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Background: Hypoxia has been found to cause cellular dysfunction and cell
death, which are essential mechanisms in the development of acute myocardial
infarction (AMI). However, the impact of hypoxia-related genes (HRGs) on AMI
remains uncertain.

Methods: The training dataset GSE66360, validation dataset GSE48060, and
scRNA dataset GSE163956 were downloaded from the GEO database. We
identified hub HRGs in AMI usingmachine learningmethods. A predictionmodel
for AMI occurrence was constructed and validated based on the identified hub
HRGs. Correlations between hub HRGs and immune cells were explored using
ssGSEA analysis. Unsupervised consensus clustering analysis was used to identify
robust molecular clusters associated with hypoxia. Single-cell analysis was used
to determine the distribution of hub HRGs in cell populations. RT-qPCR verified
the expression levels of hub HRGs in the human cardiomyocyte model of AMI
by oxygen-glucose deprivation (OGD) treatment in AC16 cells.

Results: Fourteen candidate HRGs were identified by differential analysis, and
the RF model and the nomogram based on 8 hub HRGs (IRS2, ZFP36, NFIL3,
TNFAIP3, SLC2A3, IER3, MAFF, and PLAUR) were constructed, and the ROC
curves verified its good prediction effect in training and validation datasets (AUC
= 0.9339 and 0.8141, respectively). In addition, the interaction between hub
HRGs and smooth muscle cells, immune cells was elucidated by scRNA analysis.
Subsequently, the HRG pattern was constructed by consensus clustering, and
the HRG gene pattern verified the accuracy of its grouping. Patients with AMI
could be categorized into three HRG subclusters, and cluster A was significantly
associated with immune infiltration. The RT-qPCR results showed that the hub
HRGs in the OGD group were significantly overexpressed.
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Conclusion: A predictive model of AMI based on HRGs was developed and
strongly associated with immune cell infiltration. Characterizing patients for
hypoxia could help identify populations with specific molecular profiles and
provide precise treatment.

KEYWORDS

acute myocardial infarction, hypoxia, diagnostic model, single-cell analysis, immune
infiltration

Introduction

Acute myocardial infarction (AMI) is a heart disease in
which the local blood supply to the heart is insufficient due to
rupture of plaque, aggregation of blood platelets at the rupture
site, and formation of a thrombus blocking the coronary artery
(Wu X. et al., 2021). Extensive cardiomyocyte death and ventricular
remodeling lead to decreased cardiac function, resulting in severe
heart failure and increased mortality (Liu et al., 2021). In recent
years, advances in interventional cardiology and pharmacologic
strategies have significantly improved survival and reduced
recurrent ischemic events in patients with AMI (Zhang et al.,
2022), as reperfusion therapy and improved antithrombotic
treatment have shown promising results in improving cardiac
function after AMI (Ibanez et al., 2018). However, the risk of
complications in patients with AMI is still high. Precision medicine
aims to optimize therapeutic outcomes by tailoring treatment
to individual patient characteristics (clinically identified risk
factors, biomarkers, pharmacogenomics, etc.) and minimizing
adverse events (Sachdeva et al., 2023). It has been shown that
optimized antiplatelet therapy based on platelet function assays
can provide a personalized treatment approach for patients with
acute coronary syndrome (Sotorra-Figuerola et al., 2022). However,
risk stratification of patients based on potential risk factors and
risk evaluation systems (such as the Global Registry of Acute
Coronary Events [GRACE] and the Thrombolysis in Myocardial
Infarction [TIMI] risk scores) no longer fully meets the needs of
clinical practice (Ma et al., 2021). The combination of traditional
models with genetic information, machine learning algorithms, and
artificial intelligence techniques can help improve the accuracy of
risk assessment.Thus, further exploration of molecular mechanisms
and new biomarkers is required.

Persistent ischemia and hypoxia are essential mechanisms
in the development of AMI, leading to irreversible myocardial
damage and progression of heart failure after AMI (Wu et al.,
2019). In a hypoxic environment, a variety of hypoxia-related
genes (HRGs) are abnormally expressed during AMI in different
regulatory models, such as vascular endothelial growth factor
(VEGF), hypoxia-inducible factor (HIF), which are gene
products that protect cells from apoptosis and restore blood
supply through neovascularization (Kim et al., 2009). Studies
have proved the upregulation of the expression of HIF in
cardiomyocytes in AMI, activating the hypoxia-related signaling
pathway associated with angiogenesis, inflammatory response,

and erythropoiesis (Shentu et al., 2020). Duan et al. found
that miR-126-3p/TSC1/mTORC1/HIF-1α pathway promotes
angiogenesis in myocardial endothelial cells in AMI, improving
myocardial function (Duan et al., 2022). It suggests that our
exploration of hypoxia-associated signaling pathways will benefit
treating AMI.

Areas of myocardial ischemia and hypoxia after AMI recruit
and activate immune cells, which produce an inflammatory
response in the early stages, contributing to tissue repair and
scar formation (Cai et al., 2023). The hypoxic arterial wall lining
recruits monocytes via macrophage adhesion ligand (Mac-1),
which produces platelet-derived growth factors that induce
the proliferation of endothelial cells and smooth muscle cells
(SMCs), promoting vascular remodeling and cardiomyocyte
repair (Marumo et al., 1999; Schuler et al., 2003). In addition,
a study found that hypoxia promotes the expression of M2
macrophage by establishing an AMI mouse model, which is
essential in repairing cardiac inflammatory response and fibrosis
after AMI (Wang et al., 2023). Neutrophils are attracted by
cellular debris, cytokines, and injury-related pattern molecules
to accumulate in the region of myocardial infarction, generating
highly reactive oxygen species and promoting the secretion of
proteases, which can exacerbate tissue and vascular damage
(Frangogiannis, 2012). However, recent studies have found
that neutrophils promote fibrosis, scar formation, and cardiac
remodeling in the injured myocardium by secreting factors that
tilt the macrophages toward a segregated phenotype that mediates
efficient clearance of cellular debris (Horckmans et al., 2017). These
findings suggest that immune cell infiltration is a new direction to
prevent the progression of infarction. Exploring the relationship
between immune infiltration in infarction and its hypoxia can
help analyze the pathogenesis of AMI and provide therapeutic
strategies.

In this study, we applied an integrative analysis based
on data from bulk RNA and single-cell RNA sequencing
(scRNA-seq) to identify the hub HRGs in AMI through
machine learning methods, and a diagnostic model of AMI
was constructed and validated. The interaction between the
immune microenvironment (IME) in AMI and the expression
of hub HRGs was also elucidated. The detailed workflow is
indicated in Figure 1. A more profound comprehension of the
multimolecular characteristics of hypoxia in AMI is anticipated
to guide further research by revealing possible biomarkers
for diagnosing and treating AMI.
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FIGURE 1
Flowchart for comprehensive analysis of hypoxia-related genes in diagnosis and immune infiltration in acute myocardial infarction. HRGs,
hypoxia-related genes; DE-HRGs, differentially expressed HRGs.

Material and method

Data acquisition and processing

We downloaded three datasets from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/), the training dataset GSE66360 (49
AMI and 50 normal samples of human), the validation dataset
GSE48060 (31 AMI and 21 normal samples of human), and
the scRNA dataset GSE163956 (4 AMI and 1 normal samples
of mouse). Then, the Perl software was used to add annotation
information to the platform file so that the probe matrix could
transform into gene expression data. To match gene symbols
between different species, we used the “homologene” package for
homologous gene conversion. The HRGs were collected from the
MSigDB database (Hallmark Gene Set) (https://www.gsea-msigdb.
org/gsea/msigdb/).

Differential expression and correlation
analysis

The “limma” package was used to perform differential
expression analysis in the control and AMI samples.
|log2-fold change (FC)| ≥ 1 and P < 0.01 were used
as the threshold to identify differentially expressed genes
(DEGs). Meanwhile, a heat map of DEGs was plotted
using the “pheatmap” package. DEGs were intersected
with HRGs to obtain significantly differentially expressed
HRGs. A correlation analysis was conducted to understand
the interactions between genes, and the gene co-
expression network was visualized.

Construction of machine learning
algorithms and nomogram

We used two machine learning algorithms, random forest (RF)
and support vector machines (SVM), to identify the hub genes.
The RF employs decision trees to evaluate the significance of
variables by assigning a value to each one. The SVM is based
on nonlinear mapping theory to find the optimal hyperplane of
feature space division to help find the key samples and eliminate the
redundant samples. The box plots of residuals, inverse distribution
plots of residuals, and receiver operating characteristic (ROC)
curves were used to assess the algorithms. The RF model was
selected based on these results. Candidate genes with a Gini value
greater than 2 were further screened, and the “rms” package
was employed to construct a nomogram to score the level of
each gene to predict the incidence risk of AMI. Calibration
curves, decision curve analysis (DCA), clinical impact curve
(CIC), and ROC curves were plotted respectively in the training
set and testing set to assess the predictive effectiveness of the
predictive model.

Construction of targeted drug and gene
interaction network of hub HRGs

The search for targeted drugs of feature genes was based
on the Drug-Gene Interaction database (DGIdb) (http://dgidb.
genome.wustl.edu/), and the gene-drug network was visualized
by the Cytoscpace software (version 3.8.2). The GeneMANIA
database (http://genemania.org) was used to explore the functions
and interactions of targeted genes.
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Single cell sequencing analysis

The “Seurat” and “SingleR” packages were used to analyze
the scRNA-seq data. To retain high-quality data, cells expressing
fewer than 300 and more than 30,000 genes, cell numbers
less than 3, and mitochondrial gene percentages larger than
10% were all removed. Using the “NormalizeData” function, we
normalized the gene expression of the included cells.Then, using the
“FindVariableFeatures” function, we extracted the top 20 principal
components based on the top 1,500 highly variable genes through
principal component analysis (PCA). The cell subpopulations,
“FindNeighbors,” “FindClusters” (resolution = 0.4), and “RunTSNE”
functions were applied to unsupervised and unbiased clusters.
Using the adjusted P < 0.01 and absolute log2 (fold change) ≥
1, the “FindAllMarkers” function screened the marker genes for
each cluster. Lastly, the “SingleR” package annotated cell types. The
“JackStraw” function visualized and compared the distribution of P-
values and the uniform distribution of each principal component,
and those with significant P-values were included in subsequent
analyses. Finally, the expression of the hub HRGs in different cells
was shown as violin plots.

Molecular typing and immune infiltration
analysis

HRGpatternswere identified through the “ConsensusClusterPlus”
package based on the expression level of significant differentially
expressed HRGs. A PCA algorithm was used to calculate HRG
scores for each sample to quantify HRG patterns. PCA was applied
to establish a HRG score, namely, the PCA score, and the PCA
score was determined based on the formula: PCA score = (PC1i
+ PC2i), in which i represents the level of HRGs. Both PC1 and
PC2 were regarded as signature scores that represent the suspected
influence on the sample compositional bias, respectively. Based
on the single sample gene set enrichment analysis (ssGSEA), we
analyzed the correlation of HRGs with immune cell infiltration and
selected HRGs associated with immune infiltration for subsequent
studies. The association between differentially expressed HRGs and
expression levels of immune checkpoint genes was used to explore
possible immunotherapeutic targets.

Functional enrichment analysis of DEGs

The “limma” package was used to identify and screen the
DEGs in HRG mode with |log (FC)| ≥ 1 and P < 0.05. Then,
we performed gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis based on
the “clusterProfiler”, “org.Hs.e.g.,.db”, “GOplot”, and “enrichplot”
packages, and plotted histograms and bubble plots with the
“corrplot” package.

Cell culture and construction of the model

This study derived the AC16 cells (human cardiomyocyte
cells) from the cell bank (Procell; China). We cultured AC16

cells in DMEM (Gibico, Thermo Fisher Scientific, Waltham, MA,
United States), which included 10% FBS, 100 U/mL penicillin, and
100 mg/mL streptomycin (Beijing Solarbio Science and Technology
Co., Ltd., Beijing, China), at a constant temperature of 37°C and the
status of 5% CO2.

A suitable density of cells in the logarithmic growth phase was
seeded into a medium supplemented with 10% FBS and incubated
overnight. AC16 cells were split into the control group (Con
group) and the oxygen-glucose deprivation (OGD) treatment group
(OGD group).

According to the relevant experimental conditions, the AC16
cells were evenly dispersed and cultured in an incubator for 24 h.
We placed the plates in a hypoxic chamber with an inlet and outlet.
Next, the outlet port valve was opened, and the anoxic chamber was
filled with the mixed gas containing 5% CO2 and 95% N2 through
the inlet port. Shut the air inlet and outlet simultaneously to create an
oxygen-free closed chamber, which would be put into an incubator
at 37°C. The cells were taken out of the hypoxic chamber after 6 h
and needed additional tests by the follow-up experiments.

The quantitative reverse
transcription-polymerase chain reaction
(RT-qPCR) analysis

The DMEM solution was supplemented with 10% FBS, where
the cells were developed. When the cell confluence rate reached
70%–80%, we cultivated all cells in an incubator with a constant
temperature of 37°C and the status of 5% CO2. Trypsin solution
was employed to digest and subculture these cells, and then
cells in the logarithmic growth stage would be removed for
further RT-qPCR.

The RNA in each group was extracted by TRIzol kit reagents
(Invitrogen, United States) and was reverse transcribed into cDNA
by QuanTiect reverse transcription kit (Qiagen, Germany). RT-
qPCR was performed with CFX96 Real-time PCR system (Bio-
Rad Laboratories, Hercules, CA, United States). GAPDH was used
to normalize expression levels. Table 1 contains a list of primer
sequences. The 2−ΔΔCT approach was used for data analysis.

Statistical analysis

This study processed and analyzed data by Perl software (version
5.18.2) and R software (version 4.1.2). Student's t-test or Wilcoxon's
rank sum test was used to detect the significant difference between
the two independent groups. P < 0.05 was generally considered
statistically significant.

Result

Identification of differentially expressed
HRGs

We obtained 355 DEGs by differential analysis between healthy
individuals and patients with AMI. The heatmap showed the
top 50 genes with significant up- or downregulated expression
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TABLE 1 Primers used for RT-qPCR.

Gene Primers Sequence (5′–3′)

IRS2
Forward ACACCTACGCCAGCATTGAC

Reverse GCCTTGTTGGTGCCTCATCT

ZFP36
Forward GGGAGGCAATGAACCCTCTC

Reverse GCAACGGCTTTGGCTACTTG

NFIL3
Forward GGAGCCAAGAGATGACCGAG

Reverse TGGAGGATCGGTTGACTTGC

TNFAIP3
Forward ATCCGAGCTGTTCCACTTGTTAA

Reverse CAACTTTGCGGCATTGATGAGAT

SLC2A3
Forward CACGCTCATGACTGTTTCTTTGT

Reverse CTGAAGAGTTCGGCCACAATAAA

IER3
Forward GCCGCCTTCTAACTGTGACT

Reverse CGTCTCCGCTGTAGTGTTCT

MAFF
Forward GAGCTGAGCGAGAACACG

Reverse GTAGCCACGGTTTTTGAGTGT

PLAUR
Forward ATGCATTTCCTGTGGCTCATCAG

Reverse GAAGGTGTCGTTGTTGTGGAAAC

GAPDH
Forward GGAGTCCACTGGCGTCTTCA

Reverse GTCATGAGTCCTTCCACGATACC

(Figure 2A). The volcano map indicated the overall distribution
of expression levels and fold change of DEGs (Figure 2B). We
took the intersection of the obtained DEGs with 200 HRGs and
finally screened out 14 candidate genes (NFIL3, PLAUR, PPP1R15A,
ZFP36, CDKN1A, FOS, MAFF, IER3, JUN, DDIT3, ADM, SLC2A3,
IRS2, and TNFAIP3) (Figure 2C). These candidate genes were
consistently highly expressed inAMI andmayplay an important role
(Figures 2D,E). Correlation analysis was carried out to understand
the association between candidate genes better. It showed a strong
positive correlation between each gene (Figures 2F,G). Figure 2H
shows the correlation networks of 14 candidate genes with a
correlation coefficient > 0.4, reflecting the strong correlation
between these genes.

Selection and validation algorithm

Based on the comparison between RF and SVM algorithms,
we found that the RF algorithm had lower residuals than the
SVM algorithm, suggesting it was more accurate for forecasting
the risk of AMI (Figures 3A, B). Furthermore, the ROC curve was
plotted to compare the effect of the two approaches (Figure 3C).

The finding that the AUC of RF was higher than that of SVM
further illustrated that the former was the more appropriate
algorithm.

According to the prediction error curves of the RF algorithm
based on a 10-fold cross-validation curve, the best “ntree” was
selected (Figure 3D). Figure 3E represented the importance score of
each gene; 8 hub HRGs, including IRS2, ZFP36, NFIL3, TNFAIP3,
SLC2A3, IER3, MAFF, and PLAUR, were screened based on the
criterion of Gini value greater than 2.

Based on the 8 hub HRGs, a binary logistic regression
model was used to predict the risk of AMI. The ROC curves
were exhibited in Figures 3F, G. The discrimination power of
the model achieved good performance in both training and
testing sets (AUC = 0.9339 and 0.8141, respectively). The above
findings revealed that the screened hub HRGs based on the RF
algorithm could be implemented as a valid model to predict the
occurrence of AMI.

Establishment of the nomogram

Each gene was scored, and the risk of AMI was predicted
based on the sum; the specific way of assigning points was
revealed in the nomogram (Figure 4A). The bias-corrected line
was close to the ideal line (Figure 4B), illustrating the model’s
good prediction ability. Besides, DCA was performed in which
the curve of HRGs deviated from two extreme ones, indicating
the model’s potential clinical utility (Figure 4C). The CIC proved
the availability of a nomogram by comparing the number of
predicted and actual patients under different probability thresholds
(Figure 4D). In addition, we further evaluated the modeling
effects in the testing set (Figures 4E–G). It was consistent
with the training set, reflecting that the model had better
generalization ability.

Relationship among 8 hub HRGs and target
drugs

The network demonstrated the connection between the genes
based on the geneMANIA (Figure 5A). NFIL3 had stronger
physical interactions with MAFF, MAFG, DDIT3, and BATF.
Genetic interaction existed between IRS2 and NFIL3, IER3, and
TNFAIP3. The genes had a specific positive correlation, and the
correlation between IRS2 and TNFAIP3was the highest (Figure 5B).
Targeted drugs against SLC2A3, IRS2, PLAUR, and TNFAIP
are shown in Figure 5C. Insulin was a targeted drug common to
SLC2A3 and IRS2.

Single-cell analysis indicated the hub HRGs
interact with the SMCs and immune in AMI

We filtered ineligible cells according to quality control criteria
(Figure 6A). The nCount RNA positively correlated with nFeature
RNA, with a correlation coefficient of 0.95 (Figure 6B). As shown
in Figure 6C, 1,500 highly variable genes were screened. The
“RunPCA” function performed dimensionality reduction, and 13
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FIGURE 2
Identification of differentially expressed hypoxia-related genes (HRGs) in acute myocardial infarction (AMI). (A) Heat map of differentially expressed
genes (DEGs); (B) Volcano plot of DEGs; (C) Venn diagram for the intersection of DEGs and HRGs; (D) Boxplots for 14 candidate genes between control
and AMI groups; (E) Expression heatmap of 14 candidate genes; (F) Correlation heat map of 14 candidate genes; (G) Chordal graph of 14 candidate
genes correlations of 14 candidate genes; (H) Interaction network of 14 candidate genes. ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.

clusters in total were recognized (Figures 6D, F). The heatmap
exhibited the top 10 marker genes in each cluster (Figure 6E).
At last, the “SingleR” function was employed to annotate, and

7 cell types, containing SMCs, fibroblasts, neuroepithelial cells,
chondrocytes, MSCs, neutrophils, and neurons, were visualized
in different colors (Figure 6G). The distribution of 8 hub HRGs
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FIGURE 3
Comparison and selection of random forest (RF) and support vector machines (SVM). (A) Residual Boxplot of RF and SVM, where the red dots indicate
the root mean square of the residuals; (B) Reverse cumulative distribution of residual; (C) Receiver operating characteristic (ROC) curve of RF and SVM.
The AUC of RF and SVM were 1.000 and 0.980, respectively; (D) RF prediction error curves based on 10-fold cross-validation curve; (E) The scoring
plot of each gene; (F) The ROC curve of the logistic regression model constructed in acute myocardial infarction (AMI) based on hub HRGs identified
by RF algorithm in the training cohort; (G) The ROC curve of the logistic regression model constructed in AMI in the testing cohort.

in different kinds of cells was displayed in Figure 7. We noticed
that Zfp36, Tnfaip3, and Ier3 were distributed in various cells,
among which SMCs expressed more. Besides, these 6 genes (except
SIc2a3 andMaff ) were somewhat expressed in neuroepithelial cells.
Expression of Zfp36, Tnfaip3, Ier3, and Plaurmay be associated with
neutrophils.

Identification of three HRG patterns

Based on the 14 differentially expressed HRGs and the results of
Figures 8A–D,we chose k= 3 for unsupervised consensus clustering.
According to the results of PCA, the AMI samples were effectively
distinguished 3 HRG patterns (Figure 8E). The HRG clusters were
divided into 3 subclusters for differential analysis, and significant
heterogeneity in the expression of the 14 differentially expressed
HRGs in the three clusters was observed, with the expression of
the genes in cluster A being significantly higher than those in
clusters B and C (Figures 8F,G).

Immune infiltration analysis

Immune infiltration analysis was performed by ssGSEA to
investigate the relationship between different subpopulations and

immune cell infiltration.The results showed that the 14 differentially
expressed HRGs were significantly positively correlated with a
variety of immune cells, including macrophages, neutrophils, and
regulatory T cells (Figures 9A, B). In the immune checkpoint
analysis, all 14 differentially expressed HRGs showed a significant
positive correlation with LGALS9 and a significant negative
correlationwithHHLA2, NRP1, andVTCN2 (Figure 9C). To further
investigate the expression differences at the immune infiltration
sites, we divided AMI samples into high and low groups of
HRG scores. It showed that the expression of VTCN1, CD200R1,
NRP1, and BTNL2 was downregulated in the high-expression
group of HRG scores. In contrast, the expression of TMIGD2 was
upregulated (Figure 9D).

Identification of three HRG gene patterns

Forty-six DEGs were screened under three different HRG
patterns by the “limma” package (Figure 10A). GO and KEGG
analyses were performed to explore the potential pathways
of DEGs in AMI. The GO results showed that DEGs were
mainly enriched in leukocyte chemotaxis, neutrophil chemotaxis,
neutrophil migration, granulocyte neutrophil, and positive
regulation of inflammatory response in the biological process.
Secondary lysosome, tertiary granule lumen, and ficolin-1-rich
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FIGURE 4
Construction of the nomogram. (A) The nomogram is based on 8 hub hypoxia-related genes (HRGs). The expression level of each HRG in the graph
corresponds to the score of the upper score scale, and the researchers can read out the corresponding score of each HRG according to the actual
situation and get the total score by summing it up. Ultimately, the total score can be added to the probability of AMI risk at the bottom of the graph; (B)
The calibration curve in the training set; (C) The clinical impact curve (CIC) in the training set; (D) Decision curve analysis (DCA) in the training set; (E)
The calibration curve in the testing set; (F) The CIC in the testing set; (G) The DCA in the testing set.

granule were significantly enriched for cellular components. In
addition, DEGs were mainly enriched in chemokine activity
and chemokine receptor binding in the molecular function

(Figures 10B, C). In KEGG analysis, DEGs were mainly enriched
in the NF-kappa B signaling pathway, IL-7 signaling pathway, and
apoptosis (Figure 10D).
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FIGURE 5
Relationship among 8 hub hypoxia-related genes (HRGs) and target drugs. (A) Interaction networks of 8 hub HRGs based on the geneMANIA database;
(B) Correlation analysis among 8 hub HRGs; (C) Gene-drug regulatory network.

To further validate the HRG pattern, patients with AMI were
again categorized into 3 different gene patterns by unsupervised
consensus clustering, and the results were consistent with the

HRG pattern (Figures 11A–C). The expression levels of the 14
differentially expressed HRGs with immune cell infiltration among
the gene clusters were similar to the results of the HRG pattern
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FIGURE 6
Sample quality control and cell annotation. (A) Violin plots of quality control metrics: The gene counts per cell (nCandidate_RNA), number of unique
molecular identifiers (UMIs) per cell (nCount_RNA), and percentage of mitochondrial genes per cell (percent. mt); (B) Scatterplots with different modes
of quality control; (C) The variance plot: red dots revealed 1,500 highly variable genes; (D) JackStraw Plot; (E) DimHeatmap; (F) Visualization results of
t-SNE dimensionality reduction clustering; (G) 7 cell types were annotated.

(Figures 11D–F). In addition, we also compared the HRG scores
between different HRG clusters and HRG gene clusters, and the
results showed that the HRG cluster A or gene cluster A had the

highest score, and theHRG cluster C or gene cluster C had the lowest
score (Figures 11G, H).TheSankey diagram showed the relationship
between HRG clusters, gene clusters, and HRG scores. (Figure 11I).
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FIGURE 7
The t-SNE plot based on the expression of 8 hub hypoxia-related genes and violin plots of gene expression in different cells.

Expression of hub HRGs analyzed by
RT-qPCR

By treating AC16 cells with oxygen and glucose deprivation,
we constructed a cellular model of AMI to further validate the

correctness of our results.The expression level of 8 hub HRGs, IRS2,
ZFP36, NFIL3, TNFAIP3, SLC2A3, IER3, MAFF, and PLAUR, was
significantly increased in the OGD group (Figure 12). Consistent
with the results of bioinformatics analysis, the expression of hub
HRGs was upregulated in AC16 cells with OGD treatment.
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FIGURE 8
Consensus clustering of 14 differentially expressed hypoxia-related genes (HRGs) in patients with acute myocardial infarction. (A) Cumulative
distribution function (CDF); (B) Delta area plot of consensus clustering; (C) Tracking plot of 14 differentially expressed HRGs; (D) Consensus matrix with
k = 3; (E) Principal component analysis (PCA); (F) Expression boxplots of 14 differentially expressed HRGs in different clusters; (G) Heatmap of
expression of 14 differentially expressed HRGs in different clusters. ∗∗P < 0.01; ∗∗∗P < 0.001.

Discussion

Hypoxia is a typical pathologic process in various development
mechanisms in AMI. In this study, we identified 8 hub HRGs (IRS2,
ZFP36, NFIL3, TNFAIP3, SLC2A3, IER3, MAFF, and PLAUR) and
constructed a diagnostic model to predict the occurrence of AMI.

Here, we applied a comprehensive analysis of bulk RNA-seq and
scRNA-seq data and found that the identified hubHRGswere closely
associated with the IME of AMI.

Inadequate oxygen supply to the heart triggers a series of
responses, includingmitochondrial degradation, free radical release,
inflammatory cell aggregation, lactic acidosis, and angiogenesis.
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FIGURE 9
Immune cell infiltration analysis. (A) The correlation between infiltrating immune cells and HRG clusters; (B) Heatmap between 14 differentially
expressed hypoxia-related genes (HRGs) and the expression level of immune cell in different clusters; (C) The correlation analysis between 14
differentially expressed HRGs and immune checkpoint; (D) Violin plot of the immune checkpoint in high and low HRG scores groups. ∗P < 0.05; ∗∗P <
0.01; ∗∗∗P < 0.001.

HIF is a vital transcription factor with a broad spectrum of
target genes, which is stably expressed during hypoxia and
drives the initial response to hypoxia (Knutson et al., 2021).

Promoting cardiomyocyte proliferation and repair under hypoxia
is a therapeutic strategy for AMI, and studies have shown
that increased glucose metabolism favors the regeneration of
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FIGURE 10
Functional enrichment analysis based on the hypoxia-related gene (HRG) patterns. (A) Venn diagram of interactions between different clusters; (B) Bar
chart for gene ontology (GO) analysis, the redder the color, the more significant the enrichment of the genes in the pathway; (C) The GO Circle Chart
includes the analysis of the biological process, molecular function, cellular component; (D) A bubble chart for Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis.

neonatal mouse hearts (Zhu et al., 2022). IRS2 regulates the
transduction of insulin and insulin growth factor, and research
has demonstrated that the HIF-2α/IRS2 pathway can connect
hypoxia sensing to the inhibition of gluconeogenesis (Wei et al.,
2013). Additionally, IRS2 has anti-inflammatory properties in the
hypoxic microenvironment and can limit macrophage activation
(Nakahara et al., 2021). SLC2A3 and GLUT3 are involved in the
transmembrane transport of glucose and affect the transformation
of CD4+ T-cell to regulate inflammation (Yang et al., 2023). HIF-
1 promoted glycolysis during hypoxia, and SLC2A3 was one of
its target genes, promoting glucose uptake and utilization. The
HIF1/SLC2A3 axis is closely related to endothelial function and
may facilitate HIF pro-angiogenesis (Mimura et al., 2012). The
expression of ZFP36 is elevated in coronary epithelial cells of injured

human hearts, which can regulate their proliferation and maybe
a new target for vascular regeneration (Li et al., 2023). ZFP36 is a
zinc finger protein, and Wu et al. found that ZFP36L2 can attenuate
mitochondrial fusion and fission by affecting PVT1, thus alleviating
myocardial injury (Wu F. et al., 2021). Meanwhile, the zinc finger
structural domain can bind to the untranslated region of mRNA
to interfere with post-transcriptional modification and translation,
reducing the expression of inflammatory cytokines.

During AMI, many inflammatory cells infiltrate into the
myocardium, starting with rapid neutrophil aggregation, followed
by monocyte and macrophage infiltration. Then, fibroblasts are
activated and recruited to participate in the repair process
(Frangogiannis, 2014; Zhu et al., 2022). It has been reported that
NLRP3 inflammasome activation in immune cells recruited to
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FIGURE 11
Identification of gene patterns related to hypoxia-related genes (HRGs). (A) Cumulative distribution function (CDF); (B) Delta area plot of consensus
clustering; (C) Consensus matrix with k = 3; (D) Heatmap of HRGs with immune checkpoint profiles among the gene clusters; (E) Gene expression in
three clusters; (F) The correlation analysis between 14 differentially expressed HRGs and immune infiltrating; (G) The score of HRG clusters; (H) The
score of gene clusters; (I) The Sankey diagram showed the relationship between HRG clusters, gene clusters, and HRG scores. ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001.

Frontiers in Molecular Biosciences 15 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1448705
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences


Liu et al. 10.3389/fmolb.2024.1448705

FIGURE 12
The quantitative reverse transcription-polymerase chain reaction (RT-qPCR) to detect expression levels of 8 hub hypoxia-related genes. ∗P < 0.05; ∗∗P
< 0.01; ∗∗∗P < 0.001.

the foci of myocardial injury leads to further myocardial injury.
TNFAIP3 has been confirmed to inhibit inflammasome activation in
bone marrow-derived macrophages. TNFAIP3 is a dual ubiquitin-
modifying enzyme with anti-inflammatory and inhibitory NF-κB
effects (Zhang et al., 2018). Giral et al. discovered that the TNFAIP3
levels in the blood mononuclear cells of patients with AMI were
positively correlated with the degree of cardiac damage and were
thought to be associated with attenuated inflammasome activation
(Giral et al., 2022). TNFAIP3 may exert anti-inflammatory effects
by blocking NF-κB and its dependent proteins and affecting the
signaling to negatively regulate the activation of inflammasomes
in macrophages by toll-like receptors (Patel et al., 2006; Yuk et al.,
2015). PLAUR is a multidomain glycoprotein-activated receptor
that binds PLAU and further activates fibrinogen to degrade
extracellular matrix to promote cell metastasis; on the other hand,
it can form complexes with vitronectin and integrins to enhance
monocyte adhesion (Bai et al., 2021). Besides, it can also secrete
cytokines to activate the PI3K/Akt signaling pathway to trigger
inflammation.

The prediction model constructed based on hub HRGs
achieved satisfactory results in both training and testing sets. The
scRNA-seq analysis was completed to investigate the relationship
between each gene and different cells, identifying 8 core cells,
among which SMCs attracted our attention. SMCs are closely
associated with the arterial remodeling process after vascular injury,
which may improve the therapeutic strategy for AMI (Shi et al.,
2019). Zinc deficiency has been reported to be a promoter of
endothelial atherosclerosis. Zinc supplementation can exert an
inhibitory effect on vascular calcification by suppressing NF-
κB through upregulation of TNFAIP3 (Voelkl et al., 2018). In
addition, TNFAIP3 can inhibit the proliferation of SMCs to prevent

endothelial hyperplasia without causing apoptosis and increase
the sensitivity of SMCs to apoptosis in de novo endothelial lesions,
whichmay be necessary for treating endothelial diseases (Patel et al.,
2006). IER3 is an NF-κB-responsive gene similar to TNFAIP3,
which is also upregulated in atherosclerosis, inhibited endothelial
neogenesis, and has an anti-myocardial hypertrophic function.
It has been revealed that biomechanical stimulation under the
transcriptional control of NF-κB activation induced IER3, and
adenoviral gene transfer of IER3 had an obvious inhibitory effect
on the proliferation of SMCs in vitro (Schulze et al., 2003). A
study by Brahmbhatt et al. also illustrated that IER3 gene deletion
inhibited venous neointimal hyperplasia (Brahmbhatt et al., 2014).
The high expression of these genes in SMCs may reflect the
negative feedback regulation mechanism after vascular injury
in AMI, providing new ideas for diagnosing and treating
the disease.

This study classified AMI samples into 3 HRG subclusters based
on 14 differentially expressed HRGs and analyzed them for immune
infiltration. The expression of each gene decreased sequentially in
clusters A, B, and C. Most of the significantly different immune cell
infiltrations displayed the same trend. However, macrophages, mast
cells, monocytes, and neutrophils were more frequently distributed
in cluster C than in cluster B. Moreover, we analyzed immune
checkpoints to provide new insights into immunotherapy for AMI.
LGALS9 was an immune checkpoint that significantly positively
correlatedwith all 14 differentially expressedHRGs.As early as 2015,
a study demonstrated that serum LGALS9 was associated with the
degree of coronary artery stenosis and inhibited the development
of atherosclerosis in Chinese (Zhu et al., 2015). In a study on
AIDS, LGALS9 levels were found to predict the probability of
myocardial infarction or stroke after receiving antiretroviral therapy
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(Premeaux et al., 2021). HHLA2, a B7 family ligand, is highly
expressed in various cancers, is associated with immune evasion,
and has a bi-directional regulatory effect on T cells. Meanwhile, it
correlates with hypoxia in the tumor microenvironment, but the
association needs further study (Mortezaee, 2023). Upregulation of
each gene blocks HHLA signaling and may have therapeutic effects
by improving T-cell proliferation.

We performed functional enrichment analysis to further
explore the possible biological functions played by the DEGs.
GO analysis exhibited significant enrichment of chemotaxis
and migration of multiple immune cells, including neutrophils,
leukocytes, myeloid leukocytes, and granulocytes. It reflected
the vital role of the inflammatory response in myocardial
injury and repair. KEGG analysis showed aggregation in the
NF-κB signaling pathway. The NF-κB signaling pathway was
redox-sensitive, and during myocardial ischemia and hypoxia,
HIF-α was translocated to neutrophil nuclei, and the NF-κB
pathway was activated, mediating cytokine transcription. The
TLR4/MyD88/NF-κB pathway is an important pathway that
ameliorates inflammatory injury disease, attenuating apoptosis
after AMI (Zhang et al., 2022). NF-κB was regulated by various
miRNA. Huang et al. found that IL-1β promotes the proliferation of
hypoxic vascular endothelial cells through miR-24-3p/NKAP/NF-
κB axis (Huang et al., 2022). The research written by He et al.
illustrated that dexmedetomidine can exert cardioprotective effects
by inhibiting the NF-κB pathway through miR-1a-6p targeting
IRAK146 and TRAF3 (He et al., 2021).

In the current study, we comprehensively analyzed the specific
role of HRGs in the diagnosis and immune infiltration of AMI
based on bulk and single-cell RNA sequencing data, which provides
new perspectives for subsequent studies. However, this study still
had some limitations. First, data were obtained from only one
database, and the limited sample size may have affected the
statistical analysis results to some extent. Second, studies with
larger samples are needed to further evaluate the risk prediction
model. Third, the assessment of HRGs was limited to the RNA
level only; refinement of multi-omics studies such as proteomics
and metabolomics was expected. Fourth, although we normalized
and filtered the data, there was still a batch effect due to the
use of different platforms and different dates of processing and
analysis. The batch effect will be more obvious, especially when
analyzing different data from various sequencing studies. A large
amount of genetic data is still needed to validate our conclusions
in the future. Finally, inflammation and immune cell infiltration
into the infarcted area are essential manifestations of the hypoxic
features. Correlation analyses do not allow an account of their
specific roles; more in-depth studies are needed to validate our
conclusion.

Conclusion

In this study, we utilized a machine learning approach to
select 14 candidate HRGs and finalized 8 hub HRGs (IRS2, ZFP36,
NFIL3, TNFAIP3, SLC2A3, IER3, MAFF, and PLAUR) to be used
to construct a risk prediction model for AMI, which demonstrates
the potential of hub HRGs as biological markers for AMI. The

scRNA-seq analysis further revealed the important role of SMCs
and immune cells in AMI. HRGs and gene subclusters were
identified by consensus clustering, and their relationship with
immune cell infiltration was further explored. Based on these
findings, characterizing patients for hypoxia could help identify
populations with specific molecular profiles and provide precise
treatment. However, more multi-omics studies are still needed
to further explore the hypoxic features in AMI and provide
new strategies for diagnosis, classification, targeted therapy, and
prognosis prediction.
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