary for fully 2′-fluoro (2′-F) substituted
RNA synthesis (Cozens et al., 2012).These insights would have been
considerably more challenging to determine without prior selection
benchmarking, highlighting the strengths of our proposed pipeline.

Althoughwepresent the optimization of a single round, it is clear
that the process can be repeated for any number of rounds, and it is
therefore a universal approach. However, for large sequence spaces,
selection optimization is more complex. To bypass this limitation, a
fraction of the entire population (a subset of the input library) can be
used to benchmark selection parameters and enrichment cut-offs.
Alternatively, an initial round of selection with low stringency can
be implemented to reduce the population of inactive variants and
amplify the signal in subsequent DoE experimental runs.

Crucially, enzyme engineering campaigns often re-introduce
variation into the libraries after a few rounds of selection, whether
rationally, as carried out in the development of a DNA polymerase
for fluorescently labelled DNA amplification (Ramsay et al.,
2010), or by random mutagenesis, as in the development of a
thermostabilized phi29 DNA polymerase (Povilaitis et al., 2016).
Still, the pipeline presented here remains relevant and can be
used after the introduction of diversity to re-optimize selection
parameters.

In addition, our proposed pipeline efficiently explores multiple
protein functions and aids in identifying optimal parameters for
isolating variants with desired phenotypes. For example, notable
differences in mutant enrichment patterns were observed between
D1 selections 8 and 2, both utilizing 2′F-rATP in the nucleotidemix.
Selection 2 exhibited the highest substitution error rates, indicating
that its parameters may enrich variants capable of more proficient
2′F-rATP incorporation at the cost of fidelity, compared to those
from Selection 8 conditions.

Machine learning can be used to infer more complex
interactions between enrichment, fidelity, and selection conditions.
Our dataset was not sufficiently large for robust analysis by
multiple ML algorithms (data not shown) but more advanced
imputation methods with neural networks (Choudhury and Pal,
2019) remain possible. Still, correlation analysis between error rates
and enrichment suggests these two parameters are not directly
related and may depend on other parameters from individual
selections.

Lastly, we wanted to investigate the sequencing coverage
required for protein engineering through directed evolution. We
found that a coverage of 5x was sufficient to isolate 80% of all the
significantly enriched mutants with 0% chance of false positives. We
also found that with coverages as low as 0.5x, while the probability
of obtaining significantly enriched variants is low, the probability
of false positives remains close to zero. We also observed that
it is important to have equal coverage pre- and post-selection,
particularly at low (<5x) coverages to obtain accurate mutant
enrichment patterns.
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In summary, we carried out an in-depth analysis of selection
and developed an approach to investigate different levels of selection
efficiency. We demonstrated the importance of selection parameters
and their effect on the population- and the individual mutant-
level. Optimizing selection parameters is crucial for the discovery
of desired variants. We also demonstrated that a simple metric for
sequencing coverage should be used to standardize sequencing in
directed evolution experiments and that low sequencing coverage is
enough to obtain precise and accurate mutant enrichment patterns.
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